Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (711)

Search Parameters:
Keywords = clade 19B

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1990 KiB  
Article
Fecal and Environmental Shedding of Influenza A Virus in Brazilian Swine: Genomic Evidence of Recent Human-to-Swine Transmission
by Nágila Rocha Aguilar, Beatriz Senra Alvares da Silva Santos, Bruno Zinato Carraro, Brenda Monique Magalhães Rocha, Jardelina de Souza Todao Bernardino, Ana Luiza Soares Fraiha, Alex Ranieri Jeronimo Lima, Gabriela Ribeiro, Alessandra Silva Dias, Renata Rezende Carvalho, Bruna Ferreira Sampaio Ribeiro, Marta Giovanetti, Luiz Carlos Júnior Alcântara, Sandra Coccuzzo Sampaio, Maria Carolina Quartim Barbosa Elias Sabbaga, Rafael Romero Nicolino, Zélia Inês Portela Lobato, Maria Isabel Maldonado Coelho Guedes, Cesar Rossas Mota Filho, Vincent Louis Viala, Bruna Coelho Lopes and Erica Azevedo Costaadd Show full author list remove Hide full author list
Pathogens 2025, 14(8), 753; https://doi.org/10.3390/pathogens14080753 (registering DOI) - 31 Jul 2025
Abstract
Surveillance of swine influenza A virus (swIAV) traditionally focuses on respiratory matrices, yet emerging evidence suggests that fecal shedding and secondary environmental contamination may also contribute to viral dissemination. In this study, we collected and analyzed nasal, rectal, environmental, milk, and colostrum samples [...] Read more.
Surveillance of swine influenza A virus (swIAV) traditionally focuses on respiratory matrices, yet emerging evidence suggests that fecal shedding and secondary environmental contamination may also contribute to viral dissemination. In this study, we collected and analyzed nasal, rectal, environmental, milk, and colostrum samples from naturally infected pigs in a commercial farm in Minas Gerais, Brazil. IAV RNA was detected in 25% of samples, including 42% from asymptomatic animals, with nasal swabs showing higher detection rates (30%) than rectal swabs (20%), though rectal Ct values were consistently higher, indicative of lower viral loads. We successfully isolated viable viruses from feces and effluent samples. Whole-genome sequencing revealed co-circulation of enzootic pH1N1 clade #2 (HA) and pN1 clade #4 (NA), alongside human-origin H3N2 sequences clustering within clade 3C.2a1b.2a.2a.1, and N2 segments related to pre-3C human lineages from 2001 to 2002. Phylogenetic and p-distance analyses support both recent reverse zoonosis and historical transmission events. Detection of complete HA/NA sequences from rectal swabs and treated effluent further emphasizes the surveillance value of non-respiratory matrices. The integration of respiratory and fecal/environmental sampling appears important to achieve more comprehensive IAV monitoring in swine herds and may have significant implications for One Health strategies in Brazil and beyond. Full article
Show Figures

Graphical abstract

18 pages, 7295 KiB  
Article
Genome-Wide Identification, Evolution, and Expression Analysis of the DMP Gene Family in Peanut (Arachis hypogaea L.)
by Pengyu Qu, Lina He, Lulu Xue, Han Liu, Xiaona Li, Huanhuan Zhao, Liuyang Fu, Suoyi Han, Xiaodong Dai, Wenzhao Dong, Lei Shi and Xinyou Zhang
Int. J. Mol. Sci. 2025, 26(15), 7243; https://doi.org/10.3390/ijms26157243 - 26 Jul 2025
Viewed by 285
Abstract
Peanut (Arachis hypogaea L.) is a globally important oilseed cash crop, yet its limited genetic diversity and unique reproductive biology present persistent challenges for conventional crossbreeding. Traditional breeding approaches are often time-consuming and inadequate, mitigating the pace of cultivar development. Essential for [...] Read more.
Peanut (Arachis hypogaea L.) is a globally important oilseed cash crop, yet its limited genetic diversity and unique reproductive biology present persistent challenges for conventional crossbreeding. Traditional breeding approaches are often time-consuming and inadequate, mitigating the pace of cultivar development. Essential for double fertilization and programmed cell death (PCD), DUF679 membrane proteins (DMPs) represent a membrane protein family unique to plants. In the present study, a comprehensive analysis of the DMP gene family in peanuts was conducted, which included the identification of 21 family members. Based on phylogenetic analysis, these genes were segregated into five distinct clades (I–V), with AhDMP8A, AhDMP8B, AhDMP9A, and AhDMP9B in clade IV exhibiting high homology with known haploid induction genes. These four candidates also displayed significantly elevated expression in floral tissues compared to other organs, supporting their candidacy for haploid induction in peanuts. Subcellular localization prediction, confirmed through co-localization assays, demonstrated that AhDMPs primarily localize to the plasma membrane, consistent with their proposed roles in the reproductive signaling process. Furthermore, chromosomal mapping and synteny analyses revealed that the expansion of the AhDMP gene family is largely driven by whole-genome duplication (WGD) and segmental duplication events, reflecting the evolutionary dynamics of the tetraploid peanut genome. Collectively, these findings establish a foundational understanding of the AhDMP gene family and highlight promising targets for future applications in haploid induction-based breeding strategies in peanuts. Full article
Show Figures

Graphical abstract

18 pages, 11606 KiB  
Article
Emerging Highly Pathogenic Avian Influenza H5N1 Clade 2.3.4.4b Causes Neurological Disease and Mortality in Scavenging Ducks in Bangladesh
by Rokshana Parvin, Sumyea Binta Helal, Md Mohi Uddin, Shadia Tasnim, Md. Riabbel Hossain, Rupaida Akter Shila, Jahan Ara Begum, Mohammed Nooruzzaman, Ann Kathrin Ahrens, Timm Harder and Emdadul Haque Chowdhury
Vet. Sci. 2025, 12(8), 689; https://doi.org/10.3390/vetsci12080689 - 23 Jul 2025
Viewed by 435
Abstract
Scavenging domestic ducks significantly contribute to the transmission and maintenance of highly pathogenic H5N1 clade 2.3.4.4b avian influenza viruses in Bangladesh, a strain of growing global concern due to its broad host range, high pathogenicity, and spillover potential. This study investigates the molecular [...] Read more.
Scavenging domestic ducks significantly contribute to the transmission and maintenance of highly pathogenic H5N1 clade 2.3.4.4b avian influenza viruses in Bangladesh, a strain of growing global concern due to its broad host range, high pathogenicity, and spillover potential. This study investigates the molecular epidemiology and pathology of HPAI H5N1 viruses in unvaccinated scavenging ducks in Bangladesh, with the goal of assessing viral evolution and associated disease outcomes. Between June 2022 and March 2024, 40 scavenging duck flocks were investigated for HPAI outbreaks. Active HPAIV H5N1 infection was detected in 35% (14/40) of the flocks using RT-qPCR. Affected ducks exhibited clinical signs of incoordination, torticollis, and paralysis. Pathological examination revealed prominent meningoencephalitis, encephalopathy and encephalomalacia, along with widespread lesions in the trachea, lungs, liver, and spleen, indicative of systemic HPAIV infection. A phylogenetic analysis of full-genome sequences confirmed the continued circulation of clade 2.3.2.1a genotype G2 in these ducks. Notably, two samples of 2022 and 2023 harbored HPAIV H5N1 of clade 2.3.4.4b, showing genetic similarity to H5N1 strains circulating in Korea and Vietnam. A mutation analysis of the HA protein in clade 2.3.4.4b viruses revealed key substitutions, including T156A (loss of an N-linked glycosylation site), S141P (antigenic site A), and E193R/K (receptor-binding pocket), indicating potential antigenic drift and receptor-binding adaptation compared to clade 2.3.2.1a. The emergence of clade 2.3.4.4b with the first report of neurological and systemic lesions suggests ongoing viral evolution with increased pathogenic potential for ducks. These findings highlight the urgent need for enhanced surveillance and biosecurity to control HPAI spread in Bangladesh. Full article
Show Figures

Figure 1

25 pages, 3057 KiB  
Article
Phylogenetic Diversity and Symbiotic Effectiveness of Bradyrhizobium Strains Nodulating Glycine max in Côte d’Ivoire
by Marie Ange Akaffou, Romain Kouakou Fossou, Anicet Ediman Théodore Ebou, Zaka Ghislaine Claude Kouadjo-Zézé, Chiguié Estelle Raïssa-Emma Amon, Clémence Chaintreuil, Saliou Fall and Adolphe Zézé
Agronomy 2025, 15(7), 1720; https://doi.org/10.3390/agronomy15071720 - 17 Jul 2025
Viewed by 546
Abstract
Soybean (Glycine max) is a protein-rich legume crop that plays an important role in achieving food security. The aim of this study was to isolate soybean-nodulating rhizobia from Côte d’Ivoire soils and evaluate their potential as efficient strains in order to [...] Read more.
Soybean (Glycine max) is a protein-rich legume crop that plays an important role in achieving food security. The aim of this study was to isolate soybean-nodulating rhizobia from Côte d’Ivoire soils and evaluate their potential as efficient strains in order to develop local bioinoculants. For this objective, 38 composite soil samples were collected from Côte d’Ivoire’s five major climatic zones. These soils were used as substrate to trap the nodulating rhizobia using the promiscuous soybean variety R2-231. A total of 110 bacterial strains were isolated and subsequently identified. The analysis of ITS (rDNA16S-23S), glnII and recA sequences revealed a relatively low genetic diversity of these native rhizobia. Moreover, the ITS phylogeny showed that these were scattered into two Bradyrhizobium clades dominated by the B. elkanii supergroup, with ca. 75% of all isolates. Concatenated glnII-recA sequence phylogeny confirmed that the isolates belong in the majority to ‘B. brasilense’, together with B. vignae and some putative genospecies of Bradyrhizobium that needs further elucidation. The core gene phylogeny was found to be incongruent with nodC and nifH phylogenies, probably due to lateral gene transfer influence on the symbiotic genes. The diversity and composition of the Bradyrhizobium species varied significantly among different sampling sites, and the key explanatory variables identified were carbon (C), magnesium (Mg), nitrogen (N), pH, and annual precipitation. Based on both shoot biomass and leaf relative chlorophyll content, three isolates consistently showed a higher symbiotic effectiveness than the exotic inoculant strain Bradyrhizobium IRAT-FA3, demonstrating their potential to serve as indigenous elite strains as bioinoculants. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

16 pages, 1988 KiB  
Article
Epidemiological Surveillance, Variability, and Evolution of Isolates Belonging to the Spanish Clone of the 4,[5],12:i:- Monophasic Variant of Salmonella enterica Serovar Typhimurium
by Xenia Vázquez, Patricia García, Javier Fernández, Víctor Ladero, Carlos Rodríguez-Lucas, Jürgen J. Heinisch, Rosaura Rodicio and M. Rosario Rodicio
Antibiotics 2025, 14(7), 711; https://doi.org/10.3390/antibiotics14070711 - 16 Jul 2025
Viewed by 282
Abstract
Background/Objective: The present study focused on the analysis of the Spanish clone belonging to the successful 4,[5],12:i:- monophasic variant of Salmonella enterica serovar Typhimurium. Methods: All isolates of the clone recovered in a Spanish region from human clinical samples between 2008 and 2018 [...] Read more.
Background/Objective: The present study focused on the analysis of the Spanish clone belonging to the successful 4,[5],12:i:- monophasic variant of Salmonella enterica serovar Typhimurium. Methods: All isolates of the clone recovered in a Spanish region from human clinical samples between 2008 and 2018 (N = 14) were investigated using microbiological approaches and genome sequence analysis. In addition, they were compared with isolates from the years 2000 to 2003 (N = 21), which were previously characterized but had not yet been sequenced. Results: Phylogenetic analyses indicate that all isolates are closely related (differing by 1 to 103 SNPs) but belong to two clades termed A and B. With few exceptions, clade A comprised isolates of the first period, also including two “older” control strains, LSP 389/97 and LSP 272/98. Clade B only contained isolates from the second period. Isolates from both periods were resistant to antibiotics and biocides, with almost all resistance genes located on large IncC plasmids, additionally carrying pSLT-derived virulence genes. The number of resistance genes was highly variable, resulting in a total of 22 ABR (antibiotic biocide resistance) profiles. The number of antibiotic resistance genes, but not that of biocide resistance genes, was considerably lower in isolates from the second than from the first period (with averages of 5.5 versus 9.6 genes). Importantly, IS26, which resides in multiple copies within these plasmids, appears to be playing a crucial role in the evolution of resistance, and it was also responsible for the monophasic phenotype, which was associated with four different deletions eliminating the fljAB region. Conclusions: the observed reduction in the number of antibiotic resistance genes could correlate with the loss of adaptive advantage originating from the ban on the use of antibiotics as feed additives implemented in the European Union since 2006, facilitated by the intrinsic instability of the IncC plasmids. Two consecutive IS26 transposition events, which can explain both the clonal relationship of the isolates and their variability, may account for the observed fljAB deletions. Full article
(This article belongs to the Special Issue Genomic Analysis of Antimicrobial Drug-Resistant Bacteria)
Show Figures

Figure 1

24 pages, 19152 KiB  
Article
Genome-Wide Identification and Functional Characterization of the BAHD Acyltransferase Gene Family in Brassica napus L.
by Yuanyuan Liu, Xingzhi Wei, Yiwei Liu, Yunshan Tang, Shulin Shen, Jie Xu, Lulu Chen, Cunmin Qu, Huiyan Zhao, Hai Du, Huafang Wan, Nengwen Yin and Ti Zhang
Plants 2025, 14(14), 2183; https://doi.org/10.3390/plants14142183 - 15 Jul 2025
Viewed by 423
Abstract
The BAHD acyltransferase family plays a critical role in plant secondary metabolism by catalyzing acyl transfer reactions that are essential for synthesizing metabolites involved in environmental adaptation. However, systematic investigation of this superfamily in Brassica napus has not been reported. In this study, [...] Read more.
The BAHD acyltransferase family plays a critical role in plant secondary metabolism by catalyzing acyl transfer reactions that are essential for synthesizing metabolites involved in environmental adaptation. However, systematic investigation of this superfamily in Brassica napus has not been reported. In this study, 158 BnaBAHD genes were identified by comprehensive analyses of evolutionary relationships, motif structures, chromosomal distribution, gene collinearity, and selection pressures, and these genes were phylogenetically classified into five clades harboring conserved catalytic domains (HXXXD and DFGWG). Transient overexpression combined with metabolomic profiling demonstrated that two homologous seed-specific Clade V members, BnaBAHD040 and BnaBAHD120, which exhibited elevated expression during late seed development, significantly enhanced the accumulation of acylated metabolites contributing to biotic/abiotic stress resistance. This study provides the first experimental validation of the catalytic functions of BAHD enzymes in B. napus, establishing a theoretical foundation for leveraging this gene family in genetic improvement to develop novel rapeseed cultivars with enhanced stress tolerance and yield. Full article
(This article belongs to the Special Issue Bioinformatics and Functional Genomics in Modern Plant Science)
Show Figures

Figure 1

23 pages, 2535 KiB  
Article
Defining Soilborne Pathogen Complexes Provides a New Foundation for the Effective Management of Faba Bean Root Diseases in Ethiopia
by Solomon Yilma, Berhanu Bekele, Joop Van Leur, Ming Pei You, Seid-Ahmed Kemal, Danièle Giblot-Ducray, Kelly Hill, Thangavel Selvaraji, Alemu Lencho, Lemma Driba and Martin J. Barbetti
Pathogens 2025, 14(7), 695; https://doi.org/10.3390/pathogens14070695 - 14 Jul 2025
Viewed by 769
Abstract
Soilborne diseases cause losses of 45–70% in faba bean in Ethiopia. Studies were undertaken to define soilborne pathogens and their complexes in Ethiopia. First, the severity of root rot was assessed in 150 field sites across seven Ethiopian regions. Soil samples were collected, [...] Read more.
Soilborne diseases cause losses of 45–70% in faba bean in Ethiopia. Studies were undertaken to define soilborne pathogens and their complexes in Ethiopia. First, the severity of root rot was assessed in 150 field sites across seven Ethiopian regions. Soil samples were collected, and the DNA of 29 pests and pathogens was quantified using a commercial quantitative PCR (qPCR) soil testing service. There was a very high incidence rate of Macrophomina phaseolina, as well as Pythium clades F and I. The other detected species in order of incidence included Fusarium redolens, Rhizoctonia solani, Aphanomyces euteiches, Phytophthora megasperma, Sclerotinia sclerotiorum and S. minor, and Verticillium dahliae, as well as low levels of Thielaviopsis basicola. Five anastomosis groups (AG) of R. solani, namely AG2.1, AG2.2, AG3, AG4, and AG5, were detected, of which AG2.2 and AG4 were most prevalent. We believe this is the first report of occurrence for Ethiopia of A. euteiches, Ph. megasperma, T. basicola, and the five AGs for R. solani. There were very high incidence rates of the foliar pathogens Botrytis cinerea, B. fabae, Didymella pinodes, and Phoma pinodella and of the nematode Pratylenchus thornei, followed by P. neglectus and P. penetrans. The root rot severity and distribution varied significantly across regions, as well as with soil types, soil pH, and soil drainage. Subsequently, metabarcoding of the soil DNA was undertaken using three primer pairs targeting fungi (ITS2), Fusarium species (TEF1 α), and Oomycetes (ITS1Oo). The ITS2 and TEF1α primers emphasized F. oxysporum as the most abundant soilborne fungal pathogen and highlighted F. ananatum, F. brachygibbosum, F. brevicaudatum, F. clavum, F. flagelliforme, F. keratoplasticum, F. napiforme, F. nelsonii, F. neocosmosporiellum, F. torulosum, and F. vanettenii as first reports of occurrence for Ethiopia. The ITS1Oo primer confirmed Pythium spp. as the most prevalent of all Oomycetes. Full article
(This article belongs to the Special Issue An Update on Fungal Infections)
Show Figures

Figure 1

15 pages, 5462 KiB  
Article
Clade 2.3.4.4b Highly Pathogenic Avian Influenza H5N1 Pathology in a Common Shorebird Species (Sanderling; Calidris alba) in Virginia, USA
by Victoria A. Andreasen, Emily G. Phillips, Aidan M. O’Reilly, C. Robert Stilz, Rebecca L. Poulson, Ruth Boettcher, John K. Tracey and Nicole M. Nemeth
Animals 2025, 15(14), 2057; https://doi.org/10.3390/ani15142057 - 12 Jul 2025
Viewed by 382
Abstract
Anseriformes (waterfowl) and Charadriiformes (shorebirds) are well-recognized natural reservoirs of low pathogenic (LP) influenza A viruses (IAVs). Historically, LP IAVs circulate among healthy individuals during seasonal, and often transcontinental, migrations. However, following the introduction of clade 2.3.4.4b highly pathogenic (HP) A/Goose/Guangdong/1/1996 lineage H5 [...] Read more.
Anseriformes (waterfowl) and Charadriiformes (shorebirds) are well-recognized natural reservoirs of low pathogenic (LP) influenza A viruses (IAVs). Historically, LP IAVs circulate among healthy individuals during seasonal, and often transcontinental, migrations. However, following the introduction of clade 2.3.4.4b highly pathogenic (HP) A/Goose/Guangdong/1/1996 lineage H5 IAV to North America in 2021, countless wild birds succumbed to fatal infections across the Western Hemisphere. Due to their small size and cryptic plumage patterns, opportunities for carcass recovery and postmortem evaluation in sanderlings (Calidris alba) and other shorebirds are rare. A multispecies mortality event in coastal Virginia, USA, in March–April 2024 included sanderlings among other wild bird species. Nine sanderlings underwent postmortem evaluation and clade 2.3.4.4b H5 IAV RNA was detected in pooled oropharyngeal-cloacal swabs from 11/11 individuals by real-time reverse transcription polymerase chain reaction. Histopathology was similar to that in waterfowl and included necrosis in the pancreas and brain and less commonly in the gonad, adrenal gland, spleen, liver, and intestine. Immunohistochemistry revealed IAV antigen labeling in necrotic neurons of the brain (neurotropism) and epithelial cells of the pancreas, gonad, and adrenal gland (epitheliotropism). Describing HP IAV-attributed pathology in shorebirds is key to understanding ecoepidemiology and population health threats in order to further document and compare pathogenesis among avian species. Full article
(This article belongs to the Section Birds)
Show Figures

Graphical abstract

25 pages, 3506 KiB  
Article
Repurposing of Some Nucleoside Analogs Targeting Some Key Proteins of the Avian H5N1 Clade 2.3.4.4b to Combat the Circulating HPAI in Birds: An In Silico Approach
by Mohd Yasir Khan, Abid Ullah Shah, Nithyadevi Duraisamy, Mohammed Cherkaoui and Maged Gomaa Hemida
Viruses 2025, 17(7), 972; https://doi.org/10.3390/v17070972 - 10 Jul 2025
Viewed by 438
Abstract
(1) Background: The highly pathogenic avian influenza virus H5N1 clade 2.3.4.4b is an emerging threat that poses a great risk to the poultry industry. A few human cases have been linked to the infection with this clade in many parts of the world, [...] Read more.
(1) Background: The highly pathogenic avian influenza virus H5N1 clade 2.3.4.4b is an emerging threat that poses a great risk to the poultry industry. A few human cases have been linked to the infection with this clade in many parts of the world, including the USA. Unfortunately, there are no specific vaccines or antiviral drugs that could help prevent and treat the infection caused by this virus in birds. Our major objective is to identify/repurpose some (novel/known) antiviral compounds that may inhibit viral replication by targeting some key viral proteins. (2) Methods: We used state-of-the-art machine learning tools such as molecular docking and MD-simulation methods from Biovia Discovery Studio (v24.1.0.321712). The key target proteins such as hemagglutinin (HA), neuraminidase (NA), Matrix-2 protein (M2), and the cap-binding domain of PB2 (PB2/CBD) homology models were validated through structural assessment via DOPE scores, Ramachandran plots, and Verify-3D metrics, ensuring reliable structural representations, confirming their reliability for subsequent in silico approaches. These approaches include molecular docking followed by molecular dynamics simulation for 50 nanoseconds (ns), highlighting the structural stability and compactness of the docked complexes. (3) Results: Molecular docking revealed strong binding affinities for both sofosbuvir and GS441524, particularly with the NA and PB2/CBD protein targets. Among them, GS441524 exhibited superior interaction scores and a greater number of hydrogen bonds with key functional residues of NA and PB2/CBD. The MM-GBSA binding free energy calculations further supported these findings, as GS441524 displayed more favorable binding energies compared to several known standard inhibitors, including F0045S for HA, Zanamivir for NA, Rimantadine and Amantadine for M2, and PB2-39 for PB2/CBD. Additionally, 50 ns molecular dynamics simulations highlighted the structural stability and compactness of the GS441524-PB2/CBD complex, further supporting its potential as a promising antiviral candidate. Furthermore, hydrogen bond monitor analysis over the 50 ns simulation confirmed persistent and specific interactions between the ligand and proteins, suggesting that GS441524 may effectively inhibit the NA, and PB2/CBD might potentially disrupt PB2-mediated RNA synthesis. (4) Conclusions: Our findings are consistent with previous evidence supporting the antiviral activity of certain nucleoside analog inhibitors, including GS441524, against various coronaviruses. These results further support the potential repurposing of GS441524 as a promising therapeutic candidate against H5N1 avian influenza clade 2.3.4.4b. However, further functional studies are required to validate these in silico predictions and support the inhibitory action of GS441524 against the targeted proteins of H5N1, specifically clade 2.3.4.4b. Full article
(This article belongs to the Special Issue Interplay Between Influenza Virus and Host Factors)
Show Figures

Figure 1

10 pages, 203 KiB  
Article
Molecular Detection of Various Non-Seasonal, Zoonotic Influenza Viruses Using BioFire FilmArray and GenXpert Diagnostic Platforms
by Charlene Ranadheera, Taeyo Chestley, Orlando Perez, Breanna Meek, Laura Hart, Morgan Johnson, Yohannes Berhane and Nathalie Bastien
Viruses 2025, 17(7), 970; https://doi.org/10.3390/v17070970 - 10 Jul 2025
Viewed by 448
Abstract
Since 2020, the Gs/Gd H5N1 influenza virus (clade 2.3.4.4b) has established itself within wild bird populations across Asia, Europe, and the Americas, causing outbreaks in wild mammals, commercial poultry, and dairy farms. The impacts on the bird populations and the agricultural industry has [...] Read more.
Since 2020, the Gs/Gd H5N1 influenza virus (clade 2.3.4.4b) has established itself within wild bird populations across Asia, Europe, and the Americas, causing outbreaks in wild mammals, commercial poultry, and dairy farms. The impacts on the bird populations and the agricultural industry has been significant, requiring a One Health approach to enhanced surveillance in both humans and animals. To support pandemic preparedness efforts, we evaluated the Cepheid Xpert Xpress CoV-2/Flu/RSV plus kit and the BioFire Respiratory 2.1 Panel for their ability to detect the presence of non-seasonal, zoonotic influenza A viruses, including circulating H5N1 viruses from clade 2.3.4.4b. Both assays effectively detected the presence of influenza virus in clinically-contrived nasal swab and saliva specimens at low concentrations. The results generated using the Cepheid Xpert Xpress CoV-2/Flu/RSV plus kit and the BioFire Respiratory 2.1 Panel, in conjunction with clinical and epidemiological findings provide valuable diagnostic findings that can strengthen pandemic preparedness and surveillance initiatives. Full article
(This article belongs to the Section Animal Viruses)
14 pages, 1382 KiB  
Article
Molecular Identification and Characterization of a Novel Gammaherpesvirus in Wild Rabbits
by Fábio A. Abade dos Santos, Ana Duarte, Inês C. Varandas, Silvia S. Barros, Ana M. Henriques, Teresa Fagulha and Margarida D. Duarte
Viruses 2025, 17(7), 967; https://doi.org/10.3390/v17070967 - 10 Jul 2025
Viewed by 353
Abstract
To date, five herpesviruses have been identified in Leporidae (LeHV-1, LeHV-2, LeHV-3, LeHV-4, and LeHV-5). Two of these have been shown to infect the European rabbit (Oryctolagus cuniculus), causing either asymptomatic infection (LeHV-2, a gammaherpesvirus) or virulent disease (LeHV-4, an alphaherpesvirus). Unfortunately, apart [...] Read more.
To date, five herpesviruses have been identified in Leporidae (LeHV-1, LeHV-2, LeHV-3, LeHV-4, and LeHV-5). Two of these have been shown to infect the European rabbit (Oryctolagus cuniculus), causing either asymptomatic infection (LeHV-2, a gammaherpesvirus) or virulent disease (LeHV-4, an alphaherpesvirus). Unfortunately, apart from LeHV-4, for which complete genome sequences are available, molecular data on leporid herpesviruses are extremely limited, with no sequences available in public databases for LeHV-1 and LeHV-3, and only a few short sequences for LeHV-2 and LeHV-5. In this study, we investigated the presence of herpesviruses in biological samples from wild rabbits (n = 34) found dead in the field during 2024. A pan-herpesvirus nested PCR directed to the herpesviral DNA polymerase gene was used for screening. Positive samples (n = 14, 41.17%) were further investigated by sequencing analysis of a longer region of the DNA polymerase gene, as well as the glycoprotein B gene and the terminase gene. Blastn analysis of the amplicons revealed the highest similarity to gammaherpesvirus. Phylogenetic analyses based on glycoprotein B, DNA polymerase, and concatenated amino acid sequences consistently placed the newly identified LeHV-6 in close proximity to LeHV-5. Both viruses form a well-supported clade within the Gammaherpesvirinae, clustering with rodent-associated herpesviruses, such as Murine herpesvirus, MuHV-4, and A. sylvaticus rhadinovirus 1. Considering the species susceptibility and the nucleotide similarities with the five previously described leporid herpesviruses, we conclude that a new rabbit gammaherpesvirus has been identified, which we propose to name LeHV-6. Full article
(This article belongs to the Special Issue Animal Virus Discovery and Genetic Diversity: 2nd Edition)
Show Figures

Figure 1

23 pages, 3759 KiB  
Review
Highly Pathogenic Avian Influenza (H5N1) Clade 2.3.4.4b in Cattle: A Rising One Health Concern
by Ivan Camilo Sanchez-Rojas, D. Katterine Bonilla-Aldana, Catherin Lorena Solarte-Jimenez, Jorge Luis Bonilla-Aldana, Jaime David Acosta-España and Alfonso J. Rodriguez-Morales
Animals 2025, 15(13), 1963; https://doi.org/10.3390/ani15131963 - 3 Jul 2025
Viewed by 987
Abstract
Highly pathogenic avian influenza (HPAI) H5N1, particularly clade 2.3.4.4b, has demonstrated an unprecedented capacity for cross-species transmission, with recent reports confirming its presence in dairy cattle in the United States of America (USA) in 2024. This unexpected spillover challenges traditional understanding of the [...] Read more.
Highly pathogenic avian influenza (HPAI) H5N1, particularly clade 2.3.4.4b, has demonstrated an unprecedented capacity for cross-species transmission, with recent reports confirming its presence in dairy cattle in the United States of America (USA) in 2024. This unexpected spillover challenges traditional understanding of the virus’s host range and raises serious public health and veterinary concerns. Infected cattle presented with clinical signs such as decreased milk production, thickened or discolored milk, respiratory issues, and lethargy. Pathological findings revealed inflammation of the mammary glands and the detection of a virus in nasal secretions and raw milk, suggesting a potential for both intra- and interspecies transmission. While the current risk of human-to-human transmission remains low, the detection of H5N1 in a human exposed to infected cattle highlights the need for heightened surveillance and protective measures. Moreover, the presence of infectious viruses in the food chain, particularly in unpasteurized milk, introduces a new dimension of zoonotic risk. This review synthesizes emerging evidence on the epidemiology, pathology, diagnostic findings, and zoonotic implications of HPAI H5N1 infection in cattle. It also highlights the importance of genomic surveillance, intersectoral collaboration, and One Health approaches in managing this evolving threat. As the virus continues to circulate and adapt across diverse hosts, including wild birds, domestic poultry, and now mammals, the potential for reassortment and emergence of novel strains remains a significant concern. Immediate actions to strengthen biosecurity, monitor viral evolution, and protect both animal and human populations are critical to mitigate the global risk posed by this expanding panzootic. Full article
(This article belongs to the Special Issue Infection Immunity, Diagnosis and Prevention of Avian Influenza)
Show Figures

Figure 1

17 pages, 3161 KiB  
Article
Genome-Wide Identification of the ABF/AREB/ABI5 Gene Family in Ziziphus jujuba cv. Dongzao and Analysis of Its Response to Drought Stress
by Zhikai Zhang, Xiaoming Liu, Yu Wang, Jun Zhou, Zhongwu Wan, Xin Zhang, Jing Wang, Binbin Si, Lan Luo and Wendi Xu
Genes 2025, 16(7), 785; https://doi.org/10.3390/genes16070785 - 30 Jun 2025
Viewed by 381
Abstract
Abscisic acid (ABA), a pivotal phytohormone regulating plant growth and stress adaptation, orchestrates abiotic stress responses through the ABA-responsive element-binding factors ABF/AREB/ABI5. Nevertheless, the functional characterization of ABF/AREB/ABI5 homologs in Z. jujuba cv. Dongzao remains unexplored. In this study, we identified seven ZjABF [...] Read more.
Abscisic acid (ABA), a pivotal phytohormone regulating plant growth and stress adaptation, orchestrates abiotic stress responses through the ABA-responsive element-binding factors ABF/AREB/ABI5. Nevertheless, the functional characterization of ABF/AREB/ABI5 homologs in Z. jujuba cv. Dongzao remains unexplored. In this study, we identified seven ZjABF genes distributed across five chromosomes. Domain analyses revealed high structural conservation, particularly within the basic leucine zipper (bZIP) DNA-binding domain. Subcellular localization confirmed nuclear targeting of all seven ZjABF proteins. Phylogenetic classification resolved these factors into three clades (A–C). Cis-regulatory element profiling implicated the involvement of the ZjABFs in hormone signaling, abiotic stress transduction, and photoregulatory pathways. Synteny analyses identified three segmental duplication events within the gene family. Tissue-specific expression patterns indicated critical roles for ZjABF2 and ZjABF3 in fruit maturation, and most of the ABF/AREB/ABI5 genes were highly expressed in the root. Under drought stress, four ZjABF genes exhibited differential expression, with ZjABF2 demonstrating pronounced sensitivity. These findings establish a molecular framework for understanding ZjABF-mediated abiotic stress responses in non-model woody perennials. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

10 pages, 3437 KiB  
Article
Phylogenetic and Mutation Analysis of Hemagglutinin Gene from Highly Pathogenic Avian Influenza Virus H5 Clade 2.3.4.4b in South America
by Alfredo Bruno, Domenica de Mora, Miguel Angel Garcia-Bereguiain and Juan Cristina
Viruses 2025, 17(7), 924; https://doi.org/10.3390/v17070924 - 28 Jun 2025
Viewed by 547
Abstract
The Highly Pathogenic Avian Influenza Virus (HPAIV) H5 clade 2.3.4.4b has caused severe outbreaks in domestic and wild birds worldwide since its emergence in 2014, and especially since 2020, with outbreaks in Europe and North America. The introduction of the virus into South [...] Read more.
The Highly Pathogenic Avian Influenza Virus (HPAIV) H5 clade 2.3.4.4b has caused severe outbreaks in domestic and wild birds worldwide since its emergence in 2014, and especially since 2020, with outbreaks in Europe and North America. The introduction of the virus into South America was reported for the first time in Colombia in October 2022, followed by outbreaks in other South American countries affecting poultry, wild birds, mammals, and humans. In this study, a phylogenetic and mutation analysis of the hemagglutinin (HA) gene of HPAIV H5N1 2.3.4.4b viruses isolated in South America was performed to analyze its evolution and its transmission and zoonotic potential. The analysis shows an increase in the viral effective population size between April and June 2022, which was followed by multiple outbreaks of HPAIV H5N1 clade 2.3.4.4b in South America. Moreover, the virus variants evolved from a recent common ancestor estimated to have existed in June 2017. The mean rate of evolution of the HA gene was 6.95 × 10−3 substitutions per site per year, and the sequence analysis of HA identified a mutation (D171N) located at antibody binding sites and viral oligomerization interfaces, with implications for immune response evasion and new host species infection. Additionally, viral strains from South America share the substitutions L104M, T156A, P181S, and V210A, compared to the vaccine strain A/chicken/Ghana/AVL763/2021. Understanding the dynamics of viral evolution and transmission is essential for effective prevention strategies to mitigate future outbreaks. Full article
(This article belongs to the Special Issue H5N1 Influenza Viruses)
Show Figures

Figure 1

10 pages, 498 KiB  
Article
Phylogeographic Analysis of Clade 2.3.4.4b H5N1 in Serbia Reveals Repeated Introductions and Spread Across the Balkans
by Sofija Šolaja, Dimitrije Glišić, Ljubiša Veljović, Ivan Milošević, Emilija Nićković, Jakov Nišavić and Vesna Milićević
Pathogens 2025, 14(7), 636; https://doi.org/10.3390/pathogens14070636 - 25 Jun 2025
Viewed by 609
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 continues to pose a major threat to animal and public health. Since its emergence, clade 2.3.4.4b has become the dominant global lineage, associated with widespread outbreaks in Europe. This study aimed to characterise the H5N1 strains detected [...] Read more.
Highly pathogenic avian influenza (HPAI) H5N1 continues to pose a major threat to animal and public health. Since its emergence, clade 2.3.4.4b has become the dominant global lineage, associated with widespread outbreaks in Europe. This study aimed to characterise the H5N1 strains detected in backyard chickens in Serbia and investigate their phylogenetic and phylogeographic relationships with historical and currently circulating strains in Serbia and the broader region. Samples collected in 2024 were tested by qRT-PCR, and positive samples were propagated in MDCK cells. Whole genome sequencing of isolated virus was performed using the MinION Mk1C platform (ONT, Oxford, UK). Bayesian phylogenetic and phylogeographic analyses were conducted using BEAST X and SPREAD3 v.9.6. The results revealed three independent introductions of H5N1 into Serbia between 2020 and 2024. The spatiotemporal diffusion patterns confirmed both north–south and west–east viral spread from Northern and Central Europe into the Balkans. Additionally, Serbia was identified as a critical transit and divergence point in the regional transmission network, highlighting its role in the spread of H5N1 between Western and Eastern Europe. These findings underscore the importance of continued genomic surveillance in both domestic and wild bird populations to better understand and reduce HPAI spread. Full article
(This article belongs to the Special Issue Current Challenges in Veterinary Virology)
Show Figures

Figure 1

Back to TopTop