Genome-Wide Identification and Functional Characterization of the BAHD Acyltransferase Gene Family in Brassica napus L.
Abstract
1. Introduction
2. Results
2.1. Identification and Characterization of BAHD Family Genes in Arabidopsis and Three Brassica Species
2.2. Phylogenetic Analysis of BAHD Proteins in Arabidopsis and Three Brassica Species
2.3. Analysis of Conserved Motifs and Gene Structure of the BnaBAHD Family
2.4. Chromosomal Localization Analysis of BnaBAHD Genes
2.5. Identification of Gene Duplication Events Within the BAHD Gene Family of B. napus and Collinearity Analysis of BAHD Genes Among Three Brassica Species
2.6. Selective Pressure Analysis of BAHD Genes in B. napus, B. oleracea, and B. rapa based on Ka/Ks Ratio
2.7. Cis-Acting Element Analysis of BnaBAHD Promoters
2.8. Expression Profiles of BAHD Genes in B. napus Under Nitrogen and Phytohormone Treatment
2.9. Analysis of Expression Patterns of BAHD Family in B. napus
2.10. Functional Analysis of BnaBAHD040 and BnaBAHD120 via Transient Expression in Nicotiana benthamiana
3. Discussion
4. Materials and Methods
4.1. Source of Plants and Data
4.2. Identification and Annotation of BAHD Family Gene Sequences
4.3. Phylogenic Analysis of the BAHD Family Members
4.4. Conserved Motif Identification and Gene Structure Analysis of BnaBAHDs
4.5. Chromosomal Localization and Colinearity Analysis of BnaBAHD Genes
4.6. Cis-Element Analysis of BnaBAHD Promoters
4.7. Analysis of Gene Expression Profile of BnaBAHD Family Genes
4.8. Gene Cloning and Overexpression Vector Construction
4.9. Transient Transformation in N. benthamiana and qRT-PCR Expression Analysis
4.10. Metabolomic Profiling and Structural Characterization of Acylated Metabolites
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- D’Auria, J.C. Acyltransferases in Plants: A Good Time to Be BAHD. Curr. Opin. Plant Biol. 2006, 9, 331–340. [Google Scholar] [CrossRef] [PubMed]
- D’Auria, J.C.; Gershenzon, J. The Secondary Metabolism of Arabidopsis thaliana: Growing like a Weed. Curr. Opin. Plant Biol. 2005, 8, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Pascal, S.; Bernard, A.; Sorel, M.; Pervent, M.; Vile, D.; Haslam, R.P.; Napier, J.A.; Lessire, R.; Domergue, F.; Joubès, J. The Arabidopsis Cer26 Mutant, like the Cer26 Mutant, Is Specifically Affected in the Very Long Chain Fatty Acid Elongation Process. Plant J. 2013, 73, 733–746. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, J.; Dong, Y.; Huang, Y.; Qi, Y.; Bai, H.; Li, H.; Shi, L. Genome-Wide Identification and Expression of BAHD Acyltransferase Gene Family Shed Novel Insights into the Regulation of Linalyl Acetate and Lavandulyl Acetate in Lavender. J. Plant Physiol. 2024, 292, 154143. [Google Scholar] [CrossRef]
- Xu, L.; Zeisler, V.; Schreiber, L.; Gao, J.; Hu, K.; Wen, J.; Yi, B.; Shen, J.; Ma, C.; Tu, J.; et al. Overexpression of the Novel Arabidopsis Gene At5g02890 Alters Inflorescence Stem Wax Composition and Affects Phytohormone Homeostasis. Front. Plant Sci. 2017, 8, 68. [Google Scholar] [CrossRef]
- Dudareva, N.; D’Auria, J.C.; Nam, K.H.; Raguso, R.A.; Pichersky, E. Acetyl-CoA:Benzylalcohol Acetyltransferase—An Enzyme Involved in Floral Scent Production in Clarkia breweri. Plant J. 1998, 14, 297–304. [Google Scholar] [CrossRef]
- Fujiwara, H.; Tanaka, Y.; Fukui, Y.; Nakao, M.; Ashikari, T.; Kusumi, T. Anthocyanin 5-Aromatic Acyltransferase from Gentiana triflora. Purification, Characterization and Its Role in Anthocyanin Biosynthesis. Eur. J. Biochem. 1997, 249, 45–51. [Google Scholar] [CrossRef]
- Yang, Q.; Reinhard, K.; Schiltz, E.; Matern, U. Characterization and Heterologous Expression of Hydroxycinnamoyl/Benzoyl-CoA:Anthranilate N-Hydroxycinnamoyl/Benzoyltransferase from Elicited Cell Cultures of Carnation, Dianthus caryophyllus L. Plant Mol. Biol. 1997, 35, 777–789. [Google Scholar] [CrossRef]
- St-Pierre, B.; Laflamme, P.; Alarco, A.; De Luca, V. The Terminal O-Acetyltransferase Involved in Vindoline Biosynthesis Defines a New Class of Proteins Responsible for Coenzyme A-Dependent Acyl Transfer. Plant J. 1998, 14, 703–713. [Google Scholar] [CrossRef]
- Yu, X.-H.; Chen, M.-H.; Liu, C.-J. Nucleocytoplasmic-Localized Acyltransferases Catalyze the Malonylation of 7-O-Glycosidic (Iso)Flavones in Medicago truncatula. Plant J. 2008, 55, 382–396. [Google Scholar] [CrossRef]
- Ma, X.; Koepke, J.; Panjikar, S.; Fritzsch, G.; Stöckigt, J. Crystal Structure of Vinorine Synthase, the First Representative of the BAHD Superfamily. J. Biol. Chem. 2005, 280, 13576–13583. [Google Scholar] [CrossRef] [PubMed]
- Bontpart, T.; Cheynier, V.; Ageorges, A.; Terrier, N. BAHD or SCPL Acyltransferase? What a Dilemma for Acylation in the World of Plant Phenolic Compounds. New Phytol. 2015, 208, 695–707. [Google Scholar] [CrossRef] [PubMed]
- Molina, I.; Kosma, D. Role of HXXXD-Motif/BAHD Acyltransferases in the Biosynthesis of Extracellular Lipids. Plant Cell Rep. 2015, 34, 587–601. [Google Scholar] [CrossRef]
- Yu, X.-H.; Gou, J.-Y.; Liu, C.-J. BAHD Superfamily of Acyl-CoA Dependent Acyltransferases in Populus and Arabidopsis: Bioinformatics and Gene Expression. Plant Mol. Biol. 2009, 70, 421–442. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Wang, Z.; Zhuang, W.; Zhang, F.; Xie, Y.; Wang, T. Genome-Wide Identification and Expression Pattern Analysis of BAHD Acyltransferase Family in Taxus mairei. J. Mol. Sci. 2024, 25, 3777. [Google Scholar] [CrossRef]
- Aktar, S.; Bai, P.; Wang, L.; Xun, H.; Zhang, R.; Wu, L.; He, M.; Cheng, H.; Wang, L.; Wei, K. Identification of a BAHD Acyltransferase Gene Involved in Plant Growth and Secondary Metabolism in Tea Plants. Plants 2022, 11, 2483. [Google Scholar] [CrossRef]
- Yuan, Z.; Yang, H.; Pan, L.; Zhao, W.; Liang, L.; Gatera, A.; Tucker, M.R.; Xu, D. Systematic Identification and Expression Profiles of the BAHD Superfamily Acyltransferases in Barley (Hordeum vulgare). Sci. Rep. 2022, 12, 5063. [Google Scholar] [CrossRef]
- De Vries, L.; MacKay, H.A.; Smith, R.A.; Mottiar, Y.; Karlen, S.D.; Unda, F.; Muirragui, E.; Bingman, C.; Vander Meulen, K.; Beebe, E.T.; et al. pHBMT1, a BAHD-Family Monolignol Acyltransferase, Mediates Lignin Acylation in Poplar. Plant Physiol. 2022, 188, 1014–1027. [Google Scholar] [CrossRef]
- Liu, C.; Qiao, X.; Li, Q.; Zeng, W.; Wei, S.; Wang, X.; Chen, Y.; Wu, X.; Wu, J.; Yin, H.; et al. Genome-Wide Comparative Analysis of the BAHD Superfamily in Seven Rosaceae Species and Expression Analysis in Pear (Pyrus bretschneideri). BMC Plant Biol. 2020, 20, 14. [Google Scholar] [CrossRef]
- Torrens-Spence, M.P.; Bobokalonova, A.; Carballo, V.; Glinkerman, C.M.; Pluskal, T.; Shen, A.; Weng, J.-K. PBS3 and EPS1 Complete Salicylic Acid Biosynthesis from Isochorismate in Arabidopsis. Mol. Plant 2019, 12, 1577–1586. [Google Scholar] [CrossRef]
- Panikashvili, D.; Shi, J.X.; Schreiber, L.; Aharoni, A. The Arabidopsis DCR Encoding a Soluble BAHD Acyltransferase Is Required for Cutin Polyester Formation and Seed Hydration Properties. Plant Physiol. 2009, 151, 1773–1789. [Google Scholar] [CrossRef] [PubMed]
- Cumplido-Laso, G.; Medina-Puche, L.; Moyano, E.; Hoffmann, T.; Sinz, Q.; Ring, L.; Studart-Wittkowski, C.; Caballero, J.L.; Schwab, W.; Muñoz-Blanco, J.; et al. The Fruit Ripening-Related Gene FaAAT2 Encodes an Acyl Transferase Involved in Strawberry Aroma Biogenesis. J. Exp. Bot. 2012, 63, 4275–4290. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Xu, Y.; Xu, G.; Gu, L.; Li, D.; Shu, H. Molecular Cloning and Expression of a Gene Encoding Alcohol Acyltransferase (MdAAT2) from Apple (Cv. Golden Delicious). Phytochemistry 2006, 67, 658–667. [Google Scholar] [CrossRef]
- Zhang, B.; Shen, J.; Wei, W.; Xi, W.; Xu, C.-J.; Ferguson, I.; Chen, K. Expression of Genes Associated with Aroma Formation Derived from the Fatty Acid Pathway during Peach Fruit Ripening. J. Agric. Food Chem. 2010, 58, 6157–6165. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Wang, Z.; Zhuang, W.; Wang, T.; Xie, Y. Family Characteristics, Phylogenetic Reconstruction, and Potential Applications of the Plant BAHD Acyltransferase Family. Front. Plant Sci. 2023, 14, 1218914. [Google Scholar] [CrossRef]
- Wang, C.; Li, J.; Ma, M.; Lin, Z.; Hu, W.; Lin, W.; Zhang, P. Structural and Biochemical Insights into Two BAHD Acyltransferases (AtSHT and AtSDT) Involved in Phenolamide Biosynthesis. Front. Plant Sci. 2021, 11, 610118. [Google Scholar] [CrossRef]
- Sonawane, P.D.; Gharat, S.A.; Jozwiak, A.; Barbole, R.; Heinicke, S.; Almekias-Siegl, E.; Meir, S.; Rogachev, I.; Connor, S.E.O.; Giri, A.P.; et al. A BAHD-Type Acyltransferase Concludes the Biosynthetic Pathway of Non-Bitter Glycoalkaloids in Ripe Tomato Fruit. Nat. Commun. 2023, 14, 4540. [Google Scholar] [CrossRef]
- Tan, Z.; Han, X.; Dai, C.; Lu, S.; He, H.; Yao, X.; Chen, P.; Yang, C.; Zhao, L.; Yang, Q.; et al. Functional Genomics of Brassica napus: Progress, Challenges, and Perspectives. J. Integr. Plant Biol. 2024, 66, 484–509. [Google Scholar] [CrossRef]
- Zheng, Q.; Liu, K. Worldwide Rapeseed (Brassica napus L.) Research: A Bibliometric Analysis during 2011–2021. Oil Crop Sci. 2022, 7, 157–165. [Google Scholar] [CrossRef]
- Chalhoub, B.; Denoeud, F.; Liu, S.; Parkin, I.A.P.; Tang, H.; Wang, X.; Chiquet, J.; Belcram, H.; Tong, C.; Samans, B.; et al. Early Allopolyploid Evolution in the Post-Neolithic Brassica napus Oilseed Genome. Science 2014, 345, 950–953. [Google Scholar] [CrossRef]
- Xia, Y.; Nikolau, B.J.; Schnable, P.S. Cloning and Characterization of CER2, an Arabidopsis Gene That Affects Cuticular Wax Accumulation. Plant Cell 1996, 8, 1291–1304. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Liu, X.; Wang, R.; Li, W.; Rodermel, S.; Yu, F. Overexpression of a Putative Arabidopsis BAHD Acyltransferase Causes Dwarfism That Can Be Rescued by Brassinosteroid. J. Exp. Bot. 2012, 63, 5787–5801. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-Y.; Bai, M.-Y.; Oh, E.; Zhu, J.-Y. Brassinosteroid Signaling Network and Regulation of Photomorphogenesis. Annu. Rev. Genet. 2012, 46, 701–724. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.S.; Jang, E.; Kim, J.; Kim, S.H.; Lee, M.-H.; Nam, M.H.; Tobimatsu, Y.; Park, O.K. Pathogen-Induced Autophagy Regulates Monolignol Transport and Lignin Formation in Plant Immunity. Autophagy 2023, 19, 597–615. [Google Scholar] [CrossRef]
- Zhang, B.; Sztojka, B.; Escamez, S.; Vanholme, R.; Hedenström, M.; Wang, Y.; Turumtay, H.; Gorzsás, A.; Boerjan, W.; Tuominen, H. PIRIN2 Suppresses S-type Lignin Accumulation in a Noncell-autonomous Manner in Arabidopsis Xylem Elements. New Phytol. 2020, 225, 1923–1935. [Google Scholar] [CrossRef]
- Simpson, J.P.; Kim, C.Y.; Kaur, A.; Weng, J.; Dilkes, B.; Chapple, C. Genome-wide Association Identifies a BAHD Acyltransferase Activity That Assembles an Ester of Glucuronosylglycerol and Phenylacetic Acid. Plant J. 2024, 118, 2169–2187. [Google Scholar] [CrossRef]
- Grienenberger, E.; Besseau, S.; Geoffroy, P.; Debayle, D.; Heintz, D.; Lapierre, C.; Pollet, B.; Heitz, T.; Legrand, M. A BAHD Acyltransferase Is Expressed in the Tapetum of Arabidopsis Anthers and Is Involved in the Synthesis of Hydroxycinnamoyl Spermidines. Plant J. 2009, 58, 246–259. [Google Scholar] [CrossRef]
- Leshem, Y.; Johnson, C.; Wuest, S.E.; Song, X.; Ngo, Q.A.; Grossniklaus, U.; Sundaresan, V. Molecular Characterization of the Glauce Mutant: A Central Cell–Specific Function Is Required for Double Fertilization in Arabidopsis. Plant Cell 2012, 24, 3264–3277. [Google Scholar] [CrossRef]
- Gou, J.-Y.; Yu, X.-H.; Liu, C.-J. A Hydroxycinnamoyltransferase Responsible for Synthesizing Suberin Aromatics in Arabidopsis. Proc. Natl. Acad. Sci. USA 2009, 106, 18855–18860. [Google Scholar] [CrossRef]
- Kosma, D.K.; Molina, I.; Ohlrogge, J.B.; Pollard, M. Identification of an Arabidopsis Fatty Alcohol:Caffeoyl-Coenzyme A Acyltransferase Required for the Synthesis of Alkyl Hydroxycinnamates in Root Waxes. Plant Physiol. 2012, 160, 237–248. [Google Scholar] [CrossRef]
- D’Auria, J.C.; Pichersky, E.; Schaub, A.; Hansel, A.; Gershenzon, J. Characterization of a BAHD Acyltransferase Responsible for Producing the Green Leaf Volatile (Z)-3-hexen-1-yl Acetate in Arabidopsis thaliana. Plant J. 2007, 49, 194–207. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Fuell, C.; Parr, A.; Hill, L.; Bailey, P.; Elliott, K.; Fairhurst, S.A.; Martin, C.; Michael, A.J. A Novel Polyamine Acyltransferase Responsible for the Accumulation of Spermidine Conjugates in Arabidopsis Seed. Plant Cell 2009, 21, 318–333. [Google Scholar] [CrossRef] [PubMed]
- D’Auria, J.C.; Reichelt, M.; Luck, K.; Svatoš, A.; Gershenzon, J. Identification and Characterization of the BAHD Acyltransferase Malonyl CoA: Anthocyanidin 5-O-glucoside-6″-O-malonyltransferase (At5MAT) in Arabidopsis thaliana. FEBS Lett. 2007, 581, 872–878. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Nishiyama, Y.; Fuell, C.; Taguchi, G.; Elliott, K.; Hill, L.; Tanaka, Y.; Kitayama, M.; Yamazaki, M.; Bailey, P.; et al. Convergent Evolution in the BAHD Family of Acyl Transferases: Identification and Characterization of Anthocyanin Acyl Transferases from Arabidopsis thaliana. Plant J. 2007, 50, 678–695. [Google Scholar] [CrossRef]
- Sharma, K.; Hema, K.; Bhatraju, N.K.; Kukreti, R.; Das, R.S.; Gupta, M.D.; Syed, M.A.; Pasha, M.A.Q. The Deleterious Impact of a Non-Synonymous SNP on Protein Structure and Function Is Apparent in Hypertension. J. Mol. Model. 2022, 28, 14. [Google Scholar] [CrossRef]
- Oelschlaeger, P. Molecular Mechanisms and the Significance of Synonymous Mutations. Biomolecules 2024, 14, 132. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, S.; He, F.; Zhu, J.; Hu, S.; Yu, J. How Do Variable Substitution Rates Influence Ka and Ks Calculations? Genom. Proteom. Bioinform. 2009, 7, 116–127. [Google Scholar] [CrossRef]
- Spoel, S.H.; Dong, X. Salicylic Acid in Plant Immunity and Beyond. Plant Cell 2024, 36, 1451–1464. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef]
- Wasternack, C.; Strnad, M. Jasmonate Signaling in Plant Stress Responses and Development—Active and Inactive Compounds. New Biotechnol. 2016, 33, 604–613. [Google Scholar] [CrossRef]
- Moghe, G.; Kruse, L.H.; Petersen, M.; Scossa, F.; Fernie, A.R.; Gaquerel, E.; D’Auria, J.C. BAHD Company: The Ever-Expanding Roles of the BAHD Acyltransferase Gene Family in Plants. Annu. Rev. Plant Biol. 2023, 74, 165–194. [Google Scholar] [CrossRef] [PubMed]
- Qiao, D.; Yang, C.; Mi, X.; Tang, M.; Liang, S.; Chen, Z. Genome-Wide Identification of Tea Plant (Camellia sinensis) BAHD Acyltransferases Reveals Their Role in Response to Herbivorous Pests. BMC Plant Biol. 2024, 24, 229. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.-Z.; Peng, B.; Gu, Z.-X.; Tang, M.-L.; Li, B.; Liang, M.-X.; Wang, L.-M.; Guo, X.-T.; Wang, J.-P.; Sha, Y.-F.; et al. Site-Directed Mutagenesis Identified the Key Active Site Residues of Alcohol Acyltransferase PpAAT1 Responsible for Aroma Biosynthesis in Peach Fruits. Hortic. Res. 2021, 8, 32. [Google Scholar] [CrossRef]
- Kruse, L.H.; Weigle, A.T.; Irfan, M.; Martínez-Gómez, J.; Chobirko, J.D.; Schaffer, J.E.; Bennett, A.A.; Specht, C.D.; Jez, J.M.; Shukla, D.; et al. Orthology-Based Analysis Helps Map Evolutionary Diversification and Predict Substrate Class Use of BAHD Acyltransferases. Plant J. 2022, 111, 1453–1468. [Google Scholar] [CrossRef]
- Li, P.; Xiao, L.; Du, Q.; Quan, M.; Song, Y.; He, Y.; Huang, W.; Xie, J.; Lv, C.; Wang, D.; et al. Genomic Insights into Selection for Heterozygous Alleles and Woody Traits in Populus tomentosa. Plant Biotechnol. J. 2023, 21, 2002–2018. [Google Scholar] [CrossRef]
- Tuominen, L.K.; Johnson, V.E.; Tsai, C.-J. Differential Phylogenetic Expansions in BAHD Acyltransferases across Five Angiosperm Taxa and Evidence of Divergent Expression among Populus Paralogues. BMC Genom. 2011, 12, 236. [Google Scholar] [CrossRef]
- Zhang, Q.; Guan, P.; Zhao, L.; Ma, M.; Xie, L.; Li, Y.; Zheng, R.; Ouyang, W.; Wang, S.; Li, H.; et al. Asymmetric Epigenome Maps of Subgenomes Reveal Imbalanced Transcription and Distinct Evolutionary Trends in Brassica napus. Mol. Plant 2021, 14, 604–619. [Google Scholar] [CrossRef]
- Wang, L.; Chen, K.; Zhang, M.; Ye, M.; Qiao, X. Catalytic Function, Mechanism, and Application of Plant Acyltransferases. Crit. Rev. Biotechnol. 2022, 42, 125–144. [Google Scholar] [CrossRef]
- Kruse, L.H.; Fehr, B.; Chobirko, J.D.; Moghe, G.D. Phylogenomic Analyses across Land Plants Reveals Motifs and Coexpression Patterns Useful for Functional Prediction in the BAHD Acyltransferase Family. Front. Plant Sci. 2023, 14, 1067613. [Google Scholar] [CrossRef]
- Wang, C.; Chen, C.; Zhao, X.; Wu, C.; Kou, X.; Xue, Z. Propyl Gallate Treatment Improves the Postharvest Quality of Winter Jujube (Zizyphus jujuba Mill. Cv. Dongzao) by Regulating Antioxidant Metabolism and Maintaining the Structure of Peel. Foods 2022, 11, 237. [Google Scholar] [CrossRef]
- Zhou, J.-W.; Ji, P.-C.; Wang, C.-Y.; Yang, Y.-J.; Zhao, X.-Y.; Tang, H.-Z.; Tang, S.-R. Synergistic Effect of Propyl Gallate and Antibiotics against Biofilms of Serratia marcescens and Erwinia carotovora in Vitro. LWT 2023, 173, 114258. [Google Scholar] [CrossRef]
- Dakora, F.D.; Matiru, V.N.; Kanu, A.S. Rhizosphere Ecology of Lumichrome and Riboflavin, Two Bacterial Signal Molecules Eliciting Developmental Changes in Plants. Front. Plant Sci. 2015, 6, 700. [Google Scholar] [CrossRef] [PubMed]
- Casida, J.E. Pyrethrum Flowers and Pyrethroid Insecticides. Environ. Health Perspect. 1980, 34, 189–202. [Google Scholar] [CrossRef] [PubMed]
- Ferroni, C.; Bassetti, L.; Borzatta, V.; Capparella, E.; Gobbi, C.; Guerrini, A.; Varchi, G. Polyenylcyclopropane Carboxylic Esters with High Insecticidal Activity. Pest Manag. Sci. 2015, 71, 728–736. [Google Scholar] [CrossRef]
- Chen, H.; Wang, T.; He, X.; Cai, X.; Lin, R.; Liang, J.; Wu, J.; King, G.; Wang, X. BRAD V3.0: An Upgraded Brassicaceae Database. Nucleic Acids Res. 2022, 50, D1432–D1441. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, S.; Wei, L.; Huang, Y.; Liu, D.; Jia, Y.; Luo, C.; Lin, Y.; Liang, C.; Hu, Y.; et al. BnIR: A Multi-Omics Database with Various Tools for Brassica napus Research and Breeding. Mol. Plant 2023, 16, 775–789. [Google Scholar] [CrossRef] [PubMed]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The Protein Families Database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef]
- Altschul, S. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Wang, J.; Chitsaz, F.; Derbyshire, M.K.; Gonzales, N.R.; Gwadz, M.; Lu, S.; Marchler, G.H.; Song, J.S.; Thanki, N.; Yamashita, R.A.; et al. The Conserved Domain Database in 2023. Nucleic Acids Res. 2023, 51, D384–D388. [Google Scholar] [CrossRef]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME Suite. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef]
- Duvaud, S.; Gabella, C.; Lisacek, F.; Stockinger, H.; Ioannidis, V.; Durinx, C. Expasy, the Swiss Bioinformatics Resource Portal, as Designed by Its Users. Nucleic Acids Res. 2021, 49, W216–W227. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v6: Recent Updates to the Phylogenetic Tree Display and Annotation Tool. Nucleic Acids Res. 2024, 52, W78–W82. [Google Scholar] [CrossRef]
- Chao, J.; Li, Z.; Sun, Y.; Aluko, O.O.; Wu, X.; Wang, Q.; Liu, G. MG2C: A User-Friendly Online Tool for Drawing Genetic Maps. Mol. Hortic. 2021, 1, 16. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, H.; DeBarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.-h.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A Toolkit for Detection and Evolutionary Analysis of Gene Synteny and Collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wu, Y.; Xia, R. A Painless Way to Customize Circos Plot: From Data Preparation to Visualization Using TBtools. iMeta 2022, 1, e35. [Google Scholar] [CrossRef] [PubMed]
- Lescot, M. PlantCARE, a Database of Plant Cis-Acting Regulatory Elements and a Portal to Tools for in Silico Analysis of Promoter Sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Chao, H.; Li, T.; Luo, C.; Huang, H.; Ruan, Y.; Li, X.; Niu, Y.; Fan, Y.; Sun, W.; Zhang, K.; et al. BrassicaEDB: A Gene Expression Database for Brassica Crops. Int. J. Mol. Sci. 2020, 21, 5831. [Google Scholar] [CrossRef]
- Qu, C.; Zhu, M.; Hu, R.; Niu, Y.; Chen, S.; Zhao, H.; Li, C.; Wang, Z.; Yin, N.; Sun, F.; et al. Comparative Genomic Analyses Reveal the Genetic Basis of the Yellow-Seed Trait in Brassica napus. Nat. Commun. 2023, 14, 5194. [Google Scholar] [CrossRef]
- Dong, C.; Qu, G.; Guo, J.; Wei, F.; Gao, S.; Sun, Z.; Jin, L.; Sun, X.; Rochaix, J.-D.; Miao, Y.; et al. Rational Design of Geranylgeranyl Diphosphate Synthase Enhances Carotenoid Production and Improves Photosynthetic Efficiency in Nicotiana Tabacum. Sci. Bull. 2022, 67, 315–327. [Google Scholar] [CrossRef]
- Wu, G.; Zhang, L.; Wu, Y.; Cao, Y.; Lu, C. Comparison of Five Endogenous Reference Genes for Specific PCR Detection and Quantification of Brassica napus. J. Agric. Food Chem. 2010, 58, 2812–2817. [Google Scholar] [CrossRef]
- Qu, C.; Yin, N.; Chen, S.; Wang, S.; Chen, X.; Zhao, H.; Shen, S.; Fu, F.; Zhou, B.; Xu, X.; et al. Comparative Analysis of the Metabolic Profiles of Yellow- versus Black-Seeded Rapeseed Using UPLC-HESI-MS/MS and Transcriptome Analysis. J. Agric. Food Chem. 2020, 68, 3033–3049. [Google Scholar] [CrossRef] [PubMed]
- Yin, N.-W.; Wang, S.-X.; Jia, L.-D.; Zhu, M.-C.; Yang, J.; Zhou, B.-J.; Yin, J.-M.; Lu, K.; Wang, R.; Li, J.-N.; et al. Identification and Characterization of Major Constituents in Different-Colored Rapeseed Petals by UPLC-HESI-MS/MS. J. Agric. Food Chem. 2019, 67, 11053–11065. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhang, G.; Jiang, X.; Shen, S.; Guan, M.; Tang, Y.; Sun, F.; Hu, R.; Chen, S.; Zhao, H.; et al. Genome-Wide Association Study of Glucosinolate Metabolites (mGWAS) in Brassica napus L. Plants 2023, 12, 639. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Tang, Y.; Liu, D.; Chen, L.; Zhang, Y.; Ye, K.; Sun, F.; Wei, X.; Du, H.; Zhao, H.; et al. Untargeted Metabolomics Analysis Reveals Differential Accumulation of Flavonoids between Yellow-Seeded and Black-Seeded Rapeseed Varieties. Plants 2025, 14, 753. [Google Scholar] [CrossRef]
- Tsugawa, H.; Ikeda, K.; Takahashi, M.; Satoh, A.; Mori, Y.; Uchino, H.; Okahashi, N.; Yamada, Y.; Tada, I.; Bonini, P.; et al. A Lipidome Atlas in MS-DIAL 4. Nat. Biotechnol. 2020, 38, 1159–1163. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wei, X.; Liu, Y.; Tang, Y.; Shen, S.; Xu, J.; Chen, L.; Qu, C.; Zhao, H.; Du, H.; et al. Genome-Wide Identification and Functional Characterization of the BAHD Acyltransferase Gene Family in Brassica napus L. Plants 2025, 14, 2183. https://doi.org/10.3390/plants14142183
Liu Y, Wei X, Liu Y, Tang Y, Shen S, Xu J, Chen L, Qu C, Zhao H, Du H, et al. Genome-Wide Identification and Functional Characterization of the BAHD Acyltransferase Gene Family in Brassica napus L. Plants. 2025; 14(14):2183. https://doi.org/10.3390/plants14142183
Chicago/Turabian StyleLiu, Yuanyuan, Xingzhi Wei, Yiwei Liu, Yunshan Tang, Shulin Shen, Jie Xu, Lulu Chen, Cunmin Qu, Huiyan Zhao, Hai Du, and et al. 2025. "Genome-Wide Identification and Functional Characterization of the BAHD Acyltransferase Gene Family in Brassica napus L." Plants 14, no. 14: 2183. https://doi.org/10.3390/plants14142183
APA StyleLiu, Y., Wei, X., Liu, Y., Tang, Y., Shen, S., Xu, J., Chen, L., Qu, C., Zhao, H., Du, H., Wan, H., Yin, N., & Zhang, T. (2025). Genome-Wide Identification and Functional Characterization of the BAHD Acyltransferase Gene Family in Brassica napus L. Plants, 14(14), 2183. https://doi.org/10.3390/plants14142183