Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = chemical foaming technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
45 pages, 8810 KB  
Review
CVD-Engineered Nano Carbon Architectures: Mechanisms, Challenges, and Outlook
by Maria Hasan, Szymon Abrahamczyk, Muhammad Aashir Awan, Ondřej Sakreida, Alicja Bachmatiuk, Grazyna Simha Martynková, Karla Čech Barabaszová and Mark Hermann Rümmeli
Nanomaterials 2025, 15(23), 1834; https://doi.org/10.3390/nano15231834 - 4 Dec 2025
Viewed by 302
Abstract
Graphitic nanomaterials have emerged as foundational components in nanoscience owing to their exceptional electrical, mechanical, and chemical properties, which can be tuned by controlling dimensionality and structural order. From zero-dimensional (0D) quantum dots, carbon nano-onions, and nanodiamonds to one-dimensional (1D) nanoribbons, two-dimensional (2D) [...] Read more.
Graphitic nanomaterials have emerged as foundational components in nanoscience owing to their exceptional electrical, mechanical, and chemical properties, which can be tuned by controlling dimensionality and structural order. From zero-dimensional (0D) quantum dots, carbon nano-onions, and nanodiamonds to one-dimensional (1D) nanoribbons, two-dimensional (2D) nanowalls, and three-dimensional (3D) graphene foams, these architectures underpin advancements in catalysis, energy storage, sensing, and electronic technologies. Among various synthesis routes, chemical vapor deposition (CVD) provides unmatched versatility, enabling atomic-level control over carbon supply, substrate interactions, and plasma activation to produce well defined graphitic structures directly on functional supports. This review presents a comprehensive, dimension-resolved overview of CVD-derived graphitic nanomaterials, examining how process parameters such as precursor chemistry, temperature, hydrogen etching, and template design govern nucleation, crystallinity, and morphological evolution across 0D to 3D hierarchies. Comparative analyses of Raman, XPS, and XRD data are integrated to relate structural features with growth mechanisms and functional performance. By connecting mechanistic principles across dimensional scales, this review establishes a unified framework for understanding and optimizing CVD synthesis of graphitic nanostructures. It concludes by outlining a path forward for improving how CVD-grown carbon nanomaterials are made, monitored, and integrated into real devices so these can move from lab-scale experiments to practical, scalable technologies. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

17 pages, 2265 KB  
Article
Self-Supported Polyhedral-like Co3S4 Nanostructures Enabling Efficient High Current Hydrogen Evolution Reaction
by Abu Talha Aqueel Ahmed, Sangeun Cho, Abu Saad Ansari, Yongcheol Jo and Atanu Jana
Materials 2025, 18(21), 5025; https://doi.org/10.3390/ma18215025 - 4 Nov 2025
Viewed by 421
Abstract
The advancement of overall water-splitting technologies relies on the development of earth-abundant electrocatalysts that efficiently produce H2 as a chemical fuel while offering high catalytic efficiency, structural robustness, and low-cost synthesis. Therefore, we aim to develop a cost-effective and durable non-noble electrocatalyst [...] Read more.
The advancement of overall water-splitting technologies relies on the development of earth-abundant electrocatalysts that efficiently produce H2 as a chemical fuel while offering high catalytic efficiency, structural robustness, and low-cost synthesis. Therefore, we aim to develop a cost-effective and durable non-noble electrocatalyst for overall water splitting. A straightforward hydrothermal approach was employed to fabricate freestanding polyhedral Co3O4 on a microporous Ni foam scaffold, followed by anion-exchange transformation in the presence of Na2S solution to yield its conductive sulfide analog. The engineered Co3S4 electrode delivers remarkable HER activity in 1.0 M KOH, requiring a low overpotential (<100 mV) to drive 10 mA cm−2, far outperforming its pristine oxide counterpart and even closely benchmarking with a commercial Pt/C catalyst. This exceptional performance is governed by the synergistic effects of enhanced electrical conductivity, abundant catalytic sites, and accelerated charge-transfer kinetics introduced through sulfur substitution. Furthermore, the optimized Co3S4 electrodes enable a bifunctional overall water-splitting device that achieves a cell voltage of >1.76 V at 100 mA cm−2 and maintains prolonged operational stability for over 100 hrs. of continuous operation. Post-stability analyses confirm insignificant phase preservation during testing, ensuring sustained activity throughout the electrolysis process. This study highlights the potential of anion-exchanged Co3S4 as a cost-effective and durable catalyst for high-performance HER and full-cell water-splitting applications. Full article
Show Figures

Graphical abstract

28 pages, 9309 KB  
Review
Preparation, Properties and Chemical Modification Methods of the Fire-Fighting Foam for Coal Spontaneous Combustion
by Chenchen Feng, Ying Li, Hua Li, Mengmeng Bai and Zefeng Jing
Materials 2025, 18(21), 4888; https://doi.org/10.3390/ma18214888 - 25 Oct 2025
Viewed by 763
Abstract
Coal spontaneous combustion causes both human casualties and environmental pollution. Owing to special flow behaviors, foam materials used in fire-fighting technology can effectively bring water and solid non-combustible substances into the fire-fighting area, greatly preventing spontaneous combustion. This paper systematically elucidates three foam [...] Read more.
Coal spontaneous combustion causes both human casualties and environmental pollution. Owing to special flow behaviors, foam materials used in fire-fighting technology can effectively bring water and solid non-combustible substances into the fire-fighting area, greatly preventing spontaneous combustion. This paper systematically elucidates three foam materials, three-phase foam, gel foam and curing foam, and analyzes their physical and chemical inhibition mechanisms on coal spontaneous combustion. In particular, the preparation, performance and latest chemical modification methods of the foam materials are summarized in detail. It is found that foam materials with environmental friendliness, economy and excellent anti-fire performance need to be consistently explored. The primary application areas for cement-based foamed materials remain the building materials and civil engineering industries, and their modification should be studied accordingly based on the specific application context. Furthermore, a new component of foam materials, coal gasification slag (a solid waste), is proposed. In addition, the seepage properties of fire-fighting foam in porous media should be fully studied to accurately grasp the dispersion of foam materials in mine goafs. This review provides new insights and guidance for the development of fire-fighting foam materials. Full article
(This article belongs to the Special Issue Foam Materials and Applications)
Show Figures

Figure 1

18 pages, 2486 KB  
Article
Stability and Foam Performance Optimization of CO2-Soluble Foaming Agents: Influencing Factors and Mechanistic Analysis
by Wenjing Sun, Wenlu Yang, Zian Yang, Sheng Cao, Quan Xu, Fajun Zhao, Tianjiao Guo and Tianyi Sun
Processes 2025, 13(9), 2784; https://doi.org/10.3390/pr13092784 - 30 Aug 2025
Viewed by 944
Abstract
This study systematically analyzes the influencing factors and optimization strategies of foam stability and performance for CO2-soluble foaming agents in high-temperature and high-pressure (HTHP) complex reservoir environments. By constructing a HTHP experimental system and utilizing dynamic foam testing, interfacial tension analysis, [...] Read more.
This study systematically analyzes the influencing factors and optimization strategies of foam stability and performance for CO2-soluble foaming agents in high-temperature and high-pressure (HTHP) complex reservoir environments. By constructing a HTHP experimental system and utilizing dynamic foam testing, interfacial tension analysis, and microscopic observation of liquid films, the effects of chemical factors (e.g., pH, foaming agent concentration, stabilizer synergy) and physical factors (e.g., temperature, pressure) on foam behavior are investigated. The results show that the nonionic surfactant E-1312 exhibits optimal foam performance in neutral to mildly alkaline environments. The foam performance tends to saturate at around 0.5% concentration. High pressure enhances the foam stability, whereas elevated temperature significantly reduces the foam lifetime. Moreover, the addition of nano-sized foam stabilizers such as silica (SiO2) can significantly delay liquid film drainage and strengthen interfacial mechanical properties, thereby improving foam durability. This study further reveals the key mechanisms of CO2-soluble foaming agents in terms of interfacial behavior, liquid film evolution, and foam formation in porous media, providing theoretical guidance and optimization pathways for the molecular design and field application of CO2 foam flooding technology. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

18 pages, 2295 KB  
Article
The Potential of Waste-Derived Sorbents for Absorbing Petroleum Substances in Firefighting Operations
by Justyna Gniazdowska, Anna Rabajczyk, Tomasz Wilczyński and Daniel Małozięć
Materials 2025, 18(16), 3752; https://doi.org/10.3390/ma18163752 - 11 Aug 2025
Viewed by 765
Abstract
The development of industry and technology, despite making everyday life easier, generates large amounts of various wastes that negatively affect the environment. Unexpected leaks of substances such as oils, petroleum substances, and chemicals also contribute to the degradation of aquatic and terrestrial ecosystems. [...] Read more.
The development of industry and technology, despite making everyday life easier, generates large amounts of various wastes that negatively affect the environment. Unexpected leaks of substances such as oils, petroleum substances, and chemicals also contribute to the degradation of aquatic and terrestrial ecosystems. Long-term effects of environmental pollution require the development of advanced materials and technologies to collect and neutralize pollutants. Sorbents obtained from waste, including banana peels, coconut fibers, and polyurethane foams from recycling the thermal housing of refrigeration devices, allow a reduction in the amount of generated waste and the development of appropriate sorbents. This work focuses on comparing the sorption and neutralization properties of these materials for two types of oil, machine and diesel, and the possibility of using them in rescue and firefighting operations conducted by firefighters. The results obtained indicate that the viscose–cellulose sorbent and the polyurethane foam sorbent are characterized by better performance parameters than sorbents from coffee grounds or coconut fibers. The best parameters were obtained after the first 10 min of the sorbent–contaminant reaction, whereas in the case of contamination with machine oil, the absorption capacity was better than for diesel oil for each sorbent subjected to analysis. Full article
(This article belongs to the Section Green Materials)
Show Figures

Graphical abstract

19 pages, 1664 KB  
Review
Recent Advances, Challenges, and Functional Applications of Protein Chemical Modification in the Food Industry
by Peiming Zhao, Zhiyan Zhang, Wei Ran, Ting Bai, Jie Cheng and Jiamin Zhang
Foods 2025, 14(16), 2784; https://doi.org/10.3390/foods14162784 - 10 Aug 2025
Cited by 2 | Viewed by 2859
Abstract
Proteins serve as crucial functional components in food processing, with their unique physicochemical properties directly influencing the texture and stability of food products. Proteins exhibit a range of functional properties, including emulsification, foaming, gelation, and hydration. These properties arise from the structural differences [...] Read more.
Proteins serve as crucial functional components in food processing, with their unique physicochemical properties directly influencing the texture and stability of food products. Proteins exhibit a range of functional properties, including emulsification, foaming, gelation, and hydration. These properties arise from the structural differences in protein molecules. To equip proteins with enhanced and diversified biological functions, researchers have developed a variety of protein modification techniques. Recent breakthroughs in artificial intelligence technologies have opened new opportunities for research on protein chemical modifications. Novel algorithms based on advanced techniques, such as deep learning, image recognition, and natural language processing, have been developed for intelligent prediction of protein modification sites. The application of these AI technologies provides innovative research tools and methodological support for rational design and targeted engineering of protein functions. This review delves into the applications of chemical modification methods aimed at improving protein solubility, emulsifying capabilities, gelation capacity, antioxidant activity, antimicrobial properties, and nutritional value. These modifications alter the structural and functional attributes of proteins, significantly enhancing their performance within food systems and expanding their application prospects in such domains as medicine and biomaterials. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

37 pages, 3892 KB  
Review
Sustainable Remediation Strategies and Technologies of Per- and Polyfluoroalkyl Substances (PFAS)-Contaminated Soils: A Critical Review
by Rosario Napoli, Filippo Fazzino, Federico G. A. Vagliasindi and Pietro P. Falciglia
Sustainability 2025, 17(14), 6635; https://doi.org/10.3390/su17146635 - 21 Jul 2025
Viewed by 4241
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been reported to contaminate soil as a result of improper management of waste, wastewater, landfill leachate, biosolids, and a large and indiscriminate use of aqueous film-forming foams (AFFF), posing potential risks to human health. However, their high [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) have been reported to contaminate soil as a result of improper management of waste, wastewater, landfill leachate, biosolids, and a large and indiscriminate use of aqueous film-forming foams (AFFF), posing potential risks to human health. However, their high chemical and thermal stability pose a great challenge for remediation. As a result, there is an increasing interest in identifying and optimizing very effective and sustainable technologies for PFAS removal. This review summarizes both traditional and innovative remediation strategies and technologies for PFAS-contaminated soils. Unlike existing literature, which primarily focuses on the effectiveness of PFAS remediation, this review critically discusses several techniques (based on PFAS immobilization, mobilization and extraction, and destruction) with a deep focus on their sustainability and scalability. PFAS destruction technologies demonstrate the highest removal efficiencies; however, thermal treatments face sustainability challenges due to high energy demands and potential formation of harmful by-products, while mechanical treatments have rarely been explored at full scale. PFAS immobilization techniques are less costly than destruction methods, but issues related to the regeneration/disposal of spent sorbents should be still addressed and more long-term studies conducted. PFAS mobilization techniques such as soil washing/flushing are hindered by the generation of PFAS-laden wastewater requiring further treatments, while phytoremediation is limited to small- or medium-scale experiments. Finally, bioremediation would be the cheapest and least impactful alternative, though its efficacy remains uncertain and demonstrated under simplified lab-scale conditions. Future research should prioritize pilot- and full-scale studies under realistic conditions, alongside comprehensive assessments of environmental impacts and economic feasibility. Full article
Show Figures

Figure 1

28 pages, 4983 KB  
Review
Physical Processing-Assisted pH Shifting for Food Protein Modification: A Comprehensive Review
by Ruiqi Long, Yuanyuan Huang, Mokhtar Dabbour, Benjamin Kumah Mintah, Jiayin Pan, Minquan Wu, Shengqi Zhang, Zhou Qin, Ronghai He and Haile Ma
Foods 2025, 14(13), 2360; https://doi.org/10.3390/foods14132360 - 3 Jul 2025
Cited by 8 | Viewed by 2734
Abstract
The increasing demand for sustainable protein sources has intensified interest in improving the processing efficiency of traditional proteins and developing novel alternatives, particularly those derived from plants and algae. Among various processing technologies, pH shifting has attracted attention due to its simplicity, low [...] Read more.
The increasing demand for sustainable protein sources has intensified interest in improving the processing efficiency of traditional proteins and developing novel alternatives, particularly those derived from plants and algae. Among various processing technologies, pH shifting has attracted attention due to its simplicity, low cost, and capacity to effectively alter protein structure and functionality. However, employing pH shifting alone requires extremely acidic or alkaline conditions, which can lead to protein denaturation and the generation of undesirable by-products. To address these limitations, this review explores the integration of pH shifting with physical processing techniques such as ultrasound, high-pressure processing, pulsed electric fields, and thermal treatments. Moreover, this review highlights the effects of these combined treatments on protein conformational transitions and the resulting improvements in functional properties such as solubility, emulsification, foaming capacity, and thermal stability. Importantly, they reduce reliance on extreme chemical conditions, providing greater sustainability in industrial applications, particularly in food product development where milder processing conditions help preserve nutritional quality and functional properties. In that sense, this combined treatment approach provides a promising and eco-efficient protein modification strategy, and bridges technological innovation with sustainable resource utilization. Full article
Show Figures

Figure 1

29 pages, 5886 KB  
Review
Advances in the Applications and Studies of Polyurethane Foam for Flexible Strain Sensors
by Shuai Huang, Guanbing Liu, Ying Sun and Xiacong Zhang
Polymers 2025, 17(13), 1851; https://doi.org/10.3390/polym17131851 - 2 Jul 2025
Viewed by 1875
Abstract
Polyurethane (PU) foam, renowned for its structural versatility, elasticity, compressibility, and adaptability, has garnered significant attention for its use in flexible strain sensors due to its capability to detect mechanical deformation. This review presents a comprehensive analysis of both the studies and recent [...] Read more.
Polyurethane (PU) foam, renowned for its structural versatility, elasticity, compressibility, and adaptability, has garnered significant attention for its use in flexible strain sensors due to its capability to detect mechanical deformation. This review presents a comprehensive analysis of both the studies and recent advancements in PU foam-based strain sensors, particularly those incorporating conductive materials. The review begins by examining the chemical composition and structural characteristics of PU foam, followed by a discussion of various fabrication methods and their effects on sensor performance. It also explores the sensing mechanisms, including piezoresistive, piezoelectric, and capacitive effects. Moreover, key applications in motion detection, health monitoring, and environmental and industrial sensing are examined. Finally, the review addresses technological advancements, current challenges, and prospects. Full article
(This article belongs to the Special Issue Advances in Functional Rubber and Elastomer Composites, 3rd Edition)
Show Figures

Figure 1

36 pages, 1505 KB  
Review
Whey Proteins and Bioactive Peptides: Advances in Production, Selection and Bioactivity Profiling
by Anna Luparelli, Daniela Trisciuzzi, William Matteo Schirinzi, Leonardo Caputo, Leonardo Smiriglia, Laura Quintieri, Orazio Nicolotti and Linda Monaci
Biomedicines 2025, 13(6), 1311; https://doi.org/10.3390/biomedicines13061311 - 27 May 2025
Cited by 5 | Viewed by 5950
Abstract
The whey protein (WP) fraction represents 18–20% of the total milk nitrogen content. It was originally considered a dairy industry waste, but upon its chemical characterization, it was found to be a precious source of bioactive components, growing in popularity as nutritional and [...] Read more.
The whey protein (WP) fraction represents 18–20% of the total milk nitrogen content. It was originally considered a dairy industry waste, but upon its chemical characterization, it was found to be a precious source of bioactive components, growing in popularity as nutritional and functional food ingredients. This has generated a remarkable increase in interest in applications in the different sectors of nutrition, food industry, and pharmaceutics. WPs comprise immunoglobulins and proteins rich in branched and essential amino acids, and peptides endowed with several biological activities (antimicrobial, antihypertensive, antithrombotic, anticancer, antioxidant, opioid, immunomodulatory, and gut microbiota regulation) and technological properties (gelling, water binding, emulsification, and foaming ability). Currently, various process technologies and biotechnological methods are available to recover WPs and convert them into BioActive Peptides (BAPs) for commercial use. Additionally, in silico approaches could have a significant impact on the development of novel foods and/or ingredients and therapeutic agents. This review provides an overview of current and emerging methods for the production, selection, and application of whey peptides, offering insights into bioactivity profiling and potential therapeutic targets. Recent updates in legislation related to commercialized WPs-based products are also presented. Full article
Show Figures

Figure 1

22 pages, 2259 KB  
Review
Leading Techniques for Per- and Polyfluoroalkyl Substances (PFASs) Remediating in Water and Wastewater
by Zhenzhen Chen, Yaqian Zhao, Ting Wei and Cheng Shen
Water 2025, 17(9), 1319; https://doi.org/10.3390/w17091319 - 28 Apr 2025
Cited by 2 | Viewed by 3507
Abstract
Per- and polyfluoroalkyl substances (PFASs), a class of synthetic organic compounds since the 1940s, have become widespread and persistent environmental pollutants. Due to their high chemical stability, bioaccumulation potential, and extensive industrial and household applications, PFASs have drawn significant attention from researchers worldwide [...] Read more.
Per- and polyfluoroalkyl substances (PFASs), a class of synthetic organic compounds since the 1940s, have become widespread and persistent environmental pollutants. Due to their high chemical stability, bioaccumulation potential, and extensive industrial and household applications, PFASs have drawn significant attention from researchers worldwide in recent years, while PFASs have become a hot topic, and the publications are updated very quickly. Various remediation technologies, including adsorption, pyrolysis, biodegradation, and advanced oxidation, have been developed and treated as the leading techniques to mitigate PFAS contamination. Other alternative techniques are foam fractionation, constructed wetland, and piezoelectric ball milling. However, the effectiveness of these methods varies depending on their reaction mechanisms, operational conditions, and environmental factors. This review provides a comprehensive summary of the latest advancements in PFASs removal strategies, highlighting their advantages, limitations, and potential synergies. Furthermore, future research directions and technological developments are discussed to explore more efficient, sustainable, and cost-effective solutions for PFASs remediation. Full article
(This article belongs to the Special Issue Constructed Wetlands and Emerging Pollutants)
Show Figures

Figure 1

15 pages, 7855 KB  
Article
Fabrication of Sustainable Diatomite-Based Foams with a Micro-Macroporous Synergistic Structure
by Hailong Ning, Zhiwu Li, Ning Liu, Chengling Li, Yao Lu and Long Li
Materials 2025, 18(9), 1968; https://doi.org/10.3390/ma18091968 - 26 Apr 2025
Cited by 1 | Viewed by 738
Abstract
This study developed a foamed material with a synergistic microporous-macroporous structure through chemical foaming and high-pressure curing to better utilize the microporous properties of diatomaceous earth in building materials. The effects of different amounts of foaming agent, foam stabilizer, and CaO/SiO2 on [...] Read more.
This study developed a foamed material with a synergistic microporous-macroporous structure through chemical foaming and high-pressure curing to better utilize the microporous properties of diatomaceous earth in building materials. The effects of different amounts of foaming agent, foam stabilizer, and CaO/SiO2 on the mechanical properties and pore structure of the samples were investigated. The experimental results demonstrate that, under the influence of the foaming agent, the foam material has developed a multi-stage pore structure that integrates both macropores and micropores. This unique structure results in a dry density range of 467–670 kg/m3, thereby achieving significant material lightweighting. In addition, these macropores enhance the interaction between the micropores of diatomaceous earth and the external environment interface, thereby achieving a balance between the material’s structural stability and functional properties. The material exhibits a porosity of 76.9% and a specific surface area of 42.9 m2/g, while maintaining a high compressive strength of 2.67 MPa. This work provides a technological pathway for the fabrication of multifunctional building materials that have both lightweight and eco-functional properties. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

18 pages, 400 KB  
Article
From Hen Nutrition to Baking: Effects of Pomegranate Seed and Linseed Oils on Egg White Foam Stability and Sponge Cake Quality
by Marcin Lukasiewicz, Maja Dymińska-Czyż, Beata Szymczyk, Magdalena Franczyk-Żarów, Renata Kostogrys, Adam Florkiewicz, Paweł Ptaszek, Gabriela Zięć and Agnieszka Filipiak-Florkiewicz
Foods 2025, 14(8), 1417; https://doi.org/10.3390/foods14081417 - 20 Apr 2025
Viewed by 1232
Abstract
This study aimed to verify that enriching hens’ diets with pomegranate seed (PSO) and linseed oils (LSO) would maintain egg foaming and leavening capacity and improve the nutritional profile of egg-based products without compromising technological properties. It was shown in the previous studies [...] Read more.
This study aimed to verify that enriching hens’ diets with pomegranate seed (PSO) and linseed oils (LSO) would maintain egg foaming and leavening capacity and improve the nutritional profile of egg-based products without compromising technological properties. It was shown in the previous studies that fortifying hen feed with PSO increased CLnA and CLA concentrations in raw eggs. In this study, two experiments with 25-week-old Hy-Line Brown laying hens have been carried out. Experiment 1 modified hens’ feed by incorporating PSO (0.5–1.5%) and 1.5% LSO. In Experiment 2, hens received feed containing PSO (0.5–1.5%). This research involved cake preparation, quality evaluation, and the assessment of egg white foam properties (stability, density, and gas bubble distribution). The chemical composition of sponge cake was determined. Results showed that PSO and LSO in hen feed enhanced egg leavening properties, while egg white-based foam properties matched the control group. The cakes showed improved health-promoting properties due to CLA and CLnA presence. The research confirmed that these beneficial acids were retained in the final sponge cake. Full article
(This article belongs to the Topic Food Security and Healthy Nutrition)
Show Figures

Figure 1

33 pages, 785 KB  
Review
Sustainable Wet Processing Technologies for the Textile Industry: A Comprehensive Review
by Maria L. Catarino, Filipa Sampaio and Ana L. Gonçalves
Sustainability 2025, 17(7), 3041; https://doi.org/10.3390/su17073041 - 29 Mar 2025
Cited by 11 | Viewed by 10386
Abstract
The textile industry ranks among the highest water-consuming sectors globally, with annual usage reaching billions of cubic meters. In manufacturing, wet processing, including dyeing, printing, and finishing, accounts for 72% of this water demand. These stages not only require vast water volumes but [...] Read more.
The textile industry ranks among the highest water-consuming sectors globally, with annual usage reaching billions of cubic meters. In manufacturing, wet processing, including dyeing, printing, and finishing, accounts for 72% of this water demand. These stages not only require vast water volumes but also produce wastewater containing hazardous chemicals, polluting ecosystems and reducing soil fertility. Furthermore, the energy-intensive nature of these processes, combined with a heavy reliance on fossil fuels, contributes significantly to greenhouse gas emissions. In response to these environmental challenges, innovative technologies have emerged, such as waterless dyeing using supercritical carbon dioxide, digital printing, ultrasonic-assisted processing, foam dyeing, laser-based denim finishing, and dope dyeing for man-made fibers. These methods drastically reduce water consumption, lower energy use, and minimize emissions while maintaining textile quality. However, the widespread adoption of these alternatives faces challenges, including high implementation costs, process scalability, and compatibility with existing infrastructure. This review critically explores current advancements in sustainable textile wet processing, analyzing their effectiveness, limitations, and industrial viability. By addressing these challenges, the textile industry can transition toward environmentally friendly and resource-efficient manufacturing processes. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

16 pages, 2613 KB  
Article
Optimized Nitrogen Foam Flooding System for Enhanced Oil Recovery: Development and Field Test in Mu146 Block Medium-High Permeability Reservoir, China
by Jia-Yang Luo, Zhen-Jun Wang, Xin-Yuan Zou, Quan Xu, Bo Dong, Song-Kai Li, Zhu-Feng Wang, Jie-Rui Liu, Xian-Feng Wang and Xiao-Hu Xue
Energies 2025, 18(5), 1183; https://doi.org/10.3390/en18051183 - 28 Feb 2025
Cited by 1 | Viewed by 1458
Abstract
This study presents a tailored nitrogen foam flooding system developed for the Mu146 block’s medium-high permeability reservoir conditions. Through systematic optimization, we establish an optimal formulation comprising 0.40% FP2398 foaming agent and 0.13% WP2366 stabilizer. The formulated foam demonstrates superior performance characteristics with [...] Read more.
This study presents a tailored nitrogen foam flooding system developed for the Mu146 block’s medium-high permeability reservoir conditions. Through systematic optimization, we establish an optimal formulation comprising 0.40% FP2398 foaming agent and 0.13% WP2366 stabilizer. The formulated foam demonstrates superior performance characteristics with a generated volume of 850 mL and extended stability duration of 1390 s, exhibiting exceptional structural integrity under oil-bearing conditions. Core flooding experiments conducted on berea cores reveal a 33.20% incremental oil recovery factor following waterflooding that achieves 53.60% primary recovery. The non-steady-state nitrogen foam huff-and-puff (NSSNFHF) field test at Well Mu146-61 shows significant reservoir response, with post-treatment analyses indicating an average chloride ion concentration increase of 540.20 mg/L and total salinity elevation of 1194.20 mg/L across five monitoring wells. These chemical signatures confirm effective volumetric sweep enhancement through the NSSNFHF field test, demonstrating a flooding-like mechanism that mobilizes bypassed oil in previously unswept zones. The field test encompassing Well Mu146-61 and four offset producers yield substantial production improvements, including a 74.55% increase in fluid production rates and a sustained oil yield of 1.80 tons per day. The validity period of the NSSNFHF field test is more than 12 months. The technology demonstrates dual functionality in conformance control and enhanced recovery, effectively improving both oil productivity and ultimate recovery factors. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

Back to TopTop