Self-Supported Polyhedral-like Co3S4 Nanostructures Enabling Efficient High Current Hydrogen Evolution Reaction
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Co3O4 and Co3S4 Electrodes
2.3. Material Characterization
2.4. Catalytic HER and Bifunctional Activity
3. Results
3.1. Crystallographic and Bonding Properties of Co3O4 and Co3S4 Electrodes
3.2. Chemical Bonding States of Co3O4 and Co3S4 Electrodes
3.3. Morphological and Compositional Properties of Co3O4 and Co3S4 Electrodes
3.4. Electrochemical Properties of Co3O4 and Co3S4 Electrodes
3.5. Overall Water Splitting Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| H2 | Hydrogen |
| HER | Hydrogen evolution reaction |
| OER | Oxygen evolution reaction |
| Pt | Platinum |
| 3D | Three-dimensional |
| NF | Nickel foam |
| XPS | X-ray photoelectron spectroscopy |
| FESEM | Field-emission scanning electron microscopy |
| EDS | Energy-dispersive X-ray |
| XRD | X-ray diffraction |
| SCE | Saturated calomel electrode |
| EIS | Electrochemical impedance spectroscopy |
| LSV | Linear sweep voltammetry |
| RHE | Reversible hydrogen electrode |
| η | Overpotential |
| ECSA | Electrochemically active surface area |
| CV | Cyclic voltammetry |
| Rct | Charge transfer resistance |
| TOF | Turnover frequency |
References
- Li, J.; Chu, D. Research on Electrocatalytic Materials for Hydrogen Evolution and Oxygen Evolution. Materials 2025, 18, 4232. [Google Scholar] [CrossRef]
- Yue, M.; Lambert, H.; Pahon, E.; Roche, R.; Jemei, S.; Hissel, D. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renew. Sustain. Energy Rev. 2021, 146, 111180. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Guan, W. Photocatalytic Hydrogen Production Performance of ZnCdS/CoWO4 Heterojunctions in the Reforming of Lignin Model Compounds. Materials 2025, 18, 4401. [Google Scholar] [CrossRef] [PubMed]
- Cherp, A.; Vinichenko, V.; Tosun, J.; Gordon, J.A.; Jewell, J. National growth dynamics of wind and solar power compared to the growth required for global climate targets. Nat. Energy 2021, 6, 742–754. [Google Scholar] [CrossRef]
- Shindell, D.; Smith, C.J. Climate and air-quality benefits of a realistic phase-out of fossil fuels. Nature 2019, 573, 408–411. [Google Scholar] [CrossRef]
- Machín, A.; Morant, C.; Soto-Vázquez, L.; Resto, E.; Ducongé, J.; Cotto, M.; Berríos-Rolón, P.J.; Martínez-Perales, C.; Márquez, F. Synergistic Effects of Co3O4-gC3N4-Coated ZnO Nanoparticles: A Novel Approach for Enhanced Photocatalytic Degradation of Ciprofloxacin and Hydrogen Evolution via Water Splitting. Materials 2024, 17, 1059. [Google Scholar] [CrossRef]
- Zhang, D.; Yao, J.; Yin, J.; Wang, G.; Zhu, K.; Yan, J.; Cao, D.; Zhu, M. Hierarchical CoNiO2 Microflowers Assembled by Mesoporous Nanosheets as Efficient Electrocatalysts for Hydrogen Evolution Reaction. Materials 2023, 16, 2204. [Google Scholar] [CrossRef]
- Zhu, R.; Zang, J.; Han, M.; Dong, L.; Tian, X.; Sun, F.; Liu, R.; Wang, Y. NiFeCoMoCr high-entropy hydroxides for efficient bifunctional alkaline water splitting and renewable hydrogen storage. J. Alloys Compd. 2025, 1033, 180849. [Google Scholar] [CrossRef]
- Zang, M.; Xu, N.; Cao, G.; Chen, Z.; Cui, J.; Gan, L.; Dai, H.; Yang, X.; Wang, P. Cobalt molybdenum oxide derived high-performance electrocatalyst for the hydrogen evolution reaction. ACS Catal. 2018, 8, 5062–5069. [Google Scholar] [CrossRef]
- Yu, J.; Li, Z.; Wang, C.; Xu, X.; Liu, T.; Chen, D.; Shao, Z.; Ni, M. Engineering advanced noble-metal-free electrocatalysts for energy-saving hydrogen production from alkaline water via urea electrolysis. J. Colloid Interface Sci. 2024, 661, 629–661. [Google Scholar] [CrossRef]
- Shchegolkov, A.V.; Shchegolkov, A.V.; Zemtsova, N.V.; Stanishevskiy, Y.M.; Vetcher, A.A. Recent Advantages on Waste Management in Hydrogen Industry. Polymers 2022, 14, 4992. [Google Scholar] [CrossRef]
- Liu, J.; Yang, X.; Si, F.; Zhao, B.; Xi, X.; Wang, L.; Zhang, J.; Fu, X.-Z.; Luo, J.-L. Interfacial component coupling effects towards precise heterostructure design for efficient electrocatalytic water splitting. Nano Energy 2022, 103, 107753. [Google Scholar] [CrossRef]
- Inamdar, A.I.; Salunke, A.S.; Patil, J.V.; Mali, S.S.; Hong, C.K.; Ali, B.; Patil, S.A.; Shrestha, N.K.; Lee, S.; Cho, S. Design of CoMoCe-Oxide Nanostructured Composites as Robust Bifunctional Electrocatalyst for Water Electrolysis Overall Efficiency. Materials 2025, 18, 4052. [Google Scholar] [CrossRef]
- Pachauri, N.; Ahn, C.W.; Choi, T.J. Biochar energy prediction from different biomass feedstocks for clean energy generation. Environ. Technol. Innov. 2025, 37, 104012. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, H.; Dai, C.; Lei, X.; Wang, B.; Liu, X. Research advances in high-entropy alloy catalysts for water electrolysis under acidic conditions. J. Electroanal. Chem. 2024, 964, 118313. [Google Scholar] [CrossRef]
- Wang, E.; Guo, M.; Zhou, J.; Sun, Z. Reasonable Design of MXene-Supported Dual-Atom Catalysts with High Catalytic Activity for Hydrogen Evolution and Oxygen Evolution Reaction: A First-Principles Investigation. Materials 2023, 16, 1457. [Google Scholar] [CrossRef]
- Shrestha, N.K.; Patil, S.A.; Seok, J.H.; Salunke, A.S.; Cho, S.; Inamdar, A.I.; Park, Y.; Lee, S.U.; Kim, H.; Im, H. Cerium guided site-selective crystal disorder engineering of MIL-88B (Ni) frameworks for electrocatalysis offering high-performance water oxidation. Mater. Today Phys. 2023, 38, 101252. [Google Scholar] [CrossRef]
- Sekar, S.; Shanmugam, A.; Lee, Y.; Lee, S. Highly Efficient Electrocatalyst of 2D–2D gC3N4–MoS2 Composites for Enhanced Overall Water Electrolysis. Materials 2025, 18, 3775. [Google Scholar] [CrossRef] [PubMed]
- Sekar, S.; Park, S.; Jung, J.; Lee, S. Superb Bifunctional Water Electrolysis Activities of Carbon Nanotube—Decorated Lanthanum Hydroxide Nanocomposites. Int. J. Energy Res. 2023, 2023, 6685726. [Google Scholar] [CrossRef]
- Ahmed, A.T.A.; Ansari, A.S.; Pawar, S.M.; Shong, B.; Kim, H.; Im, H. Anti–corrosive FeO decorated CuCo2S4 as an efficient and durable electrocatalyst for hydrogen evolution reaction. Appl. Surf. Sci. 2021, 539, 148229. [Google Scholar] [CrossRef]
- Aqueel Ahmed, A.T.; Pawar, S.M.; Inamdar, A.I.; Kim, H.; Im, H. A Morphologically Engineered Robust Bifunctional CuCo2O4 Nanosheet Catalyst for Highly Efficient Overall Water Splitting. Adv. Mater. Interfaces 2020, 7, 1901515. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, H.; Chen, J.; Guan, D.; Hu, Z.; Xu, X.; Lin, Z.; Sun, H.; Sun, X.; Tang, J.; et al. Self-Optimized Interfacial Co–O–Ru Motifs of Hollow Nanotube Composites Trigger Interfacial Lattice Oxygen Participation and Diffusion. ACS Nano 2025, 19, 25917–25929. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Tüysüz, H. Cobalt-Oxide-Based Materials as Water Oxidation Catalyst: Recent Progress and Challenges. ACS Catal. 2014, 4, 3701–3714. [Google Scholar] [CrossRef]
- Zhang, W.; Cui, L.; Liu, J. Recent advances in cobalt-based electrocatalysts for hydrogen and oxygen evolution reactions. J. Alloys Compd. 2020, 821, 153542. [Google Scholar] [CrossRef]
- Rong, C.; Sun, Q.; Zhu, J.; Arandiyan, H.; Shao, Z.; Wang, Y.; Chen, Y. Advances in Stabilizing Spinel Cobalt Oxide-Based Catalysts for Acidic Oxygen Evolution Reaction. Adv. Sci. 2025, 12, e09415. [Google Scholar] [CrossRef]
- Rashid, U.; Ma, X.; Zhu, Y.; Cao, C.; Zou, M. A comprehensive review of cobalt-based electrocatalysts synthesized via new microwave-assisted methodology. Mater. Chem. Front. 2025, 9, 1459–1474. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, R.; Cen, J. Facile Synthesis of Cobalt Oxide as an Efficient Electrocatalyst for Hydrogen Evolution Reaction. Front. Chem. 2020, 8, 386. [Google Scholar] [CrossRef]
- Ma, G.; Gao, S.; Tang, G.; Chen, F.; Lang, X.; Qiu, X.; Song, X. Development of starch-based amorphous CoOx self-supporting carbon aerogel electrocatalyst for hydrogen evolution. Carbohydr. Polym. 2023, 314, 120942. [Google Scholar] [CrossRef]
- Yu, T.; Xu, Q.; Qian, G.; Chen, J.; Zhang, H.; Luo, L.; Yin, S. Amorphous CoOx-Decorated Crystalline RuO2 Nanosheets as Bifunctional Catalysts for Boosting Overall Water Splitting at Large Current Density. ACS Sustain. Chem. Eng. 2020, 8, 17520–17526. [Google Scholar] [CrossRef]
- Alhashmialameer, D.; Shariq, M.; Fani, I.A.; Alharbi, A.F.; Althikrallah, H.A.; Almashnowi, M.Y.A.; Azooz, R.E.; Ahmed, I. A Facile Synthesis Strategy of Supported g-C3N4 and Molybdenum Disulfide over Co3O4 Spinal Composite Nanostructure: An Excellent Catalyst for HER. Energy Fuels 2024, 38, 15771–15779. [Google Scholar] [CrossRef]
- Hu, M.; Hu, J.; Zheng, Y.; Zhang, S.; Li, Q.; Yang, M.; Goto, T.; Tu, R. Heterostructured Co3O4/VO2 nanosheet array catalysts on carbon cloth for hydrogen evolution reaction. Int. J. Hydrogen Energy 2022, 47, 18983–18991. [Google Scholar] [CrossRef]
- Wagh, K.S.; Mane, S.M.; Teli, A.M.; Shin, J.C.; Lee, J. Recent Advancements in Co3O4-Based Composites for Enhanced Electrocatalytic Water Splitting. Micromachines 2024, 15, 1450. [Google Scholar] [CrossRef]
- Li, D.; Xu, D.; Pei, Y.; Zhang, Q.; Lu, Y.; Zhang, B. Isolated octahedral Pt-induced electron transfer to ultralow-content ruthenium-doped spinel Co3O4 for enhanced acidic overall water splitting. J. Am. Chem. Soc. 2024, 146, 28728–28738. [Google Scholar] [CrossRef]
- Gorylewski, D.; Zasada, F.; Słowik, G.; Lofek, M.; Grzybek, G.; Tyszczuk-Rotko, K.; Kotarba, A.; Stelmachowski, P. Modulation of the Electronic Properties of Co3O4 through Bi Octahedral Doping for Enhanced Activity in the Oxygen Evolution Reaction. ACS Catal. 2025, 15, 4746–4758. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Liu, B.; Shi, Z.; Yan, M.; Ma, T. A Dual-Function Fe-Doped Co3O4 Nanosheet Array for Efficient OER and HER in an Alkaline Medium. Molecules 2025, 30, 1046. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Yan, Y.; Qin, B.; Zheng, X.; Cai, W.; Qi, J. Rational Construction of Pt Incorporated Co3O4 as High-Performance Electrocatalyst for Hydrogen Evolution Reaction. Nanomaterials 2024, 14, 898. [Google Scholar] [CrossRef]
- Ding, K.; Yang, P.; Hou, P.; Song, X.; Wei, T.; Cao, Y.; Cheng, X. Ultrathin and highly crystalline Co3O4 nanosheets in situ grown on graphene toward enhanced supercapacitor performance. Adv. Mater. Interfaces 2017, 4, 1600884. [Google Scholar] [CrossRef]
- Kavinkumar, T.; Reddy, N.R.; Pabba, D.P.; Ramadoss, A.; Rednam, U.; Dhanabalan, S.S.; Chidhambaram, N.; Asaithambi, P.; Hevia, S.A.; Thirumurugan, A. Design of highly stable Co3O4/RGO/CoFe2O4 hybrid nanocomposites with multiple nanointerfaces for enhanced supercapacitor performance. Inorg. Chem. Commun. 2024, 168, 112920. [Google Scholar] [CrossRef]
- Guo, J.; Wang, G.; Cui, S.; Xia, B.; Liu, Z.; Zang, S.-Q. Vacancy and strain engineering of Co3O4 for efficient water oxidation. J. Colloid Interface Sci. 2023, 629, 346–354. [Google Scholar] [CrossRef]
- Wu, X.; Li, S.; Liu, J.; Yu, M. Mesoporous hollow nested nanospheres of Ni, Cu, Co-based mixed sulfides for electrocatalytic oxygen reduction and evolution. ACS Appl. Nano Mater. 2019, 2, 4921–4932. [Google Scholar] [CrossRef]
- Chen, K.; Luo, H.; Chang, Y.; Guo, D.; Zhu, Y.; Zhou, L.; Chen, X.A.; Wang, S. Highly Efficient Catalysis of Sulfur Reduction Reaction: 3d10-Based Catalysts. Adv. Sci. 2025, 12, e08473. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Min, Y.; Li, H.; Fu, C. Electronic structure regulation in the design of low-cost efficient electrocatalysts: From theory to applications. Nano Energy 2023, 115, 108718. [Google Scholar] [CrossRef]
- Peng, B.; She, H.; Wei, Z.; Sun, Z.; Deng, Z.; Sun, Z.; Chen, W. Sulfur-doping tunes p-d orbital coupling over asymmetric Zn-Sn dual-atom for boosting CO2 electroreduction to formate. Nat. Commun. 2025, 16, 2217. [Google Scholar] [CrossRef] [PubMed]
- Ambika, S.; Gopinath, S.; Saravanan, K.; Sivakumar, K.; Ragupathi, C.; Sukantha, T.A. Structural, morphological and optical properties and solar cell applications of thioglycolic routed nano cobalt oxide material. Energy Rep. 2019, 5, 305–309. [Google Scholar] [CrossRef]
- Zhai, Y.; Mao, H.; Liu, P.; Ren, X.; Xu, L.; Qian, Y. Facile fabrication of hierarchical porous rose-like NiCo2O4 nanoflake/MnCo2O4 nanoparticle composites with enhanced electrochemical performance for energy storage. J. Mater. Chem. A 2015, 3, 16142–16149. [Google Scholar] [CrossRef]
- Nyamaa, O.; Jeong, H.-M.; Kang, G.-H.; Kim, J.-S.; Goo, K.-M.; Baek, I.-G.; Yang, J.-H.; Nam, T.-H.; Noh, J.-P. Enhanced LiMn2O4 cathode performance in lithium-ion batteries through synergistic cation and anion substitution. Mater. Adv. 2024, 5, 2872–2887. [Google Scholar] [CrossRef]
- Fonsaca, J.E.S.; Silva, E.E.; Tieppo, K.; Domingues, S.H.; de Matos, C.J.S. Nanostructured Co3O4 Semiconductors for Plasmon-Free SERS Sensing Platforms. ACS Appl. Nano Mater. 2025, 8, 7876–7886. [Google Scholar] [CrossRef]
- Wolf, S.; Domes, R.; Merian, A.; Domes, C.; Frosch, T. Parallelized Raman Difference Spectroscopy for the Investigation of Chemical Interactions. Anal. Chem. 2022, 94, 10346–10354. [Google Scholar] [CrossRef]
- Fan, Y.; Ai, T.; Bao, W.; Han, J.; Jiang, P.; Deng, Z.; Wei, X.; Zou, X. Ru doping Co3S4 induced electron and morphology double regulation to promote the kinetics of the bifunctional catalytic reaction. Appl. Surf. Sci. 2025, 689, 162361. [Google Scholar] [CrossRef]
- Stefancu, A.; Aizpurua, J.; Alessandri, I.; Bald, I.; Baumberg, J.J.; Besteiro, L.V.; Christopher, P.; Correa-Duarte, M.; de Nijs, B.; Demetriadou, A.; et al. Impact of Surface Enhanced Raman Spectroscopy in Catalysis. ACS Nano 2024, 18, 29337–29379. [Google Scholar] [CrossRef]
- Cui, Y.; Yang, S.; Zhu, J.; Wang, Z.; Chen, S.; Qi, J.; Wang, H. Dual-Engineering Tailored Co3O4 Hollow Microspheres Assembled by Nanosheets for Boosting Oxygen Evolution Reaction. Molecules 2025, 30, 2181. [Google Scholar] [CrossRef]
- Wang, H.; Wang, D.; Sun, C.; Zhao, X.; Xu, C.; Li, Z.; Hou, Y.; Lei, L.; Yang, B.; Duan, X. Oriented generation of 1O2 from peroxymonosulfate via Co3O4 facet engineering. Appl. Catal. B Environ. 2025, 364, 124854. [Google Scholar] [CrossRef]
- Talha Aqueel Ahmed, A.; Ho Lee, C.; Saad Ansari, A.; Pawar, S.M.; Han, J.; Park, S.; Shin, G.; Yeon, S.; Cho, S.; Seol, J.; et al. Hybridized heterostructure of CoS and MoS2 nanoparticles for highly-efficient and robust bifunctional water electrolysis. Appl. Surf. Sci. 2022, 592, 153196. [Google Scholar] [CrossRef]
- Sun, H.; Li, L.; Chen, Y.; Kim, H.; Xu, X.; Guan, D.; Hu, Z.; Zhang, L.; Shao, Z.; Jung, W. Boosting ethanol oxidation by NiOOH-CuO nano-heterostructure for energy-saving hydrogen production and biomass upgrading. Appl. Catal. B Environ. 2023, 325, 122388. [Google Scholar] [CrossRef]
- Ahmed, A.T.A.; Sree, V.G.; Meena, A.; Inamdar, A.I.; Im, H.; Cho, S. In Situ Transformed CoOOH@Co3S4 Heterostructured Catalyst for Highly Efficient Catalytic OER Application. Nanomaterials 2024, 14, 1732. [Google Scholar] [CrossRef]
- Shi, J.; Jiang, H.; Hong, X.; Tang, J. Non-noble metal high entropy sulfides for efficient oxygen evolution reaction catalysis. Appl. Surf. Sci. 2024, 642, 158598. [Google Scholar] [CrossRef]
- Park, Y.S.; Lee, J.H.; Jang, M.J.; Jeong, J.; Park, S.M.; Choi, W.-S.; Kim, Y.; Yang, J.; Choi, S.M. Co3S4 nanosheets on Ni foam via electrodeposition with sulfurization as highly active electrocatalysts for anion exchange membrane electrolyzer. Int. J. Hydrogen Energy 2020, 45, 36–45. [Google Scholar] [CrossRef]
- Gomez Vidales, A.; Choi, K.; Omanovic, S. Nickel-cobalt-oxide cathodes for hydrogen production by water electrolysis in acidic and alkaline media. Int. J. Hydrogen Energy 2018, 43, 12917–12928. [Google Scholar] [CrossRef]
- Huang, L.; Wei, X.; Yu, Y.; Sun, D.; Qu, Y.; Wen, J.; Yuan, X.; Su, Q.; Meng, F.; Du, G.; et al. In-situ construct Ni2P/Ni5P4 heterostructured electrocatalyst through controllable Ni2P phase transition for enhanced HER performance. J. Mater. Sci. Technol. 2026, 242, 306–316. [Google Scholar] [CrossRef]
- Ji, L.; Wei, Y.; Wu, P.; Xu, M.; Wang, T.; Wang, S.; Liang, Q.; Meyer, T.J.; Chen, Z. Heterointerface Engineering of Ni2P–Co2P Nanoframes for Efficient Water Splitting. Chem. Mater. 2021, 33, 9165–9173. [Google Scholar] [CrossRef]
- Naseeb, M.A.; Murtaza, M.; Farooq, K.; Shah, W.A.; Waseem, A. Molybdenum carbide supported metal–organic framework-derived Ni, Co phosphosulphide heterostructures as efficient OER and HER catalysts. Nanoscale Adv. 2025, 7, 5300–5312. [Google Scholar] [CrossRef]
- Shamloofard, M.; Shahrokhian, S. ORR, OER, and HER activity promotion in hierarchical yolk–shell structures based on Co-glycerate@cobalt carbonate hydroxide by dual doping with manganese and boron. Nanoscale 2025, 17, 19695–19709. [Google Scholar] [CrossRef]
- Fan, C.; Song, X.; Tang, Y.; Zang, Z.; Ren, Y.; Li, L.; Yu, X.; Yang, X.; Lu, Z.; Zhang, X. S and Se-enhanced intrinsic activity of Co(OH)2 for overall water splitting. J. Alloys Compd. 2025, 1038, 182648. [Google Scholar] [CrossRef]
- Wang, F.; Pei, Z.; Xu, Z.; Qin, T.; Ouyang, X.; Li, D.; Hou, Y.; Guo, X. Constructing Mn-Co-Fe Ternary Metal Phosphides Nanosheet Arrays as Bifunctional Electrocatalysts for Overall Water Splitting. Adv. Sci. 2025, 12, 2417521. [Google Scholar] [CrossRef]
- Xing, Y.; Li, D.; Li, L.; Tong, H.; Jiang, D.; Shi, W. Accelerating water dissociation kinetic in Co9S8 electrocatalyst by mn/N Co-doping toward efficient alkaline hydrogen evolution. Int. J. Hydrogen Energy 2021, 46, 7989–8001. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, C.; Xiao, L.; Han, C.; Zhao, X.; Yin, P.; Dong, C.; Liu, H.; Du, X.; Yang, J. Construction of Co–Se–W at Interfaces of Phase-Mixed Cobalt Selenide via Spontaneous Phase Transition for Platinum-Like Hydrogen Evolution Activity and Long-Term Durability in Alkaline and Acidic Media. Adv. Mater. 2024, 36, 2401880. [Google Scholar] [CrossRef] [PubMed]
- Lian, Y.; Lin, C.; Yu, T.; Qu, Y.; Yuan, C.; Guo, M. Regulative electronic structure of metallic Co3Mo3N/Co heterointerfaces in mesoporous carbon for decreased alkaline HER energy barriers. Appl. Phys. Lett. 2024, 125. [Google Scholar] [CrossRef]
- Phadikar, U.; Sanyal, G.; Das, S.; Kundu, A.; Kuila, C.; Murmu, N.C.; Chakraborty, B.; Kuila, T. Unique Multi-Hetero-Interface Engineering of Fe-Doped Co-LDH@MoS2-Ni3S2 Nanoflower-Based Electrocatalyst for Overall Water-Splitting: An Experimental and Theoretical Investigation. ChemSusChem 2024, 17, e202400821. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, A.T.A.; Cho, S.; Ansari, A.S.; Jo, Y.; Jana, A. Self-Supported Polyhedral-like Co3S4 Nanostructures Enabling Efficient High Current Hydrogen Evolution Reaction. Materials 2025, 18, 5025. https://doi.org/10.3390/ma18215025
Ahmed ATA, Cho S, Ansari AS, Jo Y, Jana A. Self-Supported Polyhedral-like Co3S4 Nanostructures Enabling Efficient High Current Hydrogen Evolution Reaction. Materials. 2025; 18(21):5025. https://doi.org/10.3390/ma18215025
Chicago/Turabian StyleAhmed, Abu Talha Aqueel, Sangeun Cho, Abu Saad Ansari, Yongcheol Jo, and Atanu Jana. 2025. "Self-Supported Polyhedral-like Co3S4 Nanostructures Enabling Efficient High Current Hydrogen Evolution Reaction" Materials 18, no. 21: 5025. https://doi.org/10.3390/ma18215025
APA StyleAhmed, A. T. A., Cho, S., Ansari, A. S., Jo, Y., & Jana, A. (2025). Self-Supported Polyhedral-like Co3S4 Nanostructures Enabling Efficient High Current Hydrogen Evolution Reaction. Materials, 18(21), 5025. https://doi.org/10.3390/ma18215025

