Whey Proteins and Bioactive Peptides: Advances in Production, Selection and Bioactivity Profiling
Abstract
:1. Introduction
2. Major and Minor WPs
Proteins (g/L) | Minor Dairy Mammal Species | Major Dairy Mammal Species | References | ||||||
---|---|---|---|---|---|---|---|---|---|
Horse | Donkey | Camel | Yak | Cow | Goat | Sheep | Buffalo | [20,51,57,58] | |
Total WPs | 7.4–9.1 | 4.9–8 | 5.9–8.1 | 10 | 5.5–7 | 3.7–7 | 10.2–11 | 6 | |
β-lactoglobulin (β-LG) | 2.55 | 3.3 | N/A * | 3.4–10.1 | 3.2–3.3 | 1.5–5.0 | 6.5–8.5 | 3.9 | |
α-lactoalbumin (α-LA) | 2.37 | 1.9 | 0.8–3.5 | 0.2–1.7 | 1.2–1.3 | 0.7–2.3 | 1–1.9 | 1.4 | |
Serum Albumin | 0.37 | 0.4 | 7–11.9 | 0.2–3.1 | 0.3–0.4 | 0.25–1.1 | 0.4–0.6 | 0.29 | |
Immunoglobulins (IGs) | 1.63 | 1.30 | 1.5–19.6 | 0.1–0.4 | 0.5–1.0 | 0.1–0.5 | 0.7 | 10.66 | |
IgG | 0.38 | N/A * | 0.72–2.23 | N/A * | 0.15–0.8 | 0.1–0.4 | N/A * | 0.37–1.34 | |
IgA | 0.96 | N/A * | N/A * | N/A * | 0.05–0.14 | 0.03–0.08 | N/A * | 0.01–0.04 | |
IgM | 0.02 | N/A * | N/A * | N/A * | 0.04–0.1 | 0.01–0.04 | N/A * | 0.04–1.91 | |
Lactoferrin (LF) | 0.1–2.0 | 0.07–0.37 | 0.02–7.28 | 0.1–0.7 | 0.02–0.5 | 0.02–0.2 | 0.8 | 0.03–3.4 | |
Lysozyme (LYZ) | 0.5–1.33 | 1.00–1.43 | 0.000060–0.00135 | N/A * | 0.000070–0.00060 | 0.000250 | 0.000100 | 0.000120–0.000152 | |
Proteose–peptone (Pp) | N/A * | N/A * | N/A * | N/A * | 0.8–1.2 | N/A * | N/A * | 3.31 |
2.1. β-Lactoglobulin (β-LG)
2.2. α-LActoalbumin (α-LA)
2.3. Albumin of the Bovine Serum (BSA)
2.4. Immunoglobulins (IGs)
2.5. Glycomacropeptide (GMP)
2.6. Lactoferrin (LF)
2.7. Proteose–Peptone (Pp)
2.8. Lactoperoxidase (LP)
2.9. Lysozyme (LYZ)
3. Conventional vs. Novel Approaches for the Release of BAPs from WPs
3.1. Microbial Fermentation (MF)
3.2. Enzymatic Hydrolysis
3.3. Chemical Hydrolysis and Heat Treatment
3.4. Ultrasound Treatment
3.5. Microwave Treatment
3.6. Pulsed Electric Field (PEF) Technology
3.7. High-Pressure Processing (HPP)
3.8. Subcritical Water
3.9. Ohmic Heating
4. Prediction of Biological Activities of WP-Derived BAPs by In Silico Approaches
5. Regulatory Frameworks and Safety Assessments for WP-Derived BAPs: Global Perspectives and Challenges
6. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Buchanan, D.; Martindale, W.; Romeih, E.; Hebishy, E. Recent advances in whey processing and valorisation: Technological and environmental perspectives. Int. J. Dairy Technol. 2023, 76, 291–312. [Google Scholar] [CrossRef]
- Prazeres, A.R.; Carvalho, F.; Rivas, J. Cheese whey management: A review. J. Environ. Manag. 2012, 110, 48–68. [Google Scholar] [CrossRef] [PubMed]
- Sebastián-Nicolás, J.L.; González-Olivares, L.G.; Vázquez-Rodríguez, G.A.; Lucho-Constatino, C.A.; Castañeda-Ovando, A.; Cruz-Guerrero, A.E. Valorization of whey using a biorefinery. Biofuels Bioprod. Biorefin. 2020, 14, 1010–1027. [Google Scholar] [CrossRef]
- Soumati, B.; Atmani, M.; Benabderrahmane, A.; Benjelloun, M. Whey Valorization—Innovative Strategies for Sustainable Development and Value-Added Product Creation. J. Ecol. Eng. 2023, 24, 86–104. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, N.; Ashaolu, T.J. Whey proteins and peptides in health-promoting function—A review. Int. Dairy J. 2022, 126, 105269. [Google Scholar] [CrossRef]
- Batista, M.A.; Campos, N.C.A.; Silvestre, M.P.C. Whey and protein derivatives: Applications in food products development, technological properties and functional effects on child health. Cogent Food Agric. 2018, 4, 1509687. [Google Scholar] [CrossRef]
- Mangano, K.M.; Bao, Y.; Zhao, C. Nutritional Properties of Whey Proteins. In Whey Protein Production, Chemistry, Functionality, and Applications; Guo, M., Ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2019; Volume 2, pp. 103–140. ISBN 9781119256052. [Google Scholar]
- Yiğit, A.; Bielska, P.; Cais-Sokolińska, D.; Samur, G. Whey proteins as a functional food: Health effects, functional properties, and applications in food. J. Am. Nutr. Assoc. 2023, 42, 758–768. [Google Scholar] [CrossRef] [PubMed]
- de Castro, R.J.S.; Domingues, M.A.F.; Ohara, A.; Okuro, P.K.; dos Santos, J.G.; Brexó, R.P.; Sato, H.H. Whey protein as a key component in food systems: Physicochemical properties, production technologies and applications. Food Struct. 2017, 14, 17–29. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, Z. Structural and colloidal properties of whey protein aggregates produced by indirect tubular heating and direct steam injection. Food Struct. 2023, 35, 100301. [Google Scholar] [CrossRef]
- Baruzzi, F.; de Candia, S.; Quintieri, L.; Caputo, L.; De Leo, F. Development of a synbiotic beverage enriched with bifidobacteria strains and fortified with whey proteins. Front. Microbiol. 2017, 8, 640. [Google Scholar] [CrossRef]
- Quintieri, L.; Caputo, L.; Monaci, L.; Cavalluzzi, M.M.; Denora, N. Lactoferrin-derived peptides as a control strategy against skinborne staphylococcal biofilms. Biomedicines 2020, 8, 323. [Google Scholar] [CrossRef]
- Quintieri, L.; Caputo, L.; Monaci, L.; Deserio, D.; Morea, M.; Baruzzi, F. Antimicrobial efficacy of pepsin-digested bovine lactoferrin on spoilage bacteria contaminating traditional Mozzarella cheese. Food Microbiol. 2012, 31, 64–71. [Google Scholar] [CrossRef]
- Price, D.; Jackson, K.G.; Lovegrove, J.A.; Givens, D.I. The effects of whey proteins, their peptides and amino acids on vascular function. Nutr. Bull. 2022, 47, 9–26. [Google Scholar] [CrossRef]
- Quintieri, L.; Luparelli, A.; Caputo, L.; Schirinzi, W.; De Bellis, F.; Smiriglia, L.; Monaci, L. Unraveling the Biological Properties of Whey Peptides and Their Role as Emerging Therapeutics in Immune Tolerance. Nutrients 2025, 17, 938. [Google Scholar] [CrossRef] [PubMed]
- Ha, H.K.; Rankin, S.A.; Lee, M.R.; Lee, W.J. Development and characterization of whey protein-based nano-delivery systems: A review. Molecules 2019, 24, 3254. [Google Scholar] [CrossRef]
- Dhar, H.; Verma, S.; Dogra, S.; Katoch, S.; Vij, R.; Singh, G.; Sharma, M. Functional attributes of bioactive peptides of bovine milk origin and application of in silico approaches for peptide prediction and functional annotations. Crit. Rev. Food Sci. Nutr. 2023, 64, 9432–9454. [Google Scholar] [CrossRef]
- Han, B.; Zhang, L.; Ma, Y.; Hou, Y.; Xie, K.; Zhong, J.; Zhou, P. Quantitative Phosphoproteome of Infant Formula: New Insights into the Difference of Phosphorylation in Milk Proteins between Bovine and Goat Species. J. Agric. Food Chem. 2023, 71, 3531–3540. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.P.; Arora, S.; Sarkar, M. Yak milk and milk products: Functional, bioactive constituents and therapeutic potential. Int. Dairy J. 2023, 142, 105637. [Google Scholar] [CrossRef]
- Nayak, C.M.; Ramachandra, C.T.; Kumar, G.M. A Comprehensive Review on Composition of Donkey Milk in Comparison to Human, Cow, Buffalo, Sheep, Goat, Camel and Horse Milk. Mysore J. Agric. Sci. 2020, 54, 42–50. [Google Scholar]
- Quintieri, L.; Fanelli, F.; Monaci, L.; Fusco, V. Milk and Its Derivatives as Sources of Components and Microorganisms with Health-Promoting Properties: Probiotics and Bioactive Peptides. Foods 2024, 13, 601. [Google Scholar] [CrossRef]
- Mohanty, D.P.; Mohapatra, S.; Misra, S.; Sahu, P.S. Milk derived bioactive peptides and their impact on human health—A review. Saudi J. Biol. Sci. 2016, 23, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Cava, E.; Padua, E.; Campaci, D.; Bernardi, M.; Muthanna, F.M.S.; Caprio, M.; Lombardo, M. Investigating the Health Implications of Whey Protein Consumption: A Narrative Review of Risks, Adverse Effects, and Associated Health Issues. Healthcare 2024, 12, 246. [Google Scholar] [CrossRef]
- Pinto, M.S.; Léonil, J.; Henry, G.; Cauty, C.; Carvalho, A.Ô.F.; Bouhallab, S. Heating and glycation of β-lactoglobulin and β-casein: Aggregation and in vitro digestion. Food Res. Int. 2014, 55, 70–76. [Google Scholar] [CrossRef]
- van Lieshout, G.A.A.; Lambers, T.T.; Bragt, M.C.E.; Hettinga, K.A. How processing may affect milk protein digestion and overall physiological outcomes: A systematic review. Crit. Rev. Food Sci. Nutr. 2020, 60, 2422–2445. [Google Scholar] [CrossRef]
- Li, S.; Ye, A.; Singh, H. Impacts of heat-induced changes on milk protein digestibility: A review. Int. Dairy J. 2021, 123, 105160. [Google Scholar] [CrossRef]
- Upadhyay, V.K.; McSweeney, P.L.H.; Magboul, A.A.A.; Fox, P.F. Proteolysis in cheese during ripening. In Cheese: Chemistry, Physics and Microbiology; Academic Press: Cambridge, MA, USA, 2004; Volume 1, pp. 391–433. ISBN 012263652X. [Google Scholar]
- Quintieri, L.; Caputo, L.; De Angelis, M.; Fanelli, F. Genomic Analysis of Three Cheese-Borne Pseudomonas lactis with Biofilm and Spoilage-Associated Behavior. Microorganisms 2020, 8, 1208. [Google Scholar] [CrossRef]
- D’Incecco, P.; Rosi, V.; Fortina, M.G.; Sindaco, M.; Ricci, G.; Pellegrino, L. Biochemical, microbiological, and structural evaluations to early detect age gelation of milk caused by proteolytic activity of Pseudomonas fluorescens. Eur. Food Res. Technol. 2022, 248, 2097–2107. [Google Scholar] [CrossRef]
- Korhonen, H. Milk-derived bioactive peptides: From science to applications. J. Funct. Foods 2009, 1, 177–187. [Google Scholar] [CrossRef]
- Nongonierma, A.B.; FitzGerald, R.J. Strategies for the discovery, identification and validation of milk protein-derived bioactive peptides. Trends Food Sci. Technol. 2016, 50, 26–43. [Google Scholar] [CrossRef]
- Saubenova, M.; Oleinikova, Y.; Rapoport, A.; Maksimovich, S.; Yermekbay, Z.; Khamedova, E. Bioactive Peptides Derived from Whey Proteins for Health and Functional Beverages. Fermentation 2024, 10, 359. [Google Scholar] [CrossRef]
- Quintieri, L.; Caputo, L.; Brasca, M.; Fanelli, F. Recent advances in the mechanisms and regulation of qs in dairy spoilage by pseudomonas spp. Foods 2021, 10, 3088. [Google Scholar] [CrossRef] [PubMed]
- Baruzzi, F.; Pinto, L.; Quintieri, L.; Carito, A.; Calabrese, N.; Caputo, L. Efficacy of lactoferricin B in controlling ready-to-eat vegetable spoilage caused by Pseudomonas spp. Int. J. Food Microbiol. 2015, 215, 179–186. [Google Scholar] [CrossRef]
- Quintieri, L.; Zühlke, D.; Fanelli, F.; Caputo, L.; Liuzzi, V.C.; Logrieco, A.F.; Hirschfeld, C.; Becher, D.; Riedel, K. Proteomic analysis of the food spoiler Pseudomonas fluorescens ITEM 17298 reveals the antibiofilm activity of the pepsin-digested bovine lactoferrin. Food Microbiol. 2019, 82, 177–193. [Google Scholar] [CrossRef]
- Xiang, Q.; Xia, Y.; Fang, S.; Zhong, F. Enzymatic debittering of cheese flavoring and bitterness characterization of peptide mixture using sensory and peptidomics approach. Food Chem. 2024, 440, 138229. [Google Scholar] [CrossRef] [PubMed]
- Mora, L.; Toldrá, F. Advanced enzymatic hydrolysis of food proteins for the production of bioactive peptides. Curr. Opin. Food Sci. 2023, 49, 100973. [Google Scholar] [CrossRef]
- Romero-Luna, H.E.; Hernández-Mendoza, A.; González-Córdova, A.F.; Peredo-Lovillo, A. Bioactive peptides produced by engineered probiotics and other food-grade bacteria: A review. Food Chem. 2022, 13, 100196. [Google Scholar] [CrossRef]
- Losurdo, L.; Quintieri, L.; Caputo, L.; Gallerani, R.; Mayo, B.; De Leo, F. Cloning and expression of synthetic genes encoding angiotensin-I converting enzyme (ACE)-inhibitory bioactive peptides in Bifidobacterium pseudocatenulatum. FEMS Microbiol. Lett. 2013, 340, 24–32. [Google Scholar] [CrossRef]
- Du, Z.; Comer, J.; Li, Y. Bioinformatics approaches to discovering food-derived bioactive peptides: Reviews and perspectives. TrAC Trends Anal. Chem. 2023, 162, 117051. [Google Scholar] [CrossRef]
- Muttenthaler, M.; King, G.F.; Adams, D.J.; Alewood, P.F. Trends in peptide drug discovery. Nat. Rev. Drug Discov. 2021, 20, 309–325. [Google Scholar] [CrossRef]
- Mirzapour-Kouhdasht, A.; Garcia-Vaquero, M. Cardioprotective Peptides from Milk Processing and Dairy Products: From Bioactivity to Final Products Including Commercialization and Legislation. Foods 2022, 11, 1270. [Google Scholar] [CrossRef]
- Quintieri, L.; Nitride, C.; De Angelis, E.; Lamonaca, A.; Pilolli, R.; Russo, F.; Monaci, L. Alternative Protein Sources and Novel Foods: Benefits, Food Applications and Safety Issues. Nutrients 2023, 15, 1509. [Google Scholar] [CrossRef] [PubMed]
- Chalamaiah, M.; Keskin Ulug, S.; Hong, H.; Wu, J. Regulatory requirements of bioactive peptides (protein hydrolysates) from food proteins. J. Funct. Foods 2019, 58, 123–129. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, Y.; Zhao, J.; Ren, C.; Yan, W. Oral Yak Whey Protein Can Alleviate UV-Induced Skin Photoaging and Modulate Gut Microbiota Composition. Foods 2024, 13, 2621. [Google Scholar] [CrossRef]
- El-Aidie, S.A.M.; Khalifa, G.S.A. Innovative applications of whey protein for sustainable dairy industry: Environmental and technological perspectives—A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13319. [Google Scholar] [CrossRef] [PubMed]
- Lesgards, J. Benefits of Whey Proteins on Type 2 Diabetes Mellitus. Nutrients 2023, 15, 1294. [Google Scholar] [CrossRef] [PubMed]
- Galland, F.; de Espindola, J.S.; Sacilotto, E.S.; Almeida, L.G.V.C.; Morari, J.; Velloso, L.A.; dos Santos, L.D.; Rossini, B.C.; Bertoldo Pacheco, M.T. Digestion of whey peptide induces antioxidant and anti-inflammatory bioactivity on glial cells: Sequences identification and structural activity analysis. Food Res. Int. 2024, 188, 114433. [Google Scholar] [CrossRef]
- Guha, S.; Sharma, H.; Deshwal, G.K.; Rao, P.S. A comprehensive review on bioactive peptides derived from milk and milk products of minor dairy species. Food Prod. Process. Nutr. 2021, 3, 2. [Google Scholar] [CrossRef]
- Ji, Z.; Dong, R.; Du, Q.; Jiang, H.; Fan, R.; Bu, D.; Wang, J.; Yu, Z.; Han, R.; Yang, Y. Insight into differences in whey proteome from human and eight dairy animal species for formula humanization. Food Chem. 2024, 430, 137076. [Google Scholar] [CrossRef]
- Ali, A.H.; Li, S.; Liu, S.-Q.; Gan, R.-Y.; Li, H.-B.; Kamal-Eldin, A.; Ayyash, M. Invited review: Camel milk and gut health—Understanding digestibility and the effect on gut microbiota. J. Dairy Sci. 2024, 107, 2573–2585. [Google Scholar] [CrossRef]
- Ereifej, K.I.; Alu’datt, M.H.; Alkhalidy, H.A.; Alli, I.; Rababah, T. Comparison and characterisation of fat and protein composition for camel milk from eight Jordanian locations. Food Chem. 2011, 127, 282–289. [Google Scholar] [CrossRef]
- Malacarne, M.; Martuzzi, F.; Summer, A.; Mariani, P. Protein and fat composition of mare’s milk: Some nutritional remarks with reference to human and cow’s milk. Int. Dairy J. 2002, 12, 869–877. [Google Scholar] [CrossRef]
- Ghafoori, E.M.; Narmuratova, M.; Mohammadi, M.H.; Narmuratova, Z. A Comprehensive Review of General Characteristics of Peptides of Serum Immunoglobulins and Their Health Benefits. Eur. J. Theor. Appl. Sci. 2024, 2, 659–671. [Google Scholar] [CrossRef]
- Baldi, A.; Ioannis, P.; Chiara, P.; Eleonora, F.; Roubini, C.; Vittorio, D. Biological effects of milk proteins and their peptides with emphasis on those related to the gastrointestinal ecosystem. J. Dairy Res. 2005, 72, 66–72. [Google Scholar] [CrossRef]
- Derdak, R.; Sakoui, S.; Pop, O.L.; Muresan, C.I.; Vodnar, D.C.; Addoum, B.; Vulturar, R.; Chis, A.; Suharoschi, R.; Soukri, A.; et al. Insights on health and food applications of equus asinus (Donkey) milk bioactive proteins and peptides—An overview. Foods 2020, 9, 1302. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.Y.; Pang, K.; Zhang, X.Y.; Zhao, L.; Chen, S.W.; Dong, M.L.; Ren, F.Z. Composition, physiochemical properties, nitrogen fraction distribution, and amino acid profile of donkey milk. J. Dairy Sci. 2007, 90, 1635–1643. [Google Scholar] [CrossRef] [PubMed]
- Emakpor, O.L.; Edo, G.I.; Jikah, A.N.; Ikpekoro, V.O.; Agbo, J.J.; Ainyanbhor, I.E.; Essaghah, A.E.A.; Ekokotu, H.A.; Oghroro, E.E.A.; Akpoghelie, P.O. Buffalo milk: An essential natural adjuvant. Discov. Food 2024, 4, 38. [Google Scholar] [CrossRef]
- Lajnaf, R.; Attia, H.; Ayadi, M.A. Technological properties and biological activities of camel α-lactalbumin—A review. Int. Dairy J. 2023, 139, 105563. [Google Scholar] [CrossRef]
- Kelly, A.L.; Fox, P.F. Advanced Dairy Chemistry: Volume 1B: Proteins: Applied Aspects, 4th ed.; Springer: New York, NY, USA, 2016; Volume 1, ISBN 9781493928002. [Google Scholar]
- Devries, M.C.; Phillips, S.M. Supplemental protein in support of muscle mass and health: Advantage whey. J. Food Sci. 2015, 80, A8–A15. [Google Scholar] [CrossRef]
- Kong, F.; Kang, S.; Zhang, J.; Jiang, L.; Liu, Y.; Yang, M.; Cao, X.; Zheng, Y.; Shao, J.; Yue, X. The non-covalent interactions between whey protein and various food functional ingredients. Food Chem. 2022, 394, 133455. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, R.; He, J.; Tang, W.; Liu, J. Innovative multistep modifications of β-Lactoglobulin for enhanced emulsifying and antioxidant activities. Food Hydrocoll. 2024, 148, 109465. [Google Scholar] [CrossRef]
- Liu, H.; Nardin, C.; Zhang, Y. Novel soft food gels using beta-lactoglobulin via enzymatic crosslinking as agar gel alternatives. Food Hydrocoll. 2024, 155, 110213. [Google Scholar] [CrossRef]
- Bavaro, S.L.; De Angelis, E.; Barni, S.; Pilolli, R.; Mori, F.; Novembre, E.M.; Monaci, L. Modulation of milk allergenicity by baking milk in foods: A proteomic investigation. Nutrients 2019, 11, 1536. [Google Scholar] [CrossRef] [PubMed]
- Goulding, D.A.; Fox, P.F.; O’Mahony, J.A. Milk proteins: An overview. In Milk Proteins; Elsevier: Amsterdam, The Netherlands, 2020; pp. 21–98. ISBN 9780128152515. [Google Scholar]
- Quintieri, L.; Monaci, L.; Baruzzi, F.; Giuffrida, M.G.; de Candia, S.; Caputo, L. Reduction of whey protein concentrate antigenicity by using a combined enzymatic digestion and ultrafiltration approach. J. Food Sci. Technol. 2017, 54, 1910–1916. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, X.; Jasiukenaite, I.; Löbmann, K. β-Lactoglobulin-based amorphous solid dispersions: A graphical review on the state-of-the-art. Eur. J. Pharm. Biopharm. 2024, 202, 114396. [Google Scholar] [CrossRef] [PubMed]
- Cuevas-Gómez, A.P.; Arroyo-Maya, I.J.; Hernández-Sánchez, H. Use of α-Lactalbumin [α-La] from Whey as a Vehicle for Bioactive Compounds in Food Technology and Pharmaceutics: A Review. Recent Prog. Mater. 2021, 3, 027. [Google Scholar] [CrossRef]
- Barone, G.; Moloney, C.; O’Regan, J.; Kelly, A.L.; O’Mahony, J.A. Chemical composition, protein profile and physicochemical properties of whey protein concentrate ingredients enriched in α-lactalbumin. J. Food Compos. Anal. 2020, 92, 103546. [Google Scholar] [CrossRef]
- Mackay-Phillips, K.; Orssatto, L.B.R.; Polman, R.; Van der Pols, J.C.; Trajano, G.S. Effects of α-lactalbumin on strength, fatigue and psychological parameters: A randomised double-blind cross-over study. Eur. J. Appl. Physiol. 2023, 123, 381–393. [Google Scholar] [CrossRef]
- Miles, K.H.; Clark, B.; Fowler, P.M.; Gratwicke, M.J.; Martin, K.; Welvaert, M.; Miller, J.; Pumpa, K.L. α-Lactalbumin Improves Sleep and Recovery after Simulated Evening Competition in Female Athletes. Med. Sci. Sports Exerc. 2021, 53, 2618–2627. [Google Scholar] [CrossRef]
- Chiou, J.T.; Shi, Y.J.; Lee, Y.C.; Wang, L.J.; Chen, Y.J.; Chang, L. Sen Carboxyl group-modified α-lactalbumin induces TNF-α-mediated apoptosis in leukemia and breast cancer cells through the NOX4/p38 MAPK/PP2A axis. Int. J. Biol. Macromol. 2021, 187, 513–527. [Google Scholar] [CrossRef]
- Almeida, C.C.; Mendonça Pereira, B.F.; Leandro, K.C.; Costa, M.P.; Spisso, B.F.; Conte-Junior, C.A. Bioactive Compounds in Infant Formula and Their Effects on Infant Nutrition and Health: A Systematic Literature Review. Int. J. Food Sci. 2021, 2021, 8850080. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, M.; Rong, Y.; Liu, Z.; Yang, S.; Zhang, W.; Li, J.; Cai, Y. A novel SNPs in alpha-lactalbumin gene effects on lactation traits in Chinese holstein dairy cows. Animals 2020, 10, 60. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Zhang, J.; Regenstein, J.M.; Liu, D.; Huang, Y.; Qiao, Y.; Zhou, P. α-Lactalbumin: Functional properties and potential health benefits. Food Biosci. 2024, 60, 104371. [Google Scholar] [CrossRef]
- Lu, N.; Wu, L.; Zhen, S.; Liu, B. Characterization of a Dihydromyricetin/α-Lactoalbumin Covalent Complex and Its Application in Nano-emulsions. Foods 2023, 12, 2783. [Google Scholar] [CrossRef]
- Huang, B.X.; Kim, H.Y.; Dass, C. Probing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry. J. Am. Soc. Mass Spectrom. 2004, 15, 1237–1247. [Google Scholar] [CrossRef]
- He, Z.; Chen, K.; An, Y.; He, J.; Zhang, X.; Tang, L.; Sun, F.; Jiang, K. BSA modification of bacterial surface: A promising anti-cancer therapeutic strategy. BMC Microbiol. 2023, 23, 105. [Google Scholar] [CrossRef]
- Masotti, F.; Cattaneo, S.; Stuknytė, M.; De Noni, I. Technological tools to include whey proteins in cheese: Current status and perspectives. Trends Food Sci. Technol. 2017, 64, 102–114. [Google Scholar] [CrossRef]
- Rajasekaran, B.; Singh, A.; Benjakul, S. Combined effect of chitosan and bovine serum albumin/whey protein isolate on the characteristics and stability of shrimp oil-in-water emulsion. J. Food Sci. 2022, 87, 2879–2893. [Google Scholar] [CrossRef]
- Maldonado, L.; Chough, S.; Bonilla, J.; Kim, K.H.; Kokini, J. Mechanism of fabrication and nano-mechanical properties of α-lactalbumin/chitosan and BSA/κ-carrageenan nanotubes through layer-by-layer assembly for curcumin encapsulation and determination of in vitro cytotoxicity. Food Hydrocoll. 2019, 93, 293–307. [Google Scholar] [CrossRef]
- Claeys, W.L.; Verraes, C.; Cardoen, S.; De Block, J.; Huyghebaert, A.; Raes, K.; Dewettinck, K.; Herman, L. Consumption of raw or heated milk from different species: An evaluation of the nutritional and potential health benefits. Food Control. 2014, 42, 188–201. [Google Scholar] [CrossRef]
- Elfstrand, L.; Lindmark-Månsson, H.; Paulsson, M.; Nyberg, L.; Åkesson, B. Immunoglobulins, growth factors and growth hormone in bovine colostrum and the effects of processing. Int. Dairy J. 2002, 12, 879–887. [Google Scholar] [CrossRef]
- Sharpe, S.; Gamble, G.; Sharpe, D.N. Cholesterol-lowering of immune blood of immune milk. Am. J. Clin. Nutr. 1994, 59, 929–934. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Song, L.; Tan, W.; Zhao, W. Clinical efficacy of oral immunoglobulin Y in infant rotavirus enteritis: Systematic review and meta-analysis. Medicine 2019, 98, e16100. [Google Scholar] [CrossRef]
- Córdova-Dávalos, L.E.; Jiménez, M.; Salinas, E. Glycomacropeptide bioactivity and health: A review highlighting action mechanisms and signaling pathways. Nutrients 2019, 11, 598. [Google Scholar] [CrossRef]
- Neelima; Sharma, R.; Rajput, Y.S.; Mann, B. Chemical and functional properties of glycomacropeptide (GMP) and its role in the detection of cheese whey adulteration in milk: A review. Dairy Sci. Technol. 2013, 93, 21–43. [CrossRef] [PubMed]
- Nakajima, K.; Tamura, N.; Kobayashi-Hattori, K.; Yoshida, T.; Hara-Kudo, Y.; Ikedo, M.; Sugita-Konishi, Y.; Hattori, M. Prevention of intestinal infection by glycomacropeptide. Biosci. Biotechnol. Biochem. 2005, 69, 2294–2301. [Google Scholar] [CrossRef]
- Feeney, S.; Ryan, J.T.; Kilcoyne, M.; Joshi, L.; Hickey, R. Glycomacropeptide reduces intestinal epithelial cell barrier dysfunction and adhesion of entero-hemorrhagic and entero-pathogenic Escherichia coli in vitro. Foods 2017, 6, 93. [Google Scholar] [CrossRef] [PubMed]
- Rhoades, J.R.; Gibson, G.R.; Formentin, K.; Beer, M.; Greenberg, N.; Rastall, R.A. Caseinoglycomacropeptide inhibits adhesion of pathogenic Escherichia coli strains to human cells in culture. J. Dairy Sci. 2005, 88, 3455–3459. [Google Scholar] [CrossRef]
- Brück, W.M.; Kelleher, S.L.; Gibson, G.R.; Graverholt, G.; Lönnerdal, B.L. The effects of α-lactalbumin and glycomacropeptide on the association of CaCo-2 cells by enteropathogenic Escherichia coli, Salmonella typhimurium and Shigella flexneri. FEMS Microbiol. Lett. 2006, 259, 158–162. [Google Scholar] [CrossRef]
- Li, A.; Ma, Y.; Cui, N.; Zhang, X.; Zheng, Q.; Du, P.; Sun, M. Research progress of milk and dairy products to prevent caries. J. Funct. Foods 2023, 110, 105837. [Google Scholar] [CrossRef]
- Kelleher, S.L.; Chatterton, D.; Nielsen, K.; Lönnerdal, B. Glycomacropeptide and α-lactalbumin supplementation of infant formula affects growth and nutritional status in infant rhesus monkeys. Am. J. Clin. Nutr. 2003, 77, 1261–1268. [Google Scholar] [CrossRef]
- Solverson, P.; Murali, S.G.; Litscher, S.J.; Blank, R.D.; Ney, D.M. Low Bone Strength Is a Manifestation of Phenylketonuria in Mice and Is Attenuated by a Glycomacropeptide Diet. PLoS ONE 2012, 7, e45165. [Google Scholar] [CrossRef] [PubMed]
- Burns, P.; Binetti, A.; Torti, P.; Kulozik, U.; Forzani, L.; Renzulli, P.; Vinderola, G.; Reinheimer, J. Administration of caseinomacropeptide-enriched extract to mice enhances the calcium content of femur in a low-calcium diet. Int. Dairy J. 2015, 44, 15–20. [Google Scholar] [CrossRef]
- Sawin, E.A.; Stroup, B.M.; Murali, S.G.; O’Neill, L.M.; Ntambi, J.M.; Ney, D.M. Differential effects of dietary fat content and protein source on bone phenotypeand fatty acid oxidation in female C57Bl/6 mice. PLoS ONE 2016, 11, e0163234. [Google Scholar] [CrossRef] [PubMed]
- Sawin, E.A.; De Wolfe, T.J.; Aktas, B.; Stroup, B.M.; Murali, S.G.; Steele, J.L.; Ney, D.M. Glycomacropeptide is a prebiotic that reduces Desulfovibrio bacteria, increases cecal short-chain fatty acids, and is anti-inflammatory in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 309, G590–G601. [Google Scholar] [CrossRef]
- Sauvé, M.F.; Feldman, F.; Sané, A.T.; Koudoufio, M.; Patey, N.; Spahis, S.; Butcher, J.; Duan, H.; Figeys, D.; Marcil, V.; et al. Glycomacropeptide as an Efficient Agent to Fight Pathophysiological Mechanisms of Metabolic Syndrome. Nutrients 2024, 16, 871. [Google Scholar] [CrossRef]
- Adler, S.M.; Paluska, M.R.; Svoboda, K.R.; Dallas, D.C. Immunomodulatory bioactivities of glycomacropeptide. J. Funct. Foods 2024, 115, 106084. [Google Scholar] [CrossRef]
- Superti, F. Lactoferrin from bovine milk: A protective companion for life. Nutrients 2020, 12, 2562. [Google Scholar] [CrossRef] [PubMed]
- Mahala, N.; Mittal, A.; Dubey, U.S. Medicinal Potential of Camel Milk Lactoferrin. In Current Issues and Advances in the Dairy Industry; Salam, A.I., Ed.; IntechOpen: London, UK, 2022; Volume 11, pp. 1–17. [Google Scholar]
- Mohamed, W.A.; Schaalan, M.F. Antidiabetic efficacy of lactoferrin in type 2 diabetic pediatrics; Controlling impact on PPAR-γ, SIRT-1, and TLR4 downstream signaling pathway. Diabetol. Metab. Syndr. 2018, 10, 89. [Google Scholar] [CrossRef]
- Zarzosa-Moreno, D.; Avalos-Gómez, C.; Ramírez-Texcalco, L.S.; Torres-López, E.; Ramírez-Mondragón, R.; Hernández-Ramírez, J.O.; Serrano-Luna, J.; de la Garza, M. Lactoferrin and its derived peptides: An alternative for combating virulence mechanisms developed by pathogens. Molecules 2020, 25, 5763. [Google Scholar] [CrossRef]
- Li, B.; Zhang, B.; Zhang, F.; Liu, X.; Zhang, Y.; Peng, W.; Teng, D.; Mao, R.; Yang, N.; Hao, Y.; et al. Interaction between Dietary Lactoferrin and Gut Microbiota in Host Health. J. Agric. Food Chem. 2024, 72, 7596–7606. [Google Scholar] [CrossRef]
- Griffin, I.J. The Effects of Different Forms of Lactoferrin on Iron Absorption. J. Nutr. 2020, 150, 3053–3054. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhou, J.; Xiao, D.; Shu, G.; Gu, L. Bovine Lactoferrin Protects Dextran Sulfate Sodium Salt Mice Against Inflammation and Impairment of Colonic Epithelial Barrier by Regulating Gut Microbial Structure and Metabolites. Front. Nutr. 2021, 8, 660598. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ma, C.; Hurilebagen; Yuan, H.; Hu, R.; Wang, W. Weilisi Effects of lactoferrin on intestinal flora of metabolic disorder mice. BMC Microbiol. 2022, 22, 181. [CrossRef]
- He, Q.; Zhang, L.L.; Li, D.; Wu, J.; Guo, Y.X.; Fan, J.; Wu, Q.; Wang, H.P.; Wan, Z.; Xu, J.Y.; et al. Lactoferrin alleviates Western diet-induced cognitive impairment through the microbiome-gut-brain axis. Curr. Res. Food Sci. 2023, 7, 100533. [Google Scholar] [CrossRef]
- Ma, X.; Hao, Y.; Mao, R.; Yang, N.; Zheng, X.; Li, B.; Wang, Z.; Zhang, Q.; Teng, D.; Wang, J. Effects of dietary supplementation of bovine lactoferrin on growth performance, immune function and intestinal health in weaning piglets. BioMetals 2023, 36, 587–601. [Google Scholar] [CrossRef]
- D’Amico, F.; Decembrino, N.; Muratore, E.; Turroni, S.; Muggeo, P.; Mura, R.; Perruccio, K.; Vitale, V.; Zecca, M.; Prete, A.; et al. Oral Lactoferrin Supplementation during Induction Chemotherapy Promotes Gut Microbiome Eubiosis in Pediatric Patients with Hematologic Malignancies. Pharmaceutics 2022, 14, 1705. [Google Scholar] [CrossRef]
- Konstanti, P.; van Splunter, M.; van den Brink, E.; Belzer, C.; Nauta, A.; van Neerven, R.J.J.; Smidt, H. The Effect of Nutritional Intervention with Lactoferrin, Galactooligosacharides and Vitamin D on the Gut Microbiota Composition of Healthy Elderly Women. Nutrients 2022, 14, 2468. [Google Scholar] [CrossRef]
- Xie, T.; Qiao, W.; Jia, T.; Kaku, K. Skin Care Function of Lactoferrin Was Characterized Using Recombinant Human Epidermal Model. Cosmetics 2024, 11, 98. [Google Scholar] [CrossRef]
- Krupińska, A.M.; Bogucki, Z. Clinical aspects of the use of lactoferrin in dentistry. J. Oral Biosci. 2021, 63, 129–133. [Google Scholar] [CrossRef]
- Nguyen, D.N.; Jiang, P.; Stensballe, A.; Bendixen, E.; Sangild, P.T.; Chatterton, D.E.W. Bovine lactoferrin regulates cell survival, apoptosis and inflammation in intestinal epithelial cells and preterm pig intestine. J. Proteom. 2016, 139, 95–102. [Google Scholar] [CrossRef]
- Saadi, S.; Makhlouf, C.; Nacer, N.E.; Halima, B.; Faiza, A.; Kahina, H.; Wahiba, F.; Afaf, K.; Rabah, K.; Saoudi, Z. Whey proteins as multifunctional food materials: Recent advancements in hydrolysis, separation, and peptidomimetic approaches. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13288. [Google Scholar] [CrossRef] [PubMed]
- Innocente, N.; Comparin, D.; Corradini, C. Proteose-peptone whey fraction as emulsifier in ice-cream preparation. Int. Dairy J. 2002, 12, 69–74. [Google Scholar] [CrossRef]
- Graikini, D.; Hadidian, M.; Abad, I.; Parrón, J.A.; Ripollés, D.; Pérez, M.D.; Calvo, M.; Sánchez, L. Comparative study on the biological activity of bovine and ovine PP3 and of their hydrolysates. Int. Dairy J. 2024, 159, 106058. [Google Scholar] [CrossRef]
- Santa, D.; Srbinovska, S. Whey Valorization. In Whey Valorization—Innovations, Technological Advancements and Sustainable Exploitation; Poonia, A., Trajkovska Petkoska, A., Eds.; Springer: Singapore, 2023; pp. 239–258. ISBN 978-981-99-5458-2. [Google Scholar]
- Modler, W. Pioneer paper: Value-added components derived from whey. Am. Dairy Sci. Assoc. 2009, 1, 1–33. [Google Scholar]
- Mollea, C.; Marmo, L.; Bosco, F. Valorisation of Cheese Whey, a By-Product from the Dairy Industry. In Food Industry; IntechOpen: London, UK, 2013; Volume 11, pp. 549–588. [Google Scholar]
- Yousefi, M.; Nematollahi, A.; Shadnoush, M.; Mortazavian, A.M.; Khorshidian, N. Antimicrobial Activity of Films and Coatings Containing Lactoperoxidase System: A Review. Front. Nutr. 2022, 9, 828065. [Google Scholar] [CrossRef]
- Farshidi, M.; Ehsani, A. The combined effects of lactoperoxidase system and whey protein coating on microbial, chemical, textural, and sensory quality of shrimp (Penaeus merguiensis) during cold storage. Food Sci. Nutr. 2018, 6, 1378–1386. [Google Scholar] [CrossRef]
- Min, S.; Harris, L.J.; Krochta, J.M. Antimicrobial effects of lactoferrin, lysozyme, and the lactoperoxidase system and edible whey protein films incorporating the lactoperoxidase system against Salmonella enterica and Escherichia coli O157: H7. J. Food Sci. 2005, 70, m332–m338. [Google Scholar] [CrossRef]
- Saravani, M.; Ehsani, A.; Aliakbarlu, J.; Ghasempour, Z. Gouda cheese spoilage prevention: Biodegradable coating induced by Bunium persicum essential oil and lactoperoxidase system. Food Sci. Nutr. 2019, 7, 959–968. [Google Scholar] [CrossRef]
- Larsen, I.S.; Jensen, B.A.H.; Bonazzi, E.; Béatrice, S.Y.; Kristensen, N.N.; Gjerløff, E.; Schmidt, W.; Morin, L.; Olsen, P.B.; Skov, L.B.; et al. Fungal lysozyme leverages the gut microbiota to curb DSS-induced colitis. Gut Microbes 2021, 13, 1988836. [Google Scholar] [CrossRef]
- Alonso-González, M.; Corral-González, A.; Felix, M.; Romero, A.; Martin-Alfonso, J.E. Developing active poly(vinyl alcohol)-based membranes with encapsulated antimicrobial enzymes via electrospinning for food packaging. Int. J. Biol. Macromol. 2020, 162, 913–921. [Google Scholar] [CrossRef]
- Anastas, P.T.; Rodriguez, A.; de Winter, T.M.; Coish, P.; Zimmerman, J.B. A review of immobilization techniques to improve the stability and bioactivity8 of lysozyme. Green Chem. Lett. Rev. 2021, 14, 302–338. [Google Scholar] [CrossRef]
- Aloui, H.; Khwaldia, K. Natural Antimicrobial Edible Coatings for Microbial Safety and Food Quality Enhancement. Compr. Rev. Food Sci. Food Saf. 2016, 15, 1080–1103. [Google Scholar] [CrossRef]
- Huppertz, T.; Vasiljevic, T.; Zisu, B.; Deeth, H. Novel Processing Technologies; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128121245. [Google Scholar]
- Sousa, A.; Passarinha, L.A.; Rodrigues, L.R.; Teixeira, J.A.; Mendonça, A.; Queiroz, J.A. Separation of different forms of proteose peptone 3 by hydrophobic interaction chromatography with a dual salt system. Biomed. Chromatogr. 2008, 22, 447–449. [Google Scholar] [CrossRef]
- Reza Aghamaali, M.; Borjian-Boroujeni, M.; Nayeri, H.; Beheshti-Maal, K. The Efficacy of Stabilizers on Lactoperoxidase System’s Antibacterial Activity and Stability: A Review. Microbiol. Metab. Biotechnol. 2023, 6, 17–36. [Google Scholar] [CrossRef]
- Pan, M.; Shen, S.; Chen, L.; Dai, B.; Xu, L.; Yun, J.; Yao, K.; Lin, D.Q.; Yao, S.J. Separation of lactoperoxidase from bovine whey milk by cation exchange composite cryogel embedded macroporous cellulose beads. Sep. Purif. Technol. 2015, 147, 132–138. [Google Scholar] [CrossRef]
- Kareb, O.; Aïder, M. Whey and Its Derivatives for Probiotics, Prebiotics, Synbiotics, and Functional Foods: A Critical Review. Probiotics Antimicrob. Proteins 2019, 11, 348–369. [Google Scholar] [CrossRef] [PubMed]
- Murtaza, M.A.; Irfan, S.; Hafiz, I.; Ranjha, M.M.A.N.; Rahaman, A.; Murtaza, M.S.; Ibrahim, S.A.; Siddiqui, S.A. Conventional and Novel Technologies in the Production of Dairy Bioactive Peptides. Front. Nutr. 2022, 9, 1–19. [Google Scholar] [CrossRef]
- Bamdad, F.; Bark, S.; Kwon, C.H.; Suh, J.W.; Sunwoo, H. Anti-inflammatory and antioxidant properties of peptides released from β-lactoglobulin by high hydrostatic pressure-assisted enzymatic hydrolysis. Molecules 2017, 22, 949. [Google Scholar] [CrossRef]
- Ulug, S.K.; Jahandideh, F.; Wu, J. Novel technologies for the production of bioactive peptides. Trends Food Sci. Technol. 2021, 108, 27–39. [Google Scholar] [CrossRef]
- Abadía-García, L.; Castaño-Tostado, E.; Cardador-Martínez, A.; Martín-Del-campo, S.T.; Amaya-Llano, S.L. Production of ACE inhibitory peptides from whey proteins modified by high intensity ultrasound using bromelain. Foods 2021, 10, 2099. [Google Scholar] [CrossRef]
- Lorenzetti, A.; Penha, F.M.; Cunha Petrus, J.C.; Rezzadori, K. Low purity enzymes and ultrasound pretreatment applied to partially hydrolyze whey protein. Food Biosci. 2020, 38, 100784. [Google Scholar] [CrossRef]
- El Mecherfi, K.E.; Curet, S.; Lupi, R.; Larré, C.; Rouaud, O.; Choiset, Y.; Rabesona, H.; Haertlé, T. Combined microwave processing and enzymatic proteolysis of bovine whey proteins: The impact on bovine β-lactoglobulin allergenicity. J. Food Sci. Technol. 2019, 56, 177–186. [Google Scholar] [CrossRef]
- Hafeez, Z.; Cakir-Kiefer, C.; Roux, E.; Perrin, C.; Miclo, L.; Dary-Mourot, A. Strategies of producing bioactive peptides from milk proteins to functionalize fermented milk products. Food Res. Int. 2014, 63, 71–80. [Google Scholar] [CrossRef]
- Daliri, E.B.M.; Lee, B.H.; Park, B.J.; Kim, S.H.; Oh, D.H. Antihypertensive peptides from whey proteins fermented by lactic acid bacteria. Food Sci. Biotechnol. 2018, 27, 1781–1789. [Google Scholar] [CrossRef]
- Raveschot, C.; Cudennec, B.; Coutte, F.; Flahaut, C.; Fremont, M.; Drider, D.; Dhulster, P. Production of bioactive peptides by lactobacillus species: From gene to application. Front. Microbiol. 2018, 9, 2354. [Google Scholar] [CrossRef]
- Sahu, S.; Agrawal, S.; Sahu, A. Regulatory policies on use of food enzymes. In Enzymes Beyond Traditional Applications in Dairy Science and Technology; Academic Press: Cambridge, MA, USA, 2023; pp. 519–535. ISBN 9780323960106. [Google Scholar]
- Manfredini, P.G.; Cavanhi, V.A.F.; Costa, J.A.V.; Colla, L.M. Bioactive peptides and proteases: Characteristics, applications and the simultaneous production in solid-state fermentation. Biocatal. Biotransform. 2021, 39, 360–377. [Google Scholar] [CrossRef]
- Kadyan, S.; Rashmi, H.M.; Pradhan, D.; Kumari, A.; Chaudhari, A.; Deshwal, G.K. Effect of lactic acid bacteria and yeast fermentation on antimicrobial, antioxidative and metabolomic profile of naturally carbonated probiotic whey drink. LWT 2021, 142, 111059. [Google Scholar] [CrossRef]
- Chourasia, R.; Abedin, M.M.; Chiring Phukon, L.; Sahoo, D.; Singh, S.P.; Rai, A.K. Biotechnological approaches for the production of designer cheese with improved functionality. Compr. Rev. Food Sci. Food Saf. 2021, 20, 960–979. [Google Scholar] [CrossRef]
- Biadała, A.; Szablewski, T.; Cegielska-radziejewska, R.; Lasik-kurdy, M. The Evaluation of Activity of Selected Lactic Acid Bacteria for Bioconversion of Milk and Whey from Goat Milk to Release Biomolecules with Antibacterial Activity. Molecules 2023, 28, 3696. [Google Scholar] [CrossRef]
- Solieri, L.; Valentini, M.; Cattivelli, A.; Sola, L.; Helal, A.; Martini, S.; Tagliazucchi, D. Fermentation of whey protein concentrate by Streptococcus thermophilus strains releases peptides with biological activities. Process Biochem. 2022, 121, 590–600. [Google Scholar] [CrossRef]
- Worsztynowicz, P.; Białas, W.; Grajek, W. Integrated approach for obtaining bioactive peptides from whey proteins hydrolysed using a new proteolytic lactic acid bacteria. Food Chem. 2020, 312, 126035. [Google Scholar] [CrossRef]
- Dineshbhai, C.K.; Basaiawmoit, B.; Sakure, A.A.; Maurya, R.; Bishnoi, M.; Kondepudi, K.K.; Patil, G.B.; Mankad, M.; Liu, Z.; Hati, S. Exploring the potential of Lactobacillus and Saccharomyces for biofunctionalities and the release of bioactive peptides from whey protein fermentate. Food Biosci. 2022, 48, 101758. [Google Scholar] [CrossRef]
- Helal, A.; Nasuti, C.; Sola, L.; Sassi, G.; Tagliazucchi, D.; Solieri, L. Impact of Spontaneous Fermentation and Inoculum with Natural Whey Starter on Peptidomic Profile and Biological Activities of Cheese Whey: A Comparative Study. Fermentation 2023, 9, 270. [Google Scholar] [CrossRef]
- Cruz-Casas, D.E.; Aguilar, C.N.; Ascacio-Valdés, J.A.; Rodríguez-Herrera, R.; Chávez-González, M.L.; Flores-Gallegos, A.C. Enzymatic hydrolysis and microbial fermentation: The most favorable biotechnological methods for the release of bioactive peptides. Food Chem. Mol. Sci. 2021, 3, 100047. [Google Scholar] [CrossRef]
- Ahmad, T.; Singh, R.S.; Gupta, G.; Sharma, A.; Kaur, B. Metagenomics in the Search for Industrial Enzymes; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780444641144. [Google Scholar]
- Irazoqui, J.M.; Santiago, G.M.; Mainez, M.E.; Amadio, A.F.; Eberhardt, M.F. Enzymes for production of whey protein hydrolysates and other value-added products. Appl. Microbiol. Biotechnol. 2024, 108, 354. [Google Scholar] [CrossRef] [PubMed]
- Kheroufi, A.; Brassesco, M.E.; Campos, D.A.; Mouzai, A.; Boughellouta, H.; Pintado, M.E. Whey protein-derived peptides: The impact of chicken pepsin hydrolysis upon whey proteins concentrate on their biological and technological properties. Int. Dairy J. 2022, 134, 105442. [Google Scholar] [CrossRef]
- Tondo, A.R.; Caputo, L.; Mangiatordi, G.F.; Monaci, L.; Lentini, G.; Logrieco, A.F.; Montaruli, M.; Nicolotti, O.; Quintieri, L. Structure-Based Identification and Design of Angiotensin Converting Enzyme-Inhibitory Peptides from Whey Proteins. J. Agric. Food Chem. 2020, 68, 541–548. [Google Scholar] [CrossRef]
- Osman, A.; El-Hadary, A.; Korish, A.A.; AlNafea, H.M.; Alhakbany, M.A.; Awad, A.A.; Abdel-Hamid, M. Angiotensin-I converting enzyme inhibition and antioxidant activity of papain-hydrolyzed camel whey protein and its hepato-renal protective effects in thioacetamide-induced toxicity. Foods 2021, 10, 468. [Google Scholar] [CrossRef]
- Du, X.; Jing, H.; Wang, L.; Huang, X.; Wang, X.; Wang, H. Characterization of structure, physicochemical properties, and hypoglycemic activity of goat milk whey protein hydrolysate processed with different proteases. LWT 2022, 159, 113257. [Google Scholar] [CrossRef]
- Quintieri, L.; Carito, A.; Pinto, L.; Calabrese, N.; Baruzzi, F.; Caputo, L. Application of lactoferricin B to control microbial spoilage in cold stored fresh foods. In Multidisciplinary Approach for Studying and Combating Microbial Pathogens; Mendèz-Vilas, A., Ed.; BrownWalker Press: Boca Raton, FL, USA, 2015; pp. 58–62. [Google Scholar]
- Bustamante, S.Z.; González, J.G.; Sforza, S.; Tedeschi, T. Bioactivity and peptide profile of whey protein hydrolysates obtained from Colombian double-cream cheese production and their products after gastrointestinal digestion. LWT 2021, 145, 111334. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, Y.; Yang, T.; Zheng, D.; Liu, X.; Zhang, J.; Zheng, M. Preparation of immobilized Alcalase based on metal affinity for efficient production of bioactive peptides. LWT 2022, 162, 113505. [Google Scholar] [CrossRef]
- da Cruz, C.Z.P.; de Mendonça, R.J.; Guimaraes, L.H.S.; dos Santos Ramos, M.A.; Garrido, S.S.; de Paula, A.V.; Monti, R.; Massolini, G. Assessment of the Bioactive Potential of Cheese Whey Protein Hydrolysates Using Immobilized Alcalase. Food Bioprocess Technol. 2020, 13, 2120–2130. [Google Scholar] [CrossRef]
- Wang, X.; Yu, H.; Xing, R.; Li, P. Characterization, Preparation, and Purification of Marine Bioactive Peptides. BioMed Res. Int. 2017, 2017, 9746720. [Google Scholar] [CrossRef]
- Kristinsson, H.G.; Rasco, B.A. Fish protein hydrolysates: Production, biochemical, and functional properties. Crit. Rev. Food Sci. Nutr. 2000, 40, 43–81. [Google Scholar] [CrossRef]
- Onwulata, C.I.; Huth, P.J. Whey Processing, Functionality and Health Benefits; Onwulata, C.I., Huth, P.J., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2008; ISBN 9780813809038. [Google Scholar]
- Wang, G.; Guo, M. Manufacturing technologies of whey protein products. In Whey Protein Production, Chemistry, Functionality, and Applications; Guo, M., Ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2019; Volume 2, pp. 13–37. ISBN 9781119256052. [Google Scholar]
- Dufour, E.; Dalgalarrondo, M.; Haertlé, T. Limited proteolysis of β-lactoglobulin using thermolysin. Effects of calcium on the outcome of proteolysis. Int. J. Biol. Macromol. 1994, 16, 37–41. [Google Scholar] [CrossRef]
- Kiokias, S.; Gordon, M.H.; Oreopoulou, V. Effects of composition and processing variables on the oxidative stability of protein-based and oil-in-water food emulsions. Crit. Rev. Food Sci. Nutr. 2017, 57, 549–558. [Google Scholar] [CrossRef]
- Leong, T.S.H.; Walter, V.; Gamlath, C.J.; Yang, M.; Martin, G.J.O.; Ashokkumar, M. Functionalised dairy streams: Tailoring protein functionality using sonication and heating. Ultrason. Sonochem. 2018, 48, 499–508. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, X.; Jia, J.; Kuang, C.; Yang, H. Effect of ultrasonic pretreatment on whey protein hydrolysis by alcalase: Thermodynamic parameters, physicochemical properties and bioactivities. Process. Biochem. 2018, 67, 46–54. [Google Scholar] [CrossRef]
- Pang, L.; Liu, M.; Chen, C.; Huang, Z.; Liu, S.; Man, C.; Jiang, Y.; Zhang, W.; Yang, X. Effects of ultrasound pretreatment on the structure, IgE binding capacity, functional properties and bioactivity of whey protein hydrolysates via multispectroscopy and peptidomics revealed. Ultrason. Sonochem. 2024, 110, 107025. [Google Scholar] [CrossRef] [PubMed]
- Monaci, L.; Lamonaca, A.; Luparelli, A.; Pilolli, R.; De Angelis, E. (Bio)technological Approaches for Reducing Allergenicity of Food Ingredients. In Sustainable Food Science: A Comprehensive Approach; Elsevier: Amsterdam, The Netherlands, 2023; Volume 1, pp. 86–102. ISBN 9780128239605. [Google Scholar]
- Monaci, L.; Pilolli, R.; Quintieri, L.; Caputo, L.; Luparelli, A.; De Angelis, E. Casein: Allergenicity and molecular properties. In Casein-Structural Properties, Uses, Health Benefits and Nutraceutical Applications; Elsevier: Amsterdam, The Netherlands, 2024; pp. 363–377. ISBN 9780443158360. [Google Scholar]
- Patist, A.; Bates, D. Ultrasound Technologies for Food and Bioprocessing. In Ultrasound Technologies for Food and Bioprocessing—Food Engineering Series; Feng, H., Barbosa-Canovas, G., Weiss, J., Eds.; Springer: New York, NY, 2011; Volume 53, pp. 599–616. ISBN 978-1-4419-7471-6. [Google Scholar]
- Bhargava, N.; Mor, R.S.; Kumar, K.; Sharanagat, V.S. Advances in application of ultrasound in food processing: A review. Ultrason. Sonochem. 2021, 70, 105293. [Google Scholar] [CrossRef] [PubMed]
- Zaky, A.A.; Simal-Gandara, J.; Eun, J.B.; Shim, J.H.; Abd El-Aty, A.M. Bioactivities, Applications, Safety, and Health Benefits of Bioactive Peptides From Food and By-Products: A Review. Front. Nutr. 2022, 8, 815640. [Google Scholar] [CrossRef]
- Taha, A.; Casanova, F.; Šimonis, P.; Stankevič, V.; Gomaa, M.A.E.; Stirkė, A. Pulsed Electric Field: Fundamentals and Effects on the Structural and Techno-Functional Properties of Dairy and Plant Proteins. Foods 2022, 11, 1556. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Wang, H.; Hu, Y.; Tu, Z. Insight into the effects of pulsed electric field on the structure, aggregation characteristics and functional properties of whey proteins. Food Hydrocoll. 2024, 154, 110111. [Google Scholar] [CrossRef]
- Xiang, B.Y.; Ngadi, M.O.; Ochoa-Martinez, L.A.; Simpson, M.V. Pulsed Electric Field-Induced Structural Modification of Whey Protein Isolate. Food Bioprocess Technol. 2008, 4, 1341–1348. [Google Scholar] [CrossRef]
- Ramaswamy, R.; Bala Krishnan, S. Pulsed Electric Field Treatment in Extracting Proteins from Legumes: A Review. Processes 2024, 12, 2667. [Google Scholar] [CrossRef]
- Naderi, N.; House, J.D.; Pouliot, Y.; Doyen, A. Effects of High Hydrostatic Pressure Processing on Hen Egg Compounds and Egg Products. Compr. Rev. Food Sci. Food Saf. 2017, 16, 707–720. [Google Scholar] [CrossRef]
- Marciniak, A.; Suwal, S.; Naderi, N.; Pouliot, Y.; Doyen, A. Enhancing enzymatic hydrolysis of food proteins and production of bioactive peptides using high hydrostatic pressure technology. Trends Food Sci. Technol. 2018, 80, 187–198. [Google Scholar] [CrossRef]
- Yamamoto, K. Food processing by high hydrostatic pressure. Biosci. Biotechnol. Biochem. 2017, 81, 672–679. [Google Scholar] [CrossRef]
- Espinoza, A.D.; Morawicki, R.O.; Hager, T. Hydrolysis of whey protein isolate using subcritical water. J. Food Sci. 2012, 77, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Costa, N.R.; Cappato, L.P.; Pereira, M.V.S.; Pires, R.P.S.; Moraes, J.; Esmerino, E.A.; Silva, R.; Neto, R.P.C.; Tavares, M.I.B.; Freitas, M.Q.; et al. Ohmic Heating: A potential technology for sweet whey processing. Food Res. Int. 2018, 106, 771–779. [Google Scholar] [CrossRef]
- Alizadeh, O.; Aliakbarlu, J. Effects of ultrasound and ohmic heating pretreatments on hydrolysis, antioxidant and antibacterial activities of whey protein concentrate and its fractions. LWT 2020, 131, 109913. [Google Scholar] [CrossRef]
- Palladino, C.; Breiteneder, H. Peanut allergens. Mol. Immunol. 2018, 100, 58–70. [Google Scholar] [CrossRef]
- Kashung, P.; Karuthapandian, D. Milk-derived bioactive peptides. Food Prod. Process. Nutr. 2025, 7, 6. [Google Scholar] [CrossRef]
- Parastouei, K.; Jabbari, M.; Javanmardi, F.; Barati, M.; Mahmoudi, Y. Estimation of bioactive peptide content of milk from different species using an in silico method. Amino Acids 2023, 55, 1261–1278. [Google Scholar] [CrossRef]
- Nongonierma, A.B.; FitzGerald, R.J. Structure activity relationship modelling of milk protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity. Peptides 2016, 79, 1–7. [Google Scholar] [CrossRef]
- Minkiewicz, P.; Iwaniak, A.; Darewicz, M. BIOPEP-UWM Database of Bioactive Peptides: Current Opportunities. Int. J. Mol. Sci. Artic. 2019, 20, 5978. [Google Scholar] [CrossRef]
- Kumar, R.; Chaudhary, K.; Sharma, M.; Nagpal, G.; Chauhan, S.; Singh, S.; Gautam, A.; Raghava, G.P.S. AHTPDB: A comprehensive platform for analysis and presentation of antihypertensive peptides. Food Chem. 2015, 43, 956–962. [Google Scholar] [CrossRef]
- Nielsen, S.D.; Beverly, R.L.; Qu, Y.; Dallas, D.C. Milk bioactive peptide database: A comprehensive database of milk protein-derived bioactive peptides and novel visualization. Food Chem. 2017, 232, 673–682. [Google Scholar] [CrossRef]
- Zhang, Y.; Bao, X.; Zhu, Y.; Dai, Z.; Shen, Q.; Xue, Y. Advances in machine learning screening of food bioactive compounds. Trends Food Sci. Technol. 2024, 150, 104578. [Google Scholar] [CrossRef]
- Balech, B.; Brennan, L.; Carrillo de Santa Pau, E.; Cavalieri, D.; Coort, S.; D’Elia, D.; Dragsted, L.O.; Eftimov, T.; Evelo, C.T.; Ferk, P.; et al. The future of food and nutrition in ELIXIR. F1000Research 2022, 11, 978. [Google Scholar] [CrossRef]
- Tulipano, G.; Faggi, L.; Nardone, A.; Cocchi, D.; Maria, A. Characterisation of the potential of b -lactoglobulin and a -lactalbumin as sources of bioactive peptides affecting incretin function: In silico and in vitro comparative studies. Int. Dairy J. 2015, 48, 66–72. [Google Scholar] [CrossRef]
- Norris, R.; Poyarkov, A.; Keeffe, M.B.O.; Fitzgerald, R.J. Characterisation of the hydrolytic specificity of Aspergillus niger derived prolyl endoproteinase on bovine b -casein and determination of ACE inhibitory activity. Food Chem. 2014, 156, 29–36. [Google Scholar] [CrossRef]
- Nongonierma, A.B.; Fitzgerald, R.J. Dipeptidyl peptidase IV inhibitory and antioxidative properties of milk protein-derived dipeptides and hydrolysates. Peptides 2013, 39, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Elisha, C.; Bhagwat, P.; Pillai, S. In silico and in vitro analysis of dipeptidyl peptidase-IV and angiotensin-converting enzyme inhibitory peptides derived from milk lactoferrin. Int. Dairy J. 2025, 160, 106092. [Google Scholar] [CrossRef]
- Jing, P.; Qian, B.; He, Y.; Zhao, X.; Zhang, J.; Zhao, D.; Lv, Y.; Deng, Y. Screening milk-derived antihypertensive peptides using quantitative structure activity relationship (QSAR) modelling and in vitro / in vivo studies on their bioactivity. Int. Dairy J. 2014, 35, 95–101. [Google Scholar] [CrossRef]
- He, R.; Ma, H.; Zhao, W.; Qu, W.; Zhao, J.; Luo, L.; Zhu, W. Modeling the QSAR of ACE-Inhibitory Peptides with ANN and Its Applied Illustration. Int. J. Pept. 2012, 2012, 620609. [Google Scholar] [CrossRef]
- Dubchak, I.; Muchnikt, I.; Holbrook, S.R.; Kim, S. Prediction of protein folding class using global description of amino acid sequence. Proc. Natl. Acad. Sci. USA 1995, 92, 8700–8704. [Google Scholar] [CrossRef]
- Basith, S.; Manavalan, B.; Hwan Shin, T.; Lee, G. Machine Intelligence in Peptide Therapeutics: A next-Generation Tool for Rapid Disease Screening. Med. Res. Rev. 2020, 40, 1276–1314. [Google Scholar] [CrossRef] [PubMed]
- Wan, F.; Wong, F.; Collins, J.J.; de la Fuente-Nunez, C. Machine Learning for Antimicrobial Peptide Identification and Design. Nat. Rev. Bioeng. 2024, 2, 392–407. [Google Scholar] [CrossRef]
- Wang, Y.T.; Russo, D.P.; Liu, C.; Zhou, Q.; Zhu, H.; Zhang, Y.H. Predictive Modeling of Angiotensin I-Converting Enzyme Inhibitory Peptides Using Various Machine Learning Approaches. J. Agric. Food Chem. 2020, 28, 12132–12140. [Google Scholar] [CrossRef] [PubMed]
- Pripp, A.H.; Isaksson, T.; Stepaniak, L.; Sørhaug, T. Quantitative structure-activity relationship modelling of ACE-inhibitory peptides derived from milk proteins. Eur. Food Res. Technol. 2004, 219, 579–583. [Google Scholar] [CrossRef]
- Vidal-Limon, A.; Aguilar-Toalá, J.E.; Liceaga, A.M. Integration of Molecular Docking Analysis and Molecular Dynamics Simulations for Studying Food Proteins and Bioactive Peptides. J. Agric. Food Chem. 2022, 70, 934–943. [Google Scholar] [CrossRef]
- Pripp, A.H. Docking and virtual screening of ACE inhibitory dipeptides. Eur. Food Res. Technol. 2007, 225, 589–592. [Google Scholar] [CrossRef]
- Norris, R.; Casey, F.; Fitzgerald, R.J.; Shields, D.; Mooney, C. Predictive modelling of angiotensin converting enzyme inhibitory dipeptides. Food Chem. 2012, 133, 1349–1354. [Google Scholar] [CrossRef]
- Nongonierma, A.B.; Mooney, C.; Shields, D.C.; Fitzgerald, R.J. Inhibition of dipeptidyl peptidase IV and xanthine oxidase by amino acids and dipeptides. Food Chem. 2013, 141, 644–653. [Google Scholar] [CrossRef]
- Baba, W.N.; Baby, B.; Mudgil, P.; Gan, C.Y.; Vijayan, R.; Maqsood, S. Pepsin generated camel whey protein hydrolysates with potential antihypertensive properties: Identification and molecular docking of antihypertensive peptides. LWT 2021, 143, 111135. [Google Scholar] [CrossRef]
- Gambacorta, N.; Caputo, L.; Quintieri, L.; Monaci, L.; Ciriaco, F.; Nicolotti, O. Rational Discovery of Antiviral Whey Protein-Derived Small Peptides Targeting the SARS-CoV-2 Main Protease. Biomedicines 2022, 10, 1067. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Li, X.; Qi, X.; Ma, Y.; Chan, E.C.Y. In silico identification of novel ACE and DPP-IV inhibitory peptides derived from buffalo milk proteins and evaluation of their inhibitory mechanisms. Amino Acids 2023, 55, 161–171. [Google Scholar] [CrossRef]
- Hatanaka, T.; Inoue, Y.; Arima, J.; Kumagai, Y.; Usuki, H.; Kawakami, K.; Kimura, M.; Mukaihara, T. Production of dipeptidyl peptidase IV inhibitory peptides from defatted rice bran. Food Chem. 2012, 134, 797–802. [Google Scholar] [CrossRef]
- Liu, X.; Qin, X.; Wang, Y.; Zhong, J. Physicochemical properties and formation mechanism of whey protein isolate-sodium alginate complexes: Experimental and computational study. Food Hydrocoll. 2022, 131, 107786. [Google Scholar] [CrossRef]
- Isaac Sharon, K.; Combe, M.; Potter, G.; Sokolenko, S. Machine learning tools for peptide bioactivity evaluation—Implications for cell culture media optimization and the broader cultivated meat industry. Curr. Res. Food Sci. 2024, 9, 100842. [Google Scholar] [CrossRef] [PubMed]
- Morales García, J.; Udenigwe, C.C.; Duitama, J.; Barrios, A.F.G. Peptidomic analysis of whey protein hydrolysates and prediction of their antioxidant peptides. Food Sci. Hum. Wellness 2022, 11, 349–355. [Google Scholar] [CrossRef]
- Jox, D.; Borsum, C.; Hummel, D.; Hinrichs, J.; Krupitzer, C. Enhancing dairy processing with machine learning and domain knowledge: A combined analysis of offline and time series data. J. Food Eng. 2025, 391, 112423. [Google Scholar] [CrossRef]
- Sanchez-Reinoso, Z.; Bazinet, M.; Leblanc, B.; Cl, J.; Germain, P.; Bazinet, L. Application of machine learning tools to study the synergistic impact of physicochemical properties of peptides and filtration membranes on peptide migration during electrodialysis with filtration membranes. Sep. Purif. Technol. 2025, 360, 130877. [Google Scholar] [CrossRef]
- Jia, W.; Peng, J.; Zhang, Y.; Zhu, J.; Qiang, X.; Zhang, R.; Shi, L. Exploring novel ANGICon-EIPs through ameliorated peptidomics techniques: Can deep learning strategies as a core breakthrough in peptide structure and function prediction? Food Res. Int. 2023, 174, 113640. [Google Scholar] [CrossRef]
- Taherzadeh, G.; Zhou, Y.; Liew, A.W.-C.; Yang, Y. Structure-based prediction of protein– peptide binding regions using Random Forest. Bioinformatics 2018, 34, 477–484. [Google Scholar] [CrossRef]
- Johansson-Åkhe, I.; Mirabello, C.; Wallner, B. Predicting protein-peptide interaction sites using distant protein complexes as structural templates. Sci. Rep. 2019, 9, 4267. [Google Scholar] [CrossRef]
- Trisciuzzi, D.; Siragusa, L.; Baroni, M.; Cruciani, G.; Nicolotti, O. An Integrated Machine Learning Model to Spot Peptide Binding Pockets in 3D Protein Screening. J. Chem. Inf. Model. 2022, 62, 6812–6824. [Google Scholar] [CrossRef]
- Trisciuzzi, D.; Siragusa, L.; Baroni, M.; Autiero, I.; Nicolotti, O.; Cruciani, G. Getting Insights into Structural and Energetic Properties of Reciprocal Peptide-Protein Interactions. J. Chem. Inf. Model. 2022, 62, 1113–1125. [Google Scholar] [CrossRef]
- Petre, M.L.; Nefeli, A.; Pertesi, K.; Boulioglou, O.E.; Sarantidi, E.; Korovesi, A.G.; Kozei, A.; Katsafadou, A.I.; Tsangaris, G.T.; Trichopoulou, A.; et al. Bioactive Peptides in Greek Goat Colostrum: Relevance to Human Metabolism. Foods 2024, 13, 3949. [Google Scholar] [CrossRef]
- FitzGerald, R.J.; Cermeño, M.; Khalesi, M.; Kleekayai, T.; Amigo-Benavent, M. Application of in silico approaches for the generation of milk protein-derived bioactive peptides. J. Funct. Foods 2020, 64, 103636. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef]
- Contreras, M.d.M.; Hernández-Ledesma, B.; Amigo, L.; Martín-Álvarez, P.J.; Recio, I. Production of antioxidant hydrolyzates from a whey protein concentrate with thermolysin: Optimization by response surface methodology. LWT—Food Sci. Technol. 2011, 44, 9–15. [Google Scholar] [CrossRef]
- Nongonierma, A.B.; FitzGerald, R.J. Enhancing bioactive peptide release and identification using targeted enzymatic hydrolysis of milk proteins. Anal. Bioanal. Chem. 2018, 410, 3407–3423. [Google Scholar] [CrossRef]
- Kheto, A.; Adhikary, U.; Dhua, S.; Sarkar, A.; Kumar, Y.; Vashishth, R.; Shrestha, B.B.; Saxena, D.C. A review on advancements in emerging processing of whey protein: Enhancing functional and nutritional properties for functional food applications. Food Saf. Health 2025, 3, 23–45. [Google Scholar] [CrossRef]
- Dullius, A.; Goettert, M.I.; de Souza, C.F.V. Whey protein hydrolysates as a source of bioactive peptides for functional foods—Biotechnological facilitation of industrial scale-up. J. Funct. Foods 2018, 42, 58–74. [Google Scholar] [CrossRef]
- US FDA Food and Drug Administration; Center for Food Safety & Applied Nutrition (CFSAN). GRN 000037 Whey protein isolate and dairy product solids. In GRAS Notices; American Dairy Products Institute: Chicago, IL, USA; Office of Premarket Approval: Silver Spring, MD, USA, 2000. [Google Scholar]
- US FDA Food and Drug Administration; Center for Food Safety & Applied Nutrition (CFSAN). GRN 000196 Bovine milk basic protein fraction. In GRAS Notices; Snow Brand Milk Products Co., Ltd. and IAS Co., Ltd.: Tokyo, Japan; Office of Food Additive Safety: Silver Spring, MD, USA, 2006. [Google Scholar]
- US FDA Food and Drug Administration; Center for Food Safety & Applied Nutrition (CFSAN). GRN 000067 Milk-derived lactoferrin. In GRAS Notices; Farmland National Packaging Company, L.P.: Liberal, KS, USA; Office of Food Additive Safety: Silver Spring, MD, USA, 2000. [Google Scholar]
- US FDA Food and Drug Administration; Center for Food Safety & Applied Nutrition (CFSAN). GRN 000077 Milk-derived lactoferrin. In GRAS Notices; DMV International: Fraser, NY, USA; Office of Food Additive Safety: Silver Spring, MD, USA, 2001. [Google Scholar]
- US FDA Food and Drug Administration; Center for Food Safety & Applied Nutrition (CFSAN). GRN 000130 Bovine milk-derived lactoferrin. In GRAS Notices; aLF Ventures LLC: Salt Lake City, UT, USA; Office of Food Additive Safety: Silver Spring, MD, USA, 2003. [Google Scholar]
- US FDA Food and Drug Administration; Center for Food Safety & Applied Nutrition (CFSAN). GRN 000464 Cow’s milk-derived lactoferrin. In GRAS Notices; Morinaga Milk Industry Co., Ltd.: Tokyo, Japan; Office of Food Additive Safety: Silver Spring, MD, USA, 2014. Available online: https://www.hfpappexternal.fda.gov/scripts/fdcc/index.cfm?set=grasnotices&id=464 (accessed on 10 March 2025).
- US FDA Food and Drug Administration; Center for Food Safety & Applied Nutrition (CFSAN). GRN 000465 Cow’s milk-derived lactoferrin. In GRAS Notices; Morinaga Milk Industry Co., Ltd.: Tokyo, Japan; Office of Food Additive Safety: Silver Spring, MD, USA, 2014. Available online: https://www.hfpappexternal.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=465&sort=GRN_No&order=DESC&startrow=1&type=basic&search=465 (accessed on 10 March 2025).
- US FDA Food and Drug Administration; Center for Food Safety & Applied Nutrition (CFSAN). GRN 000669 Bovine Milk-derived Lactoferrin. In GRAS Notices; Synlait Milk Ltd.: Rakaia, New Zealand; Office of Food Additive Safety: Silver Spring, MD, USA, 2017. [Google Scholar]
- MHLW. List of Existing Food Additives—Complied and published by the Ministry of Health and Welfare on April 16, 1996; Japan Food Chemical Research Foundation (JFCRF): Tokyo, Japan, 2014; Available online: https://www.ffcr.or.jp/en/index.html (accessed on 15 March 2025).
- FSANZ. Lactoperoxidase System (Application A404—Final Assessment Report); Food Standards Australia New Zealand (FSANZ): Canberra, Australia, 2002. Available online: https://www.foodstandards.gov.au/food-standards-code/applications/applicationa404thelactoperoxidasesystem/applicationa404lacto1862 (accessed on 15 March 2025).
- Turck, D.; Bresson, J.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Safety of Whey basic protein isolates as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2018, 16, e05360. [Google Scholar] [CrossRef]
- Kruger, C.L.; Marano, K.M.; Morita, Y.; Takada, Y.; Kawakami, H.; Kobayashi, T.; Sunaga, M.; Furukawa, M.; Kawamura, K. Safety evaluation of a milk basic protein fraction. Food Chem. Toxicol. 2007, 45, 1301–1307. [Google Scholar] [CrossRef]
- Forster, R.; Bourtourault, M.; Chung, Y.J.; Silvano, J.; Sire, G.; Spezia, F.; Puel, C.; Descotes, J.; Mikogami, T. Safety evaluation of a whey protein fraction containing a concentrated amount of naturally occurring TGF-β2. Regul. Toxicol. Pharmacol. 2014, 69, 398–407. [Google Scholar] [CrossRef]
- Dyer, A.R.; Burdock, G.A.; Carabin, I.G.; Haas, M.C.; Boyce, J.; Alsaker, R.; Read, L.C. In vitro and in vivo safety studies of a proprietary whey extract. Food Chem. Toxicol. 2008, 46, 1659–1665. [Google Scholar] [CrossRef]
- Turck, D.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.; Kearney, J.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; Pelaez, C.; et al. Safety of whey basic protein isolate for extended uses in foods for special medical purposes and food supplements for infants pursuant to Regulation (EU) 2015/2283. EFSA J. 2019, 17, e05659. [Google Scholar] [CrossRef]
- Castenmiller, J.; Hirsch-Ernst, K.I.; Kearney, J.; Knutsen, H.K.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; Pelaez, C.; Pentieva, K.; et al. Efficacy of an infant formula manufactured from a specific protein hydrolysate derived from whey protein isolate and concentrate produced by Société des Produits Nestlé S.A. in reducing the risk of developing atopic dermatitis. EFSA J. 2021, 19, e06603. [Google Scholar] [CrossRef] [PubMed]
- Bohn, T.; Cámara, M.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.; Jos, A.; Maciuk, A.; Mangelsdorf, I.; McNulty, B.; Naska, A.; et al. Nutritional safety and suitability of a specific protein hydrolysate manufactured by Fonterra Co-operative Group Ltd. derived from a whey protein concentrate and used in infant formula and follow-on formula. EFSA J. 2025, 23, e9160. [Google Scholar] [CrossRef] [PubMed]
- Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.; Kearney, J.; Knutsen, H.K.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; Pelaez, C.; et al. Nutritional safety and suitability of a specific protein hydrolysate derived from whey protein concentrate and used in an infant and follow-on formula manufactured from hydrolysed protein by Danone Trading ELN B.V. EFSA J. 2020, 18, e06304. [Google Scholar] [CrossRef] [PubMed]
- Bohn, T.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.I.; Knutsen, H.K.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; Pentieva, K.; et al. Nutritional safety and suitability of a specific protein hydrolysate derived from a whey protein concentrate and used in an infant formula and follow-on formula manufactured from hydrolysed protein by FrieslandCampina Nederland B.V. EFSA J. 2023, 21, e08063. [Google Scholar] [CrossRef]
- Bohn, T.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.I.; Katrine Knutsen, H.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; Pelaez, C.; et al. Nutritional safety and suitability of a specific protein hydrolysate derived from whey protein concentrate and used in an infant and follow-on formula manufactured from hydrolysed protein by HIPP-Werk Georg Hipp OHG (dossier submitted by meyer.science Gmb. EFSA J. 2022, 20, e07141. [Google Scholar] [CrossRef]
- European Commission. Commission Directive 2006/141/EC of 22 December 2006 on Infant Formulae and Follow-on Formulae and Amending Directive 1999/21/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32006L0141&qid=1748261499340 (accessed on 19 March 2025).
- Commission Regulation (EC) No 1609/2006 of 27 October 2006 Authorising the Placing on the Market of Infant Formulae Based on Hydrolysates of Whey Protein Derived From Cows’ Milk Protein for a Two-Year Period. Available online: https://eur-lex.europa.eu/eli/reg/2006/1609/oj/eng (accessed on 19 March 2025).
- Li, J.; Zhu, F. Whey protein hydrolysates and infant formulas: Effects on physicochemical and biological properties. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13337. [Google Scholar] [CrossRef]
- CXS 289-1995; Codex Alimentarius, International Food Standards: Standard for Whey Powders Formerly CODEX STAN A-15-1995, Adopted in 1995, Revised in 2003. Amended in 2006. Codex Alimentarius: Rome, Italy, 2022.
Protein | Concentration (g/L) | Molecular Weight (kDa) | Recovery Process | Biological Functions | References |
---|---|---|---|---|---|
β-lactoglobulin (β-LG) | 3.2–3.6 | 18.277 | Ultrafiltration and ion exchange (diethylaminoethyl cellulose) | Transporter (Retinol, Palmitate, fatty acids, Vitamin D). Regulator in the mammary gland to carry out phosphorus metabolism. Synthesis of glutathione stimulation | [61,62,66] |
α-lactoalbumin (α-LA) | 1.2–1.6 | 14.175 | Ultrafiltration, precipitation, and ion exchange (sepharoseiminodiacetate-Cu2+) | Prevention of cancer; lactose synthesis. Treatment of chronic stress-induced disease | [66,70,71,72,73,74,75] |
Albumin of the bovine serum (BSA) | 0.4–0.5 | 66.267 | Ultrafiltration, precipitation, and ion exchange (MAG polyethyleneimine anion exchange) | Transport of low-molecular-weight fatty acids; prevention of cancer; immunomodulation: disease protection through passive immunity | [78,79] |
Immunoglobulins (IGs) | 0.7–1.0 | 25 (light chain) 50–70 (heavy chain) | Ion exchange (sepharose 6B-organic ligands Cu2+) | Antimicrobial and antiviral activity. Lower cholesterol and blood pressure | [85] |
Glycomacropeptide (GMP) | 1.2–1.3 | 6700 | Ultrafiltration with some modifications (membrane 5 kDa) Ultrafiltration combined with ion-exchange chromatography | Effect over phenylketonuria illness Antibacterial, prebiotic, remineralizing activity; Modulator of digestion and metabolism; anti-tumoral; immuno-modulation | [87] |
Lactoferrin (LF) | 0.1–0.2 | 80 | Hydrophobic interaction. Affinity separation (superparamagnetic polyglycidyl). Methacrylate particles coupled with heparin. Ion exchange | Biological effect as anti-inflammatory, antifungal, antiviral, antibacterial, antibiofilm, and anticancer | [12,13,66,101] |
Proteose–peptone (Pp) | 0.6–1.8 | 28 | Hydrophobic interaction and chromatography with a dual salt system | Action as bifidogenic factor | [118,130,131] |
Lactoperoxidase (LP) | Traces | 70 | Ion exchange (sepharose 6B-reactive red 4 dye and cryogel embedded with cellulose beads) | Association with 17 antimicrobial activities | [122,132,133] |
Methodology | Advantages | Disadvantages | Industrial Scalability | Estimated Cost | References |
---|---|---|---|---|---|
Microbial fermentation | Efficient and economical method; utilizes natural microbial enzymes | Low yield; lacks specificness of peptide generation; potential consumption of peptides by microbes; batch variability; time-consuming | Moderate to high—used in functional dairy products and supplements | Medium | [141,142,143,144,145,146,147,148,149,150,151,152] |
Enzymatic hydrolysis | Reliable; efficient; high specificity and selectivity; mantain nutritional value | Expensive due the high cost of enzymes and the additional costs for processes optimization | High—widely used in food, pharma, nutraceuticals | Medium to high | [153,154,155,156,157,158,159,160,161,162,163] |
Chemical hydrolysis: Acid hydrolysis | Complete protein breakdown; simple reagents (such as HCl) | Destroys some amino acids (such as tryptophan); harsh conditions | Low to moderate—not ideal for food applications | Low to medium | [164,165,166,167] |
Chemical hydrolysis: Alkaline hydrolysis | Effective at high protein solubilization | Causes racemization and lysin or alanine formation; Alters nutritional value | Low—rarely used in food due to safety concerns | Low | |
Heat treatment | Simple and cost-effective; Promotes protein unfolding and digestibility; may enhance BAPs release when combined with enzymes | Non-specific; may degrade sensitive amino acids; can denature proteins to expose peptide bonds to hydrolysis | High—widely used in food industry | Low to medium | [168,169] |
Ultrasound treatment | Faster start-up; extraction selectivity; high process control. Eco-friendly (reduced temperature and time, and faster mass and energy transfer). Preserves nutritional quality | Alone cannot break peptide bonds; mainly employed as pretreatment; potential alteration of protein structure. Requires optimization for different substrates | Moderate—used in liquid processing | Medium | [42,135,138,170,171,172,173,174,175,176] |
Microwave treatment | Fast heating and energy-efficient. Enhances enzymatic hydrolysis efficiency. Economic sustainability. Ease of integration, and manageable processing conditions | Equipment costs. Used as pretreatment can favor changes in protease cleavage sites | Moderate—requires adapted equipment | Medium | [135,140,177] |
Pulsed electric field technology | Non-thermal; enhances cell permeability; short treatment times | Limited data on peptide extraction; high initial investment | Low to moderate—emerging technology | High | [178,179,180,181] |
High pressure processing | Omogeneous and constant pressurization at ambient temperatures. Moderate energy cost. Reduced processing times. Non-thermal; preserves functional properties. Can alter protein structures to enhance hydrolysis | High equipment costs. Limited penetration for dense systems | High—used in premium and functional food sectors | Medium | [130,135,137,166,182,183,184] |
Subcritical water | Green solvent. Can hydrolyze proteins without chemicals | Requires high-pressure equipment; potential degradation of heat-sensitive peptides | Low—mostly at research/pilot scale | High | [137,185] |
Ohming heating | Uniform and rapid heating. Energy-efficient | Limited research on peptide extraction. Potential equipment corrosion | Moderate—needs scale-up optimization | Medium | [186,187] |
In Silico Technique | Purpose/Application | Advantages | Limitations | Estimated Cost | Efficiency/Notes |
---|---|---|---|---|---|
Database Mining (e.g., BIOPEP, MBPDB) | Identification of known BAPs from WPs | Rapid access to curated sequence peptide data | Limited to known peptides; no novel activity prediction | Free/Low | High for initial screening and hypothesis of peptide design |
QSAR Models | Predict bioactivity from peptide structure | High throughput; interpretable; cost-effective | Requires quality training data; limited generalizability | Medium | Effective when trained on relevant peptide data |
Molecular Docking | Predict binding affinity to targets (e.g., ACE, DPP-IV) | Reveals peptide-target interactions; supports rational design | Results can be static and may not reflect in vivo dynamics | Medium | Useful for mechanistic insight and virtual screening prioritization studies |
ML/AI Algorithms | Predict peptide functions (e.g., antioxidant, ACE inhibition) | Handles large datasets; uncovers complex patterns | Requires robust datasets; may lack interpretability | Varies (often free) | High accuracy with sufficient training data; adaptable to different applications |
EDFM + ML Models | Predict peptide behavior during membrane-based separation | Combines chemical and process engineering data | Needs experimental calibration and complex feature sets | Medium/High | High accuracy in recovery/purification modeling with proper data integration |
Peptide Structure Prediction tools | Predict 2D/3D peptide conformations | Provides structural insight; aids docking and SAR studies | Computationally intensive; accuracy varies by method | Free/Low | High predictive power |
DOE + RSM | Optimize peptide release during hydrolysis/fermentation | Reduces experimental runs; statistically rigorous | May oversimplify biological systems | Medium | High efficiency for experimental design; widely used in food science |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luparelli, A.; Trisciuzzi, D.; Schirinzi, W.M.; Caputo, L.; Smiriglia, L.; Quintieri, L.; Nicolotti, O.; Monaci, L. Whey Proteins and Bioactive Peptides: Advances in Production, Selection and Bioactivity Profiling. Biomedicines 2025, 13, 1311. https://doi.org/10.3390/biomedicines13061311
Luparelli A, Trisciuzzi D, Schirinzi WM, Caputo L, Smiriglia L, Quintieri L, Nicolotti O, Monaci L. Whey Proteins and Bioactive Peptides: Advances in Production, Selection and Bioactivity Profiling. Biomedicines. 2025; 13(6):1311. https://doi.org/10.3390/biomedicines13061311
Chicago/Turabian StyleLuparelli, Anna, Daniela Trisciuzzi, William Matteo Schirinzi, Leonardo Caputo, Leonardo Smiriglia, Laura Quintieri, Orazio Nicolotti, and Linda Monaci. 2025. "Whey Proteins and Bioactive Peptides: Advances in Production, Selection and Bioactivity Profiling" Biomedicines 13, no. 6: 1311. https://doi.org/10.3390/biomedicines13061311
APA StyleLuparelli, A., Trisciuzzi, D., Schirinzi, W. M., Caputo, L., Smiriglia, L., Quintieri, L., Nicolotti, O., & Monaci, L. (2025). Whey Proteins and Bioactive Peptides: Advances in Production, Selection and Bioactivity Profiling. Biomedicines, 13(6), 1311. https://doi.org/10.3390/biomedicines13061311