Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (842)

Search Parameters:
Keywords = carbon-neutral energy systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1483 KB  
Article
Hydrogen Fuel in Aviation: Quantifying Risks for a Sustainable Future
by Ozan Öztürk and Melih Yıldız
Fuels 2026, 7(1), 5; https://doi.org/10.3390/fuels7010005 - 19 Jan 2026
Abstract
The aviation industry, responsible for approximately 2.5–3.5% of global greenhouse gas emissions, faces increasing pressure to adopt sustainable energy solutions. Hydrogen, with its high gravimetric energy density and zero carbon emissions during use, has emerged as a promising alternative fuel to support aviation [...] Read more.
The aviation industry, responsible for approximately 2.5–3.5% of global greenhouse gas emissions, faces increasing pressure to adopt sustainable energy solutions. Hydrogen, with its high gravimetric energy density and zero carbon emissions during use, has emerged as a promising alternative fuel to support aviation decarbonization. However, its large-scale implementation remains hindered by cryogenic storage requirements, safety risks, infrastructure adaptation, and economic constraints. This study aims to identify and evaluate the primary technical and operational risks associated with hydrogen utilization in aviation through a comprehensive Monte Carlo Simulation-based risk assessment. The analysis specifically focuses on four key domains—hydrogen leakage, cryogenic storage, explosion hazards, and infrastructure challenges—while excluding economic and lifecycle aspects to maintain a technical scope only. A 10,000-iteration simulation was conducted to quantify the probability and impact of each risk factor. Results indicate that hydrogen leakage and explosion hazards represent the most critical risks, with mean risk scores exceeding 20 on a 25-point scale, whereas investment costs and technical expertise were ranked as comparatively low-level risks. Based on these findings, strategic mitigation measures—including real-time leak detection systems, composite cryotank technologies, and standardized safety protocols—are proposed to enhance system reliability and support the safe integration of hydrogen-powered aviation. This study contributes to a data-driven understanding of hydrogen-related risks and provides a technological roadmap for advancing carbon-neutral air transport. Full article
(This article belongs to the Special Issue Sustainable Jet Fuels from Bio-Based Resources)
Show Figures

Figure 1

4 pages, 148 KB  
Editorial
Toward Achieving a Carbon-Neutral Society: Beneficiation and Extractive Metallurgy for Producing Critical Metals from Ores/Wastes
by Ilhwan Park and Sanghee Jeon
Metals 2026, 16(1), 113; https://doi.org/10.3390/met16010113 - 19 Jan 2026
Abstract
The global commitment to achieving a carbon-neutral society has accelerated the transition toward renewable energy, electric mobility, and advanced electronic systems [...] Full article
20 pages, 2489 KB  
Article
Modelling, Optimisation, and Construction of a High-Temperature Superconducting Maglev Demonstrator
by Chenxuan Zhang, Qian Dong, Hongye Zhang and Markus Mueller
Machines 2026, 14(1), 108; https://doi.org/10.3390/machines14010108 - 16 Jan 2026
Viewed by 93
Abstract
To achieve global carbon-neutrality goals, magnetic levitation (maglev) technologies offer a promising pathway toward sustainable, energy-efficient transportation systems. In this study, a comprehensive methodology was developed to analyse and optimise the levitation performance of high-temperature superconducting (HTS) maglev systems. Several permanent magnet guideway [...] Read more.
To achieve global carbon-neutrality goals, magnetic levitation (maglev) technologies offer a promising pathway toward sustainable, energy-efficient transportation systems. In this study, a comprehensive methodology was developed to analyse and optimise the levitation performance of high-temperature superconducting (HTS) maglev systems. Several permanent magnet guideway (PMG) configurations were compared, and an optimised PMG Halbach array design was identified that enhances flux concentration and significantly improves levitation performance. To accurately model the electromagnetic interaction between the HTS bulk and the external magnetic field, finite element models based on the H-formulation were established in both two dimensions (2D) and three dimensions (3D). An HTS maglev demonstrator was built using YBCO bulks, and an experimental platform was constructed to measure levitation force. While the 2D model offers fast computation, it shows deviations from the measurements due to geometric simplifications, whereas the 3D model predicts levitation forces for the cylindrical bulk with much higher accuracy, with errors remaining below 10%. The strong agreement between experimental measurements and the 3D simulation across the entire force–height cycle confirms that the proposed model reliably reproduces the electromagnetic coupling and resulting levitation forces in HTS maglev systems. The paper provides a practical and systematic reference for the optimal design and experimental validation of HTS bulk-based maglev systems. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

21 pages, 4891 KB  
Article
Carbon–Electricity–Heat Coupling Process for Full Unit Carbon Capture: A 1000 MW Case in China
by Jingchun Chu, Yang Yang, Liang Zhang, Chaowei Wang, Jinning Yang, Dong Xu, Xiaolin Wei, Heng Cheng and Tao Wang
Energies 2026, 19(2), 423; https://doi.org/10.3390/en19020423 - 15 Jan 2026
Viewed by 124
Abstract
Carbon capture is pivotal for achieving carbon neutrality; however, its high energy consumption severely limits the operational flexibility of power plants and remains a key challenge. This study, targeting a full flue gas carbon capture scenario for a 1000 MW coal-fired power plant, [...] Read more.
Carbon capture is pivotal for achieving carbon neutrality; however, its high energy consumption severely limits the operational flexibility of power plants and remains a key challenge. This study, targeting a full flue gas carbon capture scenario for a 1000 MW coal-fired power plant, identified the dual-element (“steam” and “power generation”) coupling convergence mechanism. Based on this mechanism, a comprehensive set of mathematical model equations for the “carbon–electricity–heat” coupling process is established. This model quantifies the dynamic relationship between key operational parameters (such as unit load, capture rate, and thermal consumption level) and system performance metrics (such as power output and specific power penalty). To address the challenge of flexible operation, this paper further proposes two innovative coupled modes: steam thermal storage and chemical solvent storage. Model-based quantitative analysis indicated the following: (1) The power generation impact rate under full THA conditions (25.7%) is lower than that under 30% THA conditions (27.7%), with the specific power penalty for carbon capture decreasing from 420.7 kW·h/tCO2 to 366.7 kW·h/tCO2. (2) Thermal consumption levels of the capture system are a critical influencing factor; each 0.1 GJ/tCO2 increase in thermal consumption leads to an approximate 2.83% rise in unit electricity consumption. (3) Steam thermal storage mode effectively reduces peak-period capture energy consumption, while the chemical solvent storage mode almost fully eliminates the impact on peak power generation and provides optimal deep peak-shaving capability and operational safety. Furthermore, these modeling results provide a basis for decision-making in plant operations. Full article
(This article belongs to the Special Issue CO2 Capture, Utilization and Storage)
Show Figures

Figure 1

23 pages, 1468 KB  
Review
Advances and Prospects of Modified Activated Carbon-Based Slow Sand Filtration for Microplastic Removal
by Zhuangzhuang Qu, Ulan Zhantikeyev, Ulan Kakimov, Kainaubek Toshtay, Kanay Rysbekov, Nur Nabihah Binti Yusof, Ronny Berndtsson and Seitkhan Azat
Water 2026, 18(2), 228; https://doi.org/10.3390/w18020228 - 15 Jan 2026
Viewed by 215
Abstract
With the increasing prevalence of microplastics (MPs) and nanoplastics (NPs) in global aquatic environments, their potential ecotoxicological and health impacts have become a major concern in environmental science. Slow sand filtration (SSF) is widely recognized for its low energy demand, ecological compatibility, and [...] Read more.
With the increasing prevalence of microplastics (MPs) and nanoplastics (NPs) in global aquatic environments, their potential ecotoxicological and health impacts have become a major concern in environmental science. Slow sand filtration (SSF) is widely recognized for its low energy demand, ecological compatibility, and operational stability; however, its efficiency in removing small or neutrally buoyant MPs remains limited. In recent years, integrating modified activated carbon (MAC) into SSF systems has emerged as a promising approach to enhance MP removal. This review comprehensively summarizes the design principles, adsorption and bio-synergistic mechanisms, influencing factors, and recent advancements in MAC-SSF systems. The results indicate that surface modification of activated carbon—through controlled pore distribution, functional group regulation, and hydrophilic–hydrophobic balance—significantly enhances the adsorption and interfacial binding of MPs. Furthermore, the coupling between MAC and biofilm facilitates a multi-mechanistic removal process involving electrostatic attraction, hydrophobic interaction, physical entrapment, and biodegradation. In addition, this review discusses the operational stability, regeneration performance, and environmental sustainability of MAC-SSF systems, emphasizing the need for future research on green and low-cost modification strategies, interfacial mechanism elucidation, microbial community regulation, and life-cycle assessment. Overall, MAC-SSF technology provides an efficient, economical, and sustainable pathway for microplastic control, offering valuable implications for a safe water supply and aquatic ecosystem protection in the future. Full article
Show Figures

Figure 1

22 pages, 6111 KB  
Article
Adaptive Fuzzy-Based Smooth Transition Strategy for Speed Regulation Zones in IPMSM
by Xinyi Yu, Wanlu Zhu and Pengfei Zhi
World Electr. Veh. J. 2026, 17(1), 44; https://doi.org/10.3390/wevj17010044 - 14 Jan 2026
Viewed by 91
Abstract
In response to the “carbon peak and carbon neutrality” strategy, industrial energy conservation has become increasingly important. Interior Permanent Magnet Synchronous Motors (IPMSMs) exhibit significant potential for efficient flux-weakening control due to their asymmetric rotor reluctance. However, conventional control strategies often cause instability [...] Read more.
In response to the “carbon peak and carbon neutrality” strategy, industrial energy conservation has become increasingly important. Interior Permanent Magnet Synchronous Motors (IPMSMs) exhibit significant potential for efficient flux-weakening control due to their asymmetric rotor reluctance. However, conventional control strategies often cause instability during transitions across speed zones. This paper proposes a novel adaptive fuzzy-based smooth transition strategy to address this issue. First, a composite control framework integrating Maximum Torque per Ampere (MTPA) and leading-angle control is established to enhance flux-weakening capability. Then, within this framework, adaptive fuzzy controllers are designed for different weakening zones, incorporating a Lyapunov-based parameter adaptation mechanism for real-time compensation. Simulation results demonstrate that the proposed strategy achieves smooth switching across the entire speed range of IPMSMs. Quantitatively, it reduces speed overshoot by 5–15%, suppresses torque ripple by over 10%, and virtually eliminates switching current pikes compared to conventional methods, thereby significantly improving system dynamic performance and operational reliability. Full article
(This article belongs to the Section Propulsion Systems and Components)
Show Figures

Figure 1

24 pages, 2470 KB  
Review
Metal–Support Interactions in Single-Atom Catalysts for Electrochemical CO2 Reduction
by Alexandra Mansilla-Roux, Mayra Anabel Lara-Angulo and Juan Carlos Serrano-Ruiz
Nanomaterials 2026, 16(2), 103; https://doi.org/10.3390/nano16020103 - 13 Jan 2026
Viewed by 270
Abstract
Electrochemical CO2 reduction (CO2RR) is a promising route to transform a major greenhouse gas into value-added fuels and chemicals. However, its deployment is still hindered by the sluggish activation of CO2, poor selectivity toward multielectron products, and competition [...] Read more.
Electrochemical CO2 reduction (CO2RR) is a promising route to transform a major greenhouse gas into value-added fuels and chemicals. However, its deployment is still hindered by the sluggish activation of CO2, poor selectivity toward multielectron products, and competition with the hydrogen evolution reaction (HER). Single-atom catalysts (SACs) have emerged as powerful materials to address these challenges because they combine maximal metal utilization with well-defined coordination environments whose electronic structure can be precisely tuned through metal–support interactions. This minireview summarizes current understanding of how structural, electronic, and chemical features of SAC supports (e.g., porosity, heteroatom doping, vacancies, and surface functionalization) govern the adsorption and conversion of key CO2RR intermediates and thus control product distributions from CO to CH4, CH3OH and C2+ species. Particular emphasis is placed on selectivity descriptors (e.g., coordination number, d-band position, binding energies of *COOH and *OCHO) and on rational design strategies that exploit curvature, microenvironment engineering, and electronic metal–support interactions to direct the reaction along desired pathways. Representative SAC systems based primarily on N-doped carbons, complemented by selected examples on oxides and MXenes are discussed in terms of Faradaic efficiency (FE), current density and operational stability under practically relevant conditions. Finally, the review highlights remaining bottlenecks and outlines future directions, including operando spectroscopy and data-driven analysis of dynamic single-site ensembles, machine-learning-assisted DFT screening, scalable mechanochemical synthesis, and integration of SACs into industrially viable electrolyzers for carbon-neutral chemical production. Full article
Show Figures

Figure 1

32 pages, 7548 KB  
Article
Research on the Flow and Heat Transfer Characteristics of a Molten Salt Globe Valve Based on an Electromagnetic Induction Heating System
by Shuxun Li, Xiaoya Wen, Bohao Zhang, Lingxia Yang, Yuhao Tian and Xiaoqi Meng
Actuators 2026, 15(1), 50; https://doi.org/10.3390/act15010050 - 13 Jan 2026
Viewed by 94
Abstract
To promote the transition to a cleaner energy structure and support the achievement of the “carbon peak and carbon neutrality” goals, concentrated solar power (CSP) technology has attracted increasing attention. The molten salt globe valve, as a key control component in CSP systems, [...] Read more.
To promote the transition to a cleaner energy structure and support the achievement of the “carbon peak and carbon neutrality” goals, concentrated solar power (CSP) technology has attracted increasing attention. The molten salt globe valve, as a key control component in CSP systems, faces significant challenges related to low-temperature salt crystallization and thermal stress control. This study proposes an active electromagnetic induction heating method based on a triangular double-helix cross-section coil to address issues such as molten salt blockage in the seal bellows and excessive thermal stress during heating. First, electromagnetic simulation comparisons show that the ohmic loss of the proposed coil is approximately 3.5 times and 1.8 times higher than that of conventional circular and rectangular coils, respectively, demonstrating superior heating uniformity and energy efficiency. Second, transient electromagnetic-thermal-fluid-structure multiphysics coupling analysis reveals that during heating, the temperature in the bellows seal region stabilizes above 543.15 K, exceeding the solidification point of the molten salt, while the whole valve reaches thermal stability within about 1000 s, effectively preventing local solidification. Finally, thermal stress analysis indicates that under a preheating condition of 473.15 K, the transient thermal shock stress on the valve body and bellows is reduced by 266.84% and 253.91%, respectively, compared with the non-preheating case, with peak stresses remaining below the allowable stress limit of the material, thereby significantly extending the service life of the valve. This research provides an effective solution for ensuring reliable operation of molten salt valves and improving the overall performance of CSP systems. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

34 pages, 1022 KB  
Article
Green Supply Chain Management, Green Innovation, and Carbon-Neutral Performance: A Meta-Analytic Examination of the Moderating Role of Sustainability Metrics
by Resul Öztürk, Mehtap Öztürk, Zeynep Kızılkan, Constantin Dumitrașcu, Daniela Cîrțînă, Stefan Sorinel Ghimiși, Cătălina Aurora Ianăși and Alin Nioață
Sustainability 2026, 18(2), 681; https://doi.org/10.3390/su18020681 - 9 Jan 2026
Viewed by 193
Abstract
The accelerating global transition toward low-carbon production and sustainable value chains has intensified interest in practices that enhance environmental performance, particularly green supply chain management (GSCM) and green innovation (GI). Although these practices are widely promoted, empirical findings regarding how GSCM influences GI [...] Read more.
The accelerating global transition toward low-carbon production and sustainable value chains has intensified interest in practices that enhance environmental performance, particularly green supply chain management (GSCM) and green innovation (GI). Although these practices are widely promoted, empirical findings regarding how GSCM influences GI and carbon-neutral supply chain performance (CNSCP) remain dispersed and context-dependent. This study aims to synthesize and clarify these relationships by conducting a systematic meta-analysis grounded in the Resource-Based View (RBV) and Natural Resource-Based View (NRBV). Analyzing 24 studies published between 2017 and 2025, the research investigates the direct effects of GSCM on GI and CNSCP and examines the moderating roles of key sustainability metrics—CO2 emissions, renewable energy use, carbon tax, Frontier Technologies Index (FTI), and Global Sustainable Competitiveness Index (GSCI)—across low- and high-income countries. The findings reveal that GSCM significantly enhances both GI and CNSCP. Furthermore, strong sustainability infrastructures and stringent regulatory environments in high-income countries amplify these relationships, whereas infrastructure deficiencies and weaker regulatory systems in low-income countries limit their strength. These results demonstrate that sustainability metrics meaningfully condition the effectiveness of GSCM practices. Overall, this study highlights the strategic importance of GSCM in fostering CNSCP and provides theoretical insights and practical recommendations for policymakers, managers, and governments seeking to achieve long-term carbon neutrality goals. Full article
Show Figures

Figure 1

25 pages, 2436 KB  
Article
Industrial Waste Heat Utilization Potential in China: Measurement and Impacts on Carbon Peaking and Carbon Neutrality Pathways
by Shuang Xu, Haitao Chen, Yueting Ding, Jingyun Li and Zewei Zhong
Energies 2026, 19(2), 292; https://doi.org/10.3390/en19020292 - 6 Jan 2026
Viewed by 231
Abstract
As the goal of carbon peak and carbon neutrality becomes a global consensus, the circular economy is gradually evolving from an environmental concept to a core lever for national strategy and industrial transformation. To achieve green and low-carbon development, China is accelerating the [...] Read more.
As the goal of carbon peak and carbon neutrality becomes a global consensus, the circular economy is gradually evolving from an environmental concept to a core lever for national strategy and industrial transformation. To achieve green and low-carbon development, China is accelerating the construction of a circular economy system, particularly in the fields of resource recycling and utilization. Industrial waste heat, a strategically critical supplementary energy resource, performs a pivotal role in advancing the circular economy. Based on an energy technology coupling model, this study assesses the waste heat utilization potential in China and quantitatively measures its impact on energy conservation and carbon reduction. The results show that: (1) The potential of industrial waste heat in China is characterized by an inverted U-shaped trajectory. Over the near-to-medium term, the steel and power industries remain the primary contributors to waste heat utilization potential. (2) Low-grade waste heat represents the majority of utilization potential in China’s industrial sector, mainly from power generation, fuel processing, and steel manufacturing. The model results indicate that the proportion of low temperature waste heat will increase from approximately 66% in 2025 to 83% in 2060. (3) Waste heat utilization significantly influences the energy transition pathway. The findings of this study demonstrate that energy-intensive industries have the potential to reduce primary energy consumption by more than 13%. Moreover, making full use of waste heat could accelerate China’s carbon peaking target to 2028, and reduce peak carbon emissions by an estimated 5.1%. Full article
Show Figures

Figure 1

48 pages, 7808 KB  
Review
Precision Fermentation as a Frontier in Biofuel Production: Advances, Challenges, and Integration into Biorefineries
by Daiane Barão Pereira, Giovanna Lima-Silva, Larissa Batista do Nascimento Soares, Lorena Vieira Bentolila de Aguiar, Aldenora dos Santos Vasconcelos, Vítor Alves Pessoa, Roberta Pozzan, Josilene Lima Serra, Ceci Sales-Campos, Larissa Ramos Chevreuil and Walter José Martínez-Burgos
Fermentation 2026, 12(1), 35; https://doi.org/10.3390/fermentation12010035 - 6 Jan 2026
Viewed by 550
Abstract
The industrial transition to advanced biofuels is currently limited by the metabolic constraints and low inhibitor tolerance of wild-type microbial hosts. This review justifies the necessity of Precision Fermentation (PF) as the pivotal technological framework to overcome these barriers, providing a systematic synthesis [...] Read more.
The industrial transition to advanced biofuels is currently limited by the metabolic constraints and low inhibitor tolerance of wild-type microbial hosts. This review justifies the necessity of Precision Fermentation (PF) as the pivotal technological framework to overcome these barriers, providing a systematic synthesis of high-resolution genetic tools and intelligent bioprocess architectures. We analyze how the integration of CRISPR-Cas9, retron-mediated recombineering, and synthetic regulatory circuits enables the development of specialized microbial “chassis” capable of achieving 10- to 100-fold higher yields compared to native organisms, with industrial titers reaching 50 g/L for isobutanol and 25 g/L for farnesene. A major novelty of this work is the critical evaluation of Artificial Intelligence (AI), Soft Sensing, and Digital Twins in orchestrating real-time metabolic control and mitigating the toxic effects of advanced alcohols and drop-in hydrocarbons (C15–C20). Furthermore, the study concludes that the “scale-out” modular strategy, when integrated into hybrid thermochemical-biochemical biorefineries, allows for the full valorization of C5/C6 sugars and lignin, achieving a Minimum Selling Price (MSP) competitive with fossil fuels. By mapping the synergy between advanced metabolic engineering and data-driven process optimization, this review establishes PF as an indispensable driver for achieving carbon-neutral and carbon-negative energy systems in the circular bioeconomy. Full article
(This article belongs to the Special Issue Recent Advancements in Fermentation Technology: Biofuels Production)
Show Figures

Graphical abstract

36 pages, 7810 KB  
Review
A Comprehensive Review of Human-Robot Collaborative Manufacturing Systems: Technologies, Applications, and Future Trends
by Qixiang Cai, Jinmin Han, Xiao Zhou, Shuaijie Zhao, Lunyou Li, Huangmin Liu, Chenhao Xu, Jingtao Chen, Changchun Liu and Haihua Zhu
Sustainability 2026, 18(1), 515; https://doi.org/10.3390/su18010515 - 4 Jan 2026
Viewed by 345
Abstract
Amid the dual-driven trends of Industry 5.0 and smart manufacturing integration, as well as the global imperative for manufacturing sustainability to address resource constraints, carbon neutrality goals, and circular economy demands, human–robot collaborative (HRC) manufacturing has emerged as a core direction for reshaping [...] Read more.
Amid the dual-driven trends of Industry 5.0 and smart manufacturing integration, as well as the global imperative for manufacturing sustainability to address resource constraints, carbon neutrality goals, and circular economy demands, human–robot collaborative (HRC) manufacturing has emerged as a core direction for reshaping manufacturing production modes while aligning with sustainable development principles. This paper comprehensively reviews HRC manufacturing systems, summarizing their technical framework, practical applications, and development trends with a focus on the synergistic realization of operational efficiency and sustainability. Addressing the rigidity of traditional automated lines, inefficiency of manual production, and the unsustainable drawbacks of high energy consumption and resource waste in conventional manufacturing, HRC integrates humans’ flexible decision-making and environmental adaptability with robots’ high-precision and continuous operation, not only improving production efficiency, quality, and safety but also optimizing resource allocation, reducing energy consumption, and minimizing production waste to bolster manufacturing sustainability. Its core technologies include task allocation, multimodal perception, augmented interaction (AR/VR/MR), digital twin-driven integration, adaptive motion control, and real-time decision-making, all of which can be tailored to support sustainable production scenarios such as energy-efficient process scheduling and circular material utilization. These technologies have been applied in automotive, aeronautical, astronautical, and shipping industries, boosting high-end equipment manufacturing innovation while advancing the sector’s sustainability performance. Finally, challenges and future directions of HRC are discussed, emphasizing its pivotal role in driving manufacturing toward a balanced development of efficiency, intelligence, flexibility, and sustainability. Full article
(This article belongs to the Special Issue Sustainable Manufacturing Systems in the Context of Industry 4.0)
Show Figures

Figure 1

34 pages, 4272 KB  
Review
Toward Low-Carbon Buildings: Breakthroughs and Challenges in PV–Storage–DC–Flexibility System
by Qihang Jin and Wei Lu
Energies 2026, 19(1), 197; https://doi.org/10.3390/en19010197 - 30 Dec 2025
Viewed by 347
Abstract
The photovoltaic–energy storage–direct current–flexibility (PEDF) system provides an integrated pathway for low-carbon and intelligent building energy management by combining on-site PV generation, electrical storage, DC distribution, and flexible load control. This paper reviews recent advances in these four modules and synthesizes quantified benefits [...] Read more.
The photovoltaic–energy storage–direct current–flexibility (PEDF) system provides an integrated pathway for low-carbon and intelligent building energy management by combining on-site PV generation, electrical storage, DC distribution, and flexible load control. This paper reviews recent advances in these four modules and synthesizes quantified benefits reported in real-world deployments. Building-scale systems typically integrate 20–150 kW PV and achieve ~10–18% energy-efficiency gains enabled by DC distribution. Industrial-park deployments scale to 500 kW–5 MW, with renewable self-consumption often exceeding 50% and CO2 emissions reductions of ~40–50%. Community-level setups commonly report 10–15% efficiency gains and annual CO2 reductions on the order of tens to hundreds of tons. Key barriers to large-scale adoption are also discussed, including multi-energy coordination complexity, high upfront costs and uncertain business models, limited user engagement, and gaps in interoperability standards and supportive policies. Finally, we outline research and deployment priorities toward open and interoperable PEDF architectures that support cross-sector integration and accelerate the transition toward carbon-neutral (and potentially carbon-negative) built environments. Full article
Show Figures

Figure 1

35 pages, 7939 KB  
Article
Techno-Enviro-Economic Assessment of Long-Term Strategic Capacity Expansion for Dubai’s Clean Energy Future Using PLEXOS
by Ahmed Yousry and Mutasim Nour
Energies 2026, 19(1), 173; https://doi.org/10.3390/en19010173 - 28 Dec 2025
Viewed by 528
Abstract
With global energy systems shifting toward sustainable solutions, Dubai faces the challenge of meeting rising energy needs while minimizing environmental impacts. This study explores long-term (LT) strategic planning for Dubai’s power sector through a techno-environmental–economic lens. Using PLEXOS® modelling software (Version 9.20.0001) [...] Read more.
With global energy systems shifting toward sustainable solutions, Dubai faces the challenge of meeting rising energy needs while minimizing environmental impacts. This study explores long-term (LT) strategic planning for Dubai’s power sector through a techno-environmental–economic lens. Using PLEXOS® modelling software (Version 9.20.0001) and official data from Dubai’s main utility provider, a comprehensive model examines medium- and LT energy pathways. The analysis identifies solar photovoltaic (PV) technology as central to achieving Dubai’s goal of 100% clean energy by 2050. It also highlights the need to cut emissions from natural gas (NG) infrastructure, targeting a goal of 14.5% retirement of NG energy generation capacities by the mid-century. Achieving zero-emission goals will require complementary technologies such as carbon capture (CC), nuclear energy, and energy storage as part of a broader decarbonization strategy. This study further assesses the economic effects of climate policy, showing that moderate carbon pricing could increase the Levelized Cost of Energy (LCOE) by an average of 6% across the forecast horizon. These findings offer valuable guidance for decision-makers and stakeholders, particularly the Dubai Electricity and Water Authority (DEWA), in advancing a carbon-neutral energy system. By 2050, Dubai’s total installed generation capacity is projected to reach 53.3 GW, reflecting the scale of transformation needed to meet its clean energy ambitions. Full article
(This article belongs to the Special Issue Policy and Economic Analysis of Energy Systems: 2nd Edition)
Show Figures

Figure 1

21 pages, 7622 KB  
Article
Mechanical and Sound Absorption Properties of Ice-Templated Porous Cement Co-Incorporated with Silica Fume and Fly Ash
by Xiaoyang Zhang, Kang Peng, Bin Xiao, Jianxin Yang, Bao Yang and Boyuan Li
Materials 2026, 19(1), 92; https://doi.org/10.3390/ma19010092 - 26 Dec 2025
Viewed by 319
Abstract
Reducing the consumption of energy-intensive cement and promoting the resource utilization of industrial waste are two critical challenges that should be urgently addressed to achieve the goals of carbon neutrality and green sustainable development in the building materials field. Among these, the massive [...] Read more.
Reducing the consumption of energy-intensive cement and promoting the resource utilization of industrial waste are two critical challenges that should be urgently addressed to achieve the goals of carbon neutrality and green sustainable development in the building materials field. Among these, the massive stockpiling of industrial waste such as fly ash and silica fume poses serious threats to the environment and human health, making their efficient utilization an urgent need to alleviate environmental pressure. This study employs the ice-template method to incorporate fly ash and silica fume as functional components into a cement-based system, fabricating a novel composite material. This material features a layered porous structure, which not only reduces cement usage but also results in a lighter weight. The introduction of the ice-templating method successfully constructed an anisotropic lamellar structure, leading to significant enhancements in flexural strength and toughness—by approximately 26.6% and 30%, respectively, vertical to the lamellae compared to conventional dense cement. Meanwhile, the hybrid blend of silica fume and fly ash effectively improved the deformability of the material, as evidenced by a notable increase in compressive failure strain. These excellent behaviors of mechanical properties are attributed to the formation of a multi-scale microstructure characterized by “macroscopically continuous and microscopically dense” features. Moreover, this specific microstructure offers greater advantages in sound absorption performance. The acoustic impedance tube tests demonstrate that the noise reduction coefficient of the novel cement-based material incorporating fly ash and silica fume is improved by 82%, holding promising applications in noise reduction for the construction and transportation fields. This research provides a feasible pathway for the high-value application of industrial solid waste in low-carbon materials. Full article
Show Figures

Graphical abstract

Back to TopTop