energies-logo

Journal Browser

Journal Browser

CO2 Capture, Utilization and Storage

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "B3: Carbon Emission and Utilization".

Deadline for manuscript submissions: 15 August 2025 | Viewed by 1248

Special Issue Editor


E-Mail Website
Guest Editor

Special Issue Information

Dear Colleagues,

Carbon dioxide (CO2) emissions and increasing CO2 concentration in the atmosphere are global hot topics as they are among the main contributors to climate change and environmental problems. The most sustainable strategies to limit these CO2 emissions are carbon capture, utilization and storage (CCUS). CCUS is gaining increased interest as a technology to effectively reduce greenhouse gas emissions from the power and industrial sectors. There are many research works and great progress on this aspect. This Special Issue, entitled “CO2 Capture, Utilization and Storage”, aims to present the most recent technologies, materials and applications related to carbon capture, utilization and storage.

Prof. Dr. Shijian Lu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • CO2 capture technology
  • CO2 utilization technology
  • CO2 storage technology
  • Combined CO2 capture and conversion technology
  • CCUS chain

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 3965 KiB  
Article
Investigation into Enhancing Methane Recovery and Sequestration Mechanism in Deep Coal Seams by CO2 Injection
by Xiongwei Sun, Hongya Wang, Bin Gong, Heng Zhao, Haoqiang Wu, Nan Wu, Wei Sun, Shizhao Zhang and Ke Jiang
Energies 2024, 17(22), 5659; https://doi.org/10.3390/en17225659 - 13 Nov 2024
Viewed by 962
Abstract
Injecting CO2 into coal seams to enhance coal bed methane (ECBM) recovery has been identified as a viable method for increasing methane extraction. This process also has significant potential for sequestering large volumes of CO2, thereby reducing the concentration of [...] Read more.
Injecting CO2 into coal seams to enhance coal bed methane (ECBM) recovery has been identified as a viable method for increasing methane extraction. This process also has significant potential for sequestering large volumes of CO2, thereby reducing the concentration of greenhouse gases in the atmosphere. However, for deep coal seams where formation pressure is relatively high, there is limited research on CO2 injection into systems with higher methane adsorption equilibrium pressure. Existing studies, mostly confined to the low-pressure stage, fail to effectively reveal the impact of factors such as temperature, high-pressure CO2 injection, and coal types on enhancing the recovery and sequestration of CO2-displaced methane. Thus, this study aims to investigate the influence of temperature, pressure, and coal types on ECBM recovery and CO2 sequestration in deep coal seams. A series of CO2 core flooding tests were conducted on various coal cores, with CO2 injection pressures ranging from 8 to 18 MPa. The CO2 and methane adsorption rates, as well as methane displacement efficiency, were calculated and recorded to facilitate result interpretation. Based on the results of these physical experiments, numerical simulation was conducted to study multi-component competitive adsorption, desorption, and seepage flow under high temperature and high pressure in a deep coal seam’s horizontal well. Finally, the optimization of the total injection amount (0.7 PV) and injection pressure (approximately 15.0 MPa) was carried out for the plan of CO2 displacement of methane in a single well in the later stage. Full article
(This article belongs to the Special Issue CO2 Capture, Utilization and Storage)
Show Figures

Figure 1

Back to TopTop