Toward Achieving a Carbon-Neutral Society: Beneficiation and Extractive Metallurgy for Producing Critical Metals from Ores/Wastes
1. Introduction and Scope
2. Contributions
3. Conclusions and Outlook
Funding
Conflicts of Interest
List of Contributions
- Eom, Y.; Dyer, L.; Nikoloski, A.N.; Alorro, R.D. Mechanochemical Treatment for the Extraction of Lithium from Hard Rock Minerals: A Comprehensive Review. Metals 2024, 14, 1260.
- Mhandu, T.J.; Park, I.; Jeon, S.; Hamatsu, S.; Elakneswaran, Y.; Ito, M.; Hiroyoshi, N. A Pretreatment of Refractory Gold Ores Containing Sulfide Minerals to Improve Gold Leaching by Ammonium Thiosulfate: A Model Experiment Using Gold Powder and Arsenic-Bearing Sulfide Minerals. Metals 2023, 13, 1357.
- Zoleta, J.; Jeon, S.; Kuze, A.; Okada, N.; Park, I.; Ito, M.; Elakneswaran, Y.; Hiroyoshi, N. Selective Cementation of Gold using an Iron Oxide and Zero-Valent Aluminum Galvanic System from Gold-Copper Ammoniacal Thiosulfate Solutions. Metals 2023, 13, 1289.
- Fang, X.; Peng, Z.; Yin, T.; Rao, M.; Li, G. Microwave Treatment of Copper–Nickel Sulfide Ore for Promotion of Grinding and Flotation. Metals 2024, 14, 565.
- Simonič, M.; Goričanec, D.; Petrovič, A.; Silić, I.; Urbancl, D. Cu(II) and Ni(II) Adsorption on Torrefied Wood Waste Biomass. Metals 2025, 15, 304.
- Gong, J.; Pan, J.; Zhao, J.; Zhang, Q.; Hao, G.; Liu, Y.; Yu, H. Selective Recovery and Enrichment of Cobalt from Cobalt-Containing Slag by Carbothermic Reduction. Metals 2025, 15, 622.
- Lim, B.; Aylmore, M.; Alorro, R.D. Technospheric Mining of Critical and Strategic Metals from Non-Ferrous Slags. Metals 2024, 14, 804.
- Jürjo, S.; Siinor, L.; Siimenson, C.; Oll, O.; Lust, E. Extraction of REEs and Other Elements from Estonian Graptolite-Argillite and Phosphorite Mineral Acid Solutions. Metals 2025, 15, 608.
- Litvinova, T.; Gerasev, S.; Sergeev, V.; Lidanovskiy, E. Rare Earth Metal Ion-Associates in Ln3+—CO32−—H2O system. Metals 2025, 15, 239.
References
- International Renewable Energy Agency. Untapped Potential for Climate Action: Renewable Energy in Nationally Determined Contributions; IRENA: Abu Dhabi, United Arab Emirates, 2017. [Google Scholar]
- Hund, K.L.; La Porta, D.; Fabregas, T.P.; Laing, T.; Drexhage, J.R. Minerals for Climate Action: The Mineral Intensity of the Clean Energy Transition; World Bank Group: Washington, DC, USA, 2020. [Google Scholar]
- International Energy Agency. Global Critical Minerals Outlook 2025; IEA: Paris, France, 2025. [Google Scholar]
- Feng, D.; van Deventer, J.S.J. Ammoniacal thiosulfate leaching of gold in the presence of pyrite. Hydrometallurgy 2006, 82, 126–132. [Google Scholar] [CrossRef]
- Xu, B.; Yang, Y.; Li, Q.; Jiang, T.; Zhang, X.; Li, G. Effect of common associated sulfide minerals on thiosulfate leaching of gold and the role of humic acid additive. Hydrometallurgy 2017, 171, 44–52. [Google Scholar] [CrossRef]
- Liu, X.; Xu, B.; Min, X.; Li, Q.; Yang, Y.; Jiang, T.; He, Y.; Zhang, X. Effect of Pyrite on Thiosulfate Leaching of Gold and the Role of Ammonium Alcohol Polyvinyl Phosphate (AAPP). Metals 2017, 7, 278. [Google Scholar] [CrossRef]
- Jeon, S.; Bright, S.; Park, I.; Tabelin, C.B.; Ito, M.; Hiroyoshi, N. A simple and efficient recovery technique for gold ions from ammonium thiosulfate medium by galvanic interactions of zero-valent aluminum and activated carbon: A parametric and mechanistic study of cementation. Hydrometallurgy 2022, 208, 105815. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Park, I.; Jeon, S. Toward Achieving a Carbon-Neutral Society: Beneficiation and Extractive Metallurgy for Producing Critical Metals from Ores/Wastes. Metals 2026, 16, 113. https://doi.org/10.3390/met16010113
Park I, Jeon S. Toward Achieving a Carbon-Neutral Society: Beneficiation and Extractive Metallurgy for Producing Critical Metals from Ores/Wastes. Metals. 2026; 16(1):113. https://doi.org/10.3390/met16010113
Chicago/Turabian StylePark, Ilhwan, and Sanghee Jeon. 2026. "Toward Achieving a Carbon-Neutral Society: Beneficiation and Extractive Metallurgy for Producing Critical Metals from Ores/Wastes" Metals 16, no. 1: 113. https://doi.org/10.3390/met16010113
APA StylePark, I., & Jeon, S. (2026). Toward Achieving a Carbon-Neutral Society: Beneficiation and Extractive Metallurgy for Producing Critical Metals from Ores/Wastes. Metals, 16(1), 113. https://doi.org/10.3390/met16010113
