Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (456)

Search Parameters:
Keywords = carbon nitride materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10028 KiB  
Article
The Fabrication of Cu2O-u/g-C3N4 Heterojunction and Its Application in CO2 Photoreduction
by Jiawei Lu, Yupeng Zhang, Fengxu Xiao, Zhikai Liu, Youran Li, Guiyang Shi and Hao Zhang
Catalysts 2025, 15(8), 715; https://doi.org/10.3390/catal15080715 - 27 Jul 2025
Viewed by 443
Abstract
Over efficient photocatalysts, CO2 photoreduction typically converts CO2 into low-carbon chemicals, which serve as raw materials for downstream synthesis processes. Here, an efficient composite photocatalyst heterojunction (Cu2O-u/g-C3N4) has been fabricated to reduce CO2. [...] Read more.
Over efficient photocatalysts, CO2 photoreduction typically converts CO2 into low-carbon chemicals, which serve as raw materials for downstream synthesis processes. Here, an efficient composite photocatalyst heterojunction (Cu2O-u/g-C3N4) has been fabricated to reduce CO2. Graphitic carbon nitride (g-C3N4) was synthesized via thermal polymerization of urea at 550 °C, while pre-dispersed Cu2O derived from urea pyrolysis (Cu2O-u) was prepared by thermal reduction of urea and CuCl2·2H2O at 180 °C. The heterojunction Cu2O-u/g-C3N4 was subsequently constructed through hydrothermal treatment at 180 °C. This heterojunction exhibited a bandgap of 2.10 eV, with dual optical absorption edges at 485 nm and above 800 nm, enabling efficient harvesting of solar light. Under 175 W mercury lamp irradiation, the heterojunction catalyzed liquid-phase CO2 photoreduction to formic acid, acetic acid, and methanol. Its formic acid production activity surpassed that of pristine g-C3N4 by 3.14-fold and TiO2 by 8.72-fold. Reaction media, hole scavengers, and reaction duration modulated product selectivity. In acetonitrile/isopropanol systems, formic acid and acetic acid production reached 579.4 and 582.8 μmol·h−1·gcat−1. Conversely, in water/triethanolamine systems, methanol production reached 3061.6 μmol·h−1·gcat−1, with 94.79% of the initial conversion retained after three cycles. Finally, this work ends with the conclusions of the CO2 photocatalytic reduction to formic acid, acetic acid, and methanol, and recommends prospects for future research. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Graphical abstract

20 pages, 15575 KiB  
Article
Transport Properties of One-Dimensional van der Waals Heterostructures Based on Molybdenum Dichalcogenides
by Daulet Sergeyev and Kuanyshbek Shunkeyev
Crystals 2025, 15(7), 656; https://doi.org/10.3390/cryst15070656 - 18 Jul 2025
Viewed by 607
Abstract
The transport properties of one-dimensional van der Waals nanodevices composed of carbon nanotubes (CNTs), hexagonal boron nitride (hBN) nanotubes, and molybdenum dichalcogenide (MoX2) nanotubes were investigated within the framework of density functional theory (DFT). It was found that in nanodevices based [...] Read more.
The transport properties of one-dimensional van der Waals nanodevices composed of carbon nanotubes (CNTs), hexagonal boron nitride (hBN) nanotubes, and molybdenum dichalcogenide (MoX2) nanotubes were investigated within the framework of density functional theory (DFT). It was found that in nanodevices based on MoS2(24,24) and MoTe2(24,24), the effect of resonant tunneling is suppressed due to electron–phonon scattering. This suppression arises from the fact that these materials are semiconductors with an indirect band gap, where phonon participation is required to conserve momentum during transitions between the valence and conduction bands. In contrast, nanodevices incorporating MoSe2(24,24), which possesses a direct band gap, exhibit resonant tunneling, as quasiparticles can tunnel between the valence and conduction bands without a change in momentum. It was demonstrated that the presence of vacancy defects in the CNT segment significantly degrades quasiparticle transport compared to Stone–Wales (SW) defects. Furthermore, it was revealed that resonant interactions between SW defects in MoTe2(24,24)–hBN(27,27)–CNT(24,24) nanodevices can enhance the differential conductance under certain voltages. These findings may be beneficial for the design and development of nanoscale diodes, back nanodiodes, and tunneling nanodiodes. Full article
Show Figures

Figure 1

16 pages, 8045 KiB  
Article
Modification of G-C3N4 by the Surface Alkalinization Method and Its Photocatalytic Depolymerization of Lignin
by Zhongmin Ma, Ling Zhang, Lihua Zang and Fei Yu
Materials 2025, 18(14), 3350; https://doi.org/10.3390/ma18143350 - 17 Jul 2025
Viewed by 315
Abstract
The efficient depolymerization of lignin has become a key challenge in the preparation of high-value-added chemicals. Graphitic carbon nitride (g-C3N4)-based photocatalytic system shows potential due to its mild and green characteristics over other depolymerization methods. However, its inherent defects, [...] Read more.
The efficient depolymerization of lignin has become a key challenge in the preparation of high-value-added chemicals. Graphitic carbon nitride (g-C3N4)-based photocatalytic system shows potential due to its mild and green characteristics over other depolymerization methods. However, its inherent defects, such as a wide band gap and rapid carrier recombination, severely limit its catalytic performance. In this paper, a g-C3N4 modification strategy of K⁺ doping and surface alkalinization is proposed, which is firstly applied to the photocatalytic depolymerization of the lignin β-O-4 model compound (2-phenoxy-1-phenylethanol). K⁺ doping is achieved by introducing KCl in the precursor thermal polymerization stage to weaken the edge structure strength of g-C3N4, and post-treatment with KOH solution is combined to optimize the surface basic groups. The structural/compositional evolution of the materials was analyzed by XRD, FTIR, and XPS. The morphology/element distribution was visualized by SEM-EDS, and the optoelectronic properties were evaluated by UV–vis DRS, PL, EIS, and transient photocurrent (TPC). K⁺ doping and surface alkalinization synergistically regulate the layered structure of the material, significantly increase the specific surface area, introduce nitrogen vacancies and hydroxyl functional groups, effectively narrow the band gap (optimized to 2.35 eV), and inhibit the recombination of photogenerated carriers by forming electron capture centers. Photocatalytic experiments show that the alkalinized g-C3N4 can completely depolymerize 2-phenoxy-1-phenylethanol with tunable product selectivity. By adjusting reaction time and catalyst dosage, the dominant product can be shifted from benzaldehyde (up to 77.28% selectivity) to benzoic acid, demonstrating precise control over oxidation degree. Mechanistic analysis shows that the surface alkaline sites synergistically optimize the Cβ-O bond breakage path by enhancing substrate adsorption and promoting the generation of active oxygen species (·OH, ·O2). This study provides a new idea for the efficient photocatalytic depolymerization of lignin and lays an experimental foundation for the interface engineering and band regulation strategies of g-C3N4-based catalysts. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

18 pages, 4672 KiB  
Article
Tailoring Porosity and CO2 Capture Performance of Covalent Organic Frameworks Through Hybridization with Two-Dimensional Nanomaterials
by Hani Nasser Abdelhamid
Inorganics 2025, 13(7), 237; https://doi.org/10.3390/inorganics13070237 - 11 Jul 2025
Viewed by 423
Abstract
This study reported covalent organic frameworks (COFs) and their hybrid composites with two-dimensional materials, graphene oxide (GO), graphitic carbon nitride (g-C3N4), and boron nitride (BN), to examine their structural, textural, and gas adsorption properties. Material characterization confirmed the crystallinity [...] Read more.
This study reported covalent organic frameworks (COFs) and their hybrid composites with two-dimensional materials, graphene oxide (GO), graphitic carbon nitride (g-C3N4), and boron nitride (BN), to examine their structural, textural, and gas adsorption properties. Material characterization confirmed the crystallinity of COF-1 and the preservation of framework integrity after integrating the 2D nanomaterials. FT-IR spectra exhibited pronounced vibrational fingerprints of imine linkages and validated the functional groups from the COF and the integrated nanomaterials. TEM images revealed the integration of the two components, porous, layered structures with indications of interfacial interactions between COF and 2D nanosheets. Nitrogen adsorption–desorption isotherms revealed the microporous characteristics of the COFs, with hysteresis loops evident, indicating the development of supplementary mesopores at the interface between COF-1 and the 2D materials. The BET surface area of pristine COF-1 was maximal at 437 m2/g, accompanied by significant micropore and Langmuir surface areas of 348 and 1290 m2/g, respectively, offering enhanced average pore widths and hierarchical porous strcuture. CO2 adsorption tests were investigated showing maximum adsorption capacitiy of 1.47 mmol/g, for COF-1, closely followed by COF@BN at 1.40 mmol/g, underscoring the preserved sorption capabilities of these materials. These findings demonstrate the promise of designed COF-based hybrids for gas capture, separation, and environmental remediation applications. Full article
Show Figures

Graphical abstract

20 pages, 3918 KiB  
Article
Engineered Cu0.5Ni0.5Al2O4/GCN Spinel Nanostructures for Dual-Functional Energy Storage and Electrocatalytic Water Splitting
by Abdus Sami, Sohail Ahmad, Ai-Dang Shan, Sijie Zhang, Liming Fu, Saima Farooq, Salam K. Al-Dawery, Hamed N. Harharah, Ramzi H. Harharah and Gasim Hayder
Processes 2025, 13(7), 2200; https://doi.org/10.3390/pr13072200 - 9 Jul 2025
Viewed by 358
Abstract
The rapid growth in population and industrialization have significantly increased global energy demand, placing immense pressure on finite and environmentally harmful conventional fossil fuel-based energy sources. In this context, the development of hybrid electrocatalysts presents a crucial solution for energy conversion and storage, [...] Read more.
The rapid growth in population and industrialization have significantly increased global energy demand, placing immense pressure on finite and environmentally harmful conventional fossil fuel-based energy sources. In this context, the development of hybrid electrocatalysts presents a crucial solution for energy conversion and storage, addressing environmental challenges while meeting rising energy needs. In this study, the fabrication of a novel bifunctional catalyst, copper nickel aluminum spinel (Cu0.5Ni0.5Al2O4) supported on graphitic carbon nitride (GCN), using a solid-state synthesis process is reported. Because of its effective interface design and spinel cubic structure, the Cu0.5Ni0.5Al2O4/GCN nanocomposite, as synthesized, performs exceptionally well in electrochemical energy conversion, such as the oxygen evolution reaction (OER), the hydrogen evolution reaction (HER), and energy storage. In particular, compared to noble metals, Pt/C- and IrO2-based water-splitting cells require higher voltages (1.70 V), while for the Cu0.5Ni0.5Al2O4/GCN nanocomposite, a voltage of 1.49 V is sufficient to generate a current density of 10 mA cm−2 in an alkaline solution. When used as supercapacitor electrode materials, Cu0.5Ni0.5Al2O4/GCN nanocomposites show a specific capacitance of 1290 F g−1 at a current density of 1 A g−1 and maintain a specific capacitance of 609 F g−1 even at a higher current density of 5 A g−1, suggesting exceptional rate performance and charge storage capacity. The electrode’s exceptional capacitive properties were further confirmed through the determination of the roughness factor (Rf), which represents surface heterogeneity and active area enhancement, with a value of 345.5. These distinctive characteristics render the Cu0.5Ni0.5Al2O4/GCN composite a compelling alternative to fossil fuels in the ongoing quest for a viable replacement. Undoubtedly, the creation of the Cu0.5Ni0.5Al2O4/GCN composite represents a significant breakthrough in addressing the energy crisis and environmental concerns. Owing to its unique composition and electrocatalytic characteristics, it is considered a feasible choice in the pursuit of ecologically sustainable alternatives to fossil fuels. Full article
Show Figures

Graphical abstract

38 pages, 6778 KiB  
Review
Challenges and Opportunities for g-C3N4-Based Heterostructures in the Photodegradation of Environmental Pollutants
by Eduardo Estrada-Movilla, Jhonathan Castillo-Saenz, Benjamín Valdez-Salas, Álvaro Ortiz-Pérez, Ernesto Beltrán-Partida, Jorge Salvador-Carlos and Esneyder Puello-Polo
Catalysts 2025, 15(7), 653; https://doi.org/10.3390/catal15070653 - 4 Jul 2025
Viewed by 646
Abstract
Graphitic carbon nitride (g-C3N4) is emerging as one of the most promising non-metallic semiconductors for the degradation of pollutants in water by photocatalytic processes. Its exceptional reduction–oxidation (redox) potentials and adequate band gap of approximately 2.7 eV give it [...] Read more.
Graphitic carbon nitride (g-C3N4) is emerging as one of the most promising non-metallic semiconductors for the degradation of pollutants in water by photocatalytic processes. Its exceptional reduction–oxidation (redox) potentials and adequate band gap of approximately 2.7 eV give it the ability to absorb in the visible light range. However, the characteristic sensitivity to light absorption is limited, leading to rapid recombination of electron–hole pairs. Therefore, different strategies have been explored to optimize this charge separation, among which the formation of heterostructures based on g-C3N4 is highlighted. This review addresses recent advances in photocatalysis mediated by g-C3N4 heterostructures, considering the synthesis methods enabling the optimization of the morphology and active interface of these materials. Next, the mechanisms of charge transfer are discussed in detail, with special emphasis on type II, type S, and type Z classifications and their influence on the efficiency of photodegradation. Subsequently, the progress in the application of these photocatalysts for the degradation of water pollutants, such as toxic organic dyes, pharmaceutical pollutants, pesticides, and per- and polyfluoroalkyl substances (PFAS), are analyzed, highlighting both experimental advances and remaining challenges. Finally, future perspectives oriented towards the optimization of heterostructures, the efficiency of synthesis methods, and the practical application of these in photocatalytic processes for environmental remediation. Full article
(This article belongs to the Special Issue Design and Synthesis of Nanostructured Catalysts, 3rd Edition)
Show Figures

Figure 1

30 pages, 5199 KiB  
Review
Modification Strategies of g-C3N4-Based Materials for Enhanced Photoelectrocatalytic Degradation of Pollutants: A Review
by Yijie Zhang, Peng Lian, Xinyu Hao, Li Zhang, Lihua Yang, Li Jiang, Kaiyou Zhang, Lei Liao and Aimiao Qin
Inorganics 2025, 13(7), 225; https://doi.org/10.3390/inorganics13070225 - 3 Jul 2025
Viewed by 484
Abstract
Graphite carbon nitride (g-C3N4) is a low band gap non-metallic polymer semiconductor that has broad application prospects and is an ideal material for absorbing visible light, as g-C3N4 materials have strong oxidation properties and are easy [...] Read more.
Graphite carbon nitride (g-C3N4) is a low band gap non-metallic polymer semiconductor that has broad application prospects and is an ideal material for absorbing visible light, as g-C3N4 materials have strong oxidation properties and are easy to modify. The structure formation of g-C3N4-based materials makes a series of photocatalytic synthesis reactions possible and improves photocatalytic reaction activity. In this paper, the development history, structures, and performance of g-C3N4 are briefly introduced, and the modification strategies of g-C3N4 are summarized to improve its photocatalytic and photoelectric catalytic properties via doping, heterojunction construction, etc. The light absorption and utilization of the catalysts are also analyzed in terms of light source conditions, and the application of g-C3N4 and its modified materials in photocatalysis and photocatalytic degradation is reviewed. Full article
Show Figures

Graphical abstract

28 pages, 3287 KiB  
Review
Recent Progress in Photocatalytic Hydrogen Production Using 2D MoS2 Based Materials
by Khursheed Ahmad and Tae Hwan Oh
Catalysts 2025, 15(7), 648; https://doi.org/10.3390/catal15070648 - 2 Jul 2025
Viewed by 722
Abstract
Due to the increase in energy demand, photocatalytic hydrogen (H2) production has received enormous interest from the scientific community due to its simplicity and cost-effectiveness. The photocatalyst (PC) plays a vital role in H2 evolution, and it is well understood [...] Read more.
Due to the increase in energy demand, photocatalytic hydrogen (H2) production has received enormous interest from the scientific community due to its simplicity and cost-effectiveness. The photocatalyst (PC) plays a vital role in H2 evolution, and it is well understood that an efficient PC should have a larger surface area and better charge separation and transport properties. Previously, extensive efforts were made to prepare the efficient PC for photocatalytic H2 production. In some cases, pristine catalyst could not catalyze the catalytic reactions due to a fast recombination rate or poor catalytic behavior. Thus, cocatalysts can be explored to boost the photocatalytic H2 production. In this regard, a promising cocatalyst should have a large surface area, more active sites, decent conductivity, and improved catalytic properties. Molybdenum disulfide (MoS2) is one of the two-dimensional (2D) layered materials that have excellent optical, electrical, and physicochemical properties. MoS2 has been widely utilized as a cocatalyst for the photocatalytic H2 evolution under visible light. Herein, we have reviewed the progress in the fabrication of MoS2 and its composites with metal oxides, perovskite, graphene, carbon nanotubes, graphitic carbon nitrides, polymers, MXenes, metal-organic frameworks, layered double hydroxides, metal sulfides, etc. for photocatalytic H2 evolution. The reports showed that MoS2 is one of the desirable cocatalysts for photocatalytic H2 production applications. The challenges and future perspectives are also mentioned. This study may be beneficial for the researchers working on the design and fabrication of MoS2-based PCs for photocatalytic H2 evolution applications. Full article
Show Figures

Figure 1

15 pages, 4917 KiB  
Article
Synergistic Integration of g-C3N4 with SnS: Unlocking Enhanced Photocatalytic Efficiency and Electrochemical Stability for Dual-Functional Applications
by Aya Ahmed, Farid M. Abdel-Rahim, Fatemah H. Alkallas, Amira Ben Gouider Trabelsi, Shoroog Alraddadi and Abdelaziz M. Aboraia
Catalysts 2025, 15(7), 629; https://doi.org/10.3390/catal15070629 - 27 Jun 2025
Viewed by 441
Abstract
The synthesis of graphitic carbon nitride (g-C3N4) coupled with tin sulfide (SnS) has been identified as an effective method for improving the photocatalytic and electrochemical performance of SnS, a promising material for environmental and energy-related applications. In this study, [...] Read more.
The synthesis of graphitic carbon nitride (g-C3N4) coupled with tin sulfide (SnS) has been identified as an effective method for improving the photocatalytic and electrochemical performance of SnS, a promising material for environmental and energy-related applications. In this study, we focused on how g-C3N4 influences the structural, optical, electrochemical, and functional properties of SnS. XRD and FTIR confirmed the formation of SnS/g-C3N4 heterostructure, while surface morphology analysis by SEM showed proper dispersion of SnS particles over g-C3N4 with a good interface contact. The SnS/g-C3N4 composite itself demonstrated improved photocatalytic performance, with the degradation rate of methylene blue reaching approximately 94% under visible light irradiation compared to the moderate activity of SnS. This enhancement can be credited to the successful charge carrier separation enabled by the type II heterojunction created between SnS and g-C3N4. Moreover, the composite presented improved electrochemical activity with a specific capacitance of 1340 F·g−1 at a scan rate of 10 A·g−1 and good cycling stability, where the capacitance was 92% after 5000 cycles. As such, these SnS/g-C3N4 composites suggest the specific application of this class of material in photocatalytic degradation as well as energy storage, putting forward new effective resolutions to environmental and energy issues. Full article
Show Figures

Graphical abstract

17 pages, 10861 KiB  
Article
Corrosion Behaviors of Ni80A Alloy Valve in Marine Engine Within Ammonia-Rich Environment
by Ying-ying Liu, Guo-zheng Quan, Yan-ze Yu, Wen-jing Ran and Wei Xiong
Materials 2025, 18(13), 3006; https://doi.org/10.3390/ma18133006 - 25 Jun 2025
Viewed by 397
Abstract
Ammonia fuel is regarded as a promising zero-carbon alternative to diesel in next-generation marine engines. However, the high-temperature ammonia-rich environment poses significant corrosion challenges to hot-end components such as valves. This study investigates the corrosion behavior of Ni80A alloy marine valves under the [...] Read more.
Ammonia fuel is regarded as a promising zero-carbon alternative to diesel in next-generation marine engines. However, the high-temperature ammonia-rich environment poses significant corrosion challenges to hot-end components such as valves. This study investigates the corrosion behavior of Ni80A alloy marine valves under the coupled effects of a high temperature and ammonia atmosphere. Using computational fluid dynamics (CFD), the service temperature of the valve and the ammonia concentration distribution inside the engine cylinder were identified. High-temperature corrosion experiments were conducted with a custom-designed setup. Results show that corrosion kinetics accelerated markedly with temperature: the initial corrosion rate at 800 °C was four times that at 500 °C, and the maximum corrosion layer thickness reached 37 μm—double that at lower temperatures. Microstructural analysis revealed a transition from a dense, defect-free corrosion layer at 500 °C to a non-uniform layer with coarse CrN particles and aggregated nitrides at 800 °C. Notably, surface hardness increased at both temperatures, peaking at 590 HV at 500 °C, while matrix hardness at 800 °C declined due to γ′ phase coarsening and grain growth. This work provides detailed insight into the temperature-dependent ammonia corrosion mechanisms of marine Ni-based alloy valves, offering essential data for material design and durability assessment in ammonia-fueled marine engines. Full article
(This article belongs to the Special Issue Advances in Corrosion and Protection of Metallic Materials)
Show Figures

Figure 1

22 pages, 2668 KiB  
Article
2D Hexagonal Boron Nitride (h-BN) and 1D Boron Nitride Nanotubes (BNNTs): Distinct Effects at the Cellular Level in Fish Cell Lines
by Mona Connolly, Emmanuel Flahaut and José María Navas
J. Xenobiot. 2025, 15(4), 97; https://doi.org/10.3390/jox15040097 - 24 Jun 2025
Viewed by 546
Abstract
Hexagonal boron nitride (h-BN) and boron nitride nanotubes (BNNTs) are emerging advanced nanomaterials with analogous structures to graphene and carbon nanotubes, respectively. However, little is known about what effect replacing carbon atoms with boron and nitrogen will have on the materials’ safety profile. [...] Read more.
Hexagonal boron nitride (h-BN) and boron nitride nanotubes (BNNTs) are emerging advanced nanomaterials with analogous structures to graphene and carbon nanotubes, respectively. However, little is known about what effect replacing carbon atoms with boron and nitrogen will have on the materials’ safety profile. This study’s aim was to first identify if multi-walled nanotubes of BN could produce a hazard profile similar to that evidenced already for multi-walled carbon nanotubes (MWCNTs) and secondly if the material when present in a sheet-like structure increases or decreases the hazard profile. Fish are aquatic organisms sensitive to boron compounds; however, the potential hazard following exposure to BN and especially when present in such nanostructures has not yet been investigated. An in vitro testing platform consisting of multiple cell lines of the rainbow trout, Oncorhynchus mykiss (RTH-149, RTG-2, RTL-W1 and RTgill-W1), was used in a first-hazard screening approach for cytotoxicity and to gain information on material–cellular interaction. Clear differences were evidenced in material uptake, leading to plasma membrane disruption accompanied with a loss in metabolic activity for BNNTs at lower exposure concentrations compared to h-BN. As in the case of carbon nanotubes, close attention must be given to potential interferences with assays based on optical readouts. Full article
Show Figures

Graphical abstract

17 pages, 3918 KiB  
Article
One-Step Synthesis of Polymeric Carbon Nitride Films for Photoelectrochemical Applications
by Alberto Gasparotto, Davide Barreca, Chiara Maccato, Ermanno Pierobon and Gian Andrea Rizzi
Nanomaterials 2025, 15(13), 960; https://doi.org/10.3390/nano15130960 - 21 Jun 2025
Viewed by 465
Abstract
Over the last decade, polymeric carbon nitrides (PCNs) have received exponentially growing attention as metal-free photocatalytic platforms for green energy generation and environmental remediation. Although PCNs can be easily synthesized from abundant precursors in a powdered form, progress in the field of photoelectrochemical [...] Read more.
Over the last decade, polymeric carbon nitrides (PCNs) have received exponentially growing attention as metal-free photocatalytic platforms for green energy generation and environmental remediation. Although PCNs can be easily synthesized from abundant precursors in a powdered form, progress in the field of photoelectrochemical applications requires effective methods for the fabrication of PCN films endowed with suitable mechanical stability and modular chemico-physical properties. In this context, as a proof-of-concept, we report herein on a simple and versatile chemical vapor infiltration (CVI) strategy for one-step PCN growth on porous Ni foam substrates, starting from melamine as a precursor compound. Interestingly, tailoring the reaction temperature enabled to control the condensation degree of PCN films from melem/melon hybrids to melon-like materials, whereas the use of different precursor amounts directly affected the mass and morphology of the obtained deposits. Altogether, such features had a remarkable influence on PCN electrochemical performances towards the oxygen evolution reaction (OER), yielding, for the best performing systems, Tafel slopes as low as ≈65 mV/dec and photocurrent density values of ≈1 mA/cm2 at 1.6 V vs. the reversible hydrogen electrode (RHE). Full article
Show Figures

Graphical abstract

30 pages, 8937 KiB  
Review
Graphitic Carbon Nitride-Based S-Scheme Heterojunctions: Recent Advances in Photocatalytic Dye Degradation
by Xiaofang Song, Zhenxing Ma, Zhiyong Wang, Shiyi Jin, Jingding Hu, Penghui Xu and Yijiang Chen
Catalysts 2025, 15(6), 592; https://doi.org/10.3390/catal15060592 - 15 Jun 2025
Viewed by 709
Abstract
With the rapid advancement of industrialization, dye-containing wastewater has emerged as one of the primary pollution sources in aquatic environments, posing a significant threat to ecosystems and human health. S-scheme heterojunction photocatalysis technology, known for its high efficiency and environmental compatibility, is considered [...] Read more.
With the rapid advancement of industrialization, dye-containing wastewater has emerged as one of the primary pollution sources in aquatic environments, posing a significant threat to ecosystems and human health. S-scheme heterojunction photocatalysis technology, known for its high efficiency and environmental compatibility, is considered a strategic solution for addressing environmental pollution challenges. In recent years, significant progress has been made in the development of S-scheme heterojunction photocatalysts based on graphitic carbon nitride (g-C3N4). However, systematic summaries and in-depth analyses of these advancements remain limited. This study provides a comprehensive review of the research progress of g-C3N4-based S-scheme heterojunction systems in the field of photocatalytic dye degradation. It elaborates on the fundamental concepts, operational mechanisms, and representative applications of these systems while exploring the latest advancements in synthesis strategies, catalytic performance optimization, and the underlying mechanisms. Finally, this review discusses the existing challenges and future prospects of g-C3N4-based S-scheme heterojunction photocatalytic materials, aiming to offer valuable insights and guidance for further research in this area. Full article
(This article belongs to the Special Issue Advances in Photocatalytic Degradation of Pollutants in Wastewater)
Show Figures

Graphical abstract

27 pages, 1091 KiB  
Review
Advances in Thermoregulating Textiles: Materials, Mechanisms, and Applications
by Kuok Ho Daniel Tang
Textiles 2025, 5(2), 22; https://doi.org/10.3390/textiles5020022 - 11 Jun 2025
Viewed by 1690
Abstract
Advancements in thermoregulating textiles have been propelled by innovations in nanotechnology, composite materials, and smart fiber engineering. This article reviews recent scholarly papers on experimental passive and active thermoregulating textiles to present the latest advancements in these fabrics, their mechanisms of thermoregulation, and [...] Read more.
Advancements in thermoregulating textiles have been propelled by innovations in nanotechnology, composite materials, and smart fiber engineering. This article reviews recent scholarly papers on experimental passive and active thermoregulating textiles to present the latest advancements in these fabrics, their mechanisms of thermoregulation, and their feasibility for use. The review underscores that phase-change materials enhanced with graphene, boron nitride, and carbon nanofibers offer superior thermal conductivity, phase stability, and flexibility, making them ideal for wearable applications. Shape-stabilized phase-change materials and aerogel-infused fibers have shown promising results in outdoor, industrial, and emergency settings due to their durability and high insulation efficiency. Radiative cooling textiles, engineered with hierarchical nanostructures and Janus wettability, demonstrate passive temperature regulation through selective solar reflection and infrared emission, achieving substantial cooling effects without external energy input. Thermo-responsive, shape-memory materials, and moisture-sensitive polymers enable dynamic insulation and actuation. Liquid-cooling garments and thermoelectric hybrids deliver precise temperature control but face challenges in portability and power consumption. While thermoregulating textiles show promise, the main challenges include achieving scalable manufacturing, ensuring material flexibility, and integrating multiple functions without sacrificing comfort. Future research should focus on hybrid systems combining passive and active mechanisms, user-centric wearability studies, and cost-effective fabrication methods. These innovations hold significant potential for applications in extreme environments, athletic wear, military uniforms, and smart clothing, contributing to energy efficiency, health, and comfort in a warming climate. Full article
Show Figures

Figure 1

20 pages, 3639 KiB  
Article
Efficient Analytical Pretreatment of Cr(VI) in Ethylene Wastewater by Grafting g-C3N4 Material Based on Coupling Agent-Modified Basalt Matrix (Basalt–MTES/g-C3N4)
by Zheng Wang, Mingchang Jia, Yi Ren, Hongmin Ren, Shuhao Liang, Jiaru Sun, Siqi Hao, Jinchuan Li and He Li
Molecules 2025, 30(11), 2477; https://doi.org/10.3390/molecules30112477 - 5 Jun 2025
Viewed by 519
Abstract
This study presents a novel Basalt-based grafted graphitic carbon nitride composite (Basalt–MTES/g-C3N4) for the efficient pretreatment of Cr(VI) in ethylene wastewater. The composite was synthesized by the acid purification of natural Basalt, surface modification with hydroxymethyl triethoxysilane (MTES), and [...] Read more.
This study presents a novel Basalt-based grafted graphitic carbon nitride composite (Basalt–MTES/g-C3N4) for the efficient pretreatment of Cr(VI) in ethylene wastewater. The composite was synthesized by the acid purification of natural Basalt, surface modification with hydroxymethyl triethoxysilane (MTES), and the subsequent grafting of g-C3N4. Characterization confirmed the uniform distribution of nano-sized g-C3N4 particles on a Basalt surface with intact chemical bonding, where 82.63% of melamine participated in g-C3N4 crystallization. The material exhibited a high specific surface area (403.55 m2/g) and mesoporous structure (34.29 nm). Acidic conditions promoted the protonation of amino groups in g-C3N4, significantly enhancing Cr(VI) adsorption via ion exchange. Adsorption kinetics followed the pseudo-second-order model, while isotherm data fitted the Langmuir monolayer adsorption mechanism. The composite achieved 97% Cr(VI) recovery through chromatographic extraction and retained 96.87% removal efficiency after five regeneration cycles. This work demonstrates a cost-effective, recyclable green pretreatment material for high-sensitivity Cr(VI) monitoring in ethylene industry wastewater, offering dual benefits in environmental remediation and regulatory compliance. The design synergizes natural Basalt’s stability with g-C3N4’s adsorption affinity, showing practical potential for sustainable wastewater treatment technologies. Full article
Show Figures

Graphical abstract

Back to TopTop