2D Hexagonal Boron Nitride (h-BN) and 1D Boron Nitride Nanotubes (BNNTs): Distinct Effects at the Cellular Level in Fish Cell Lines
Abstract
1. Introduction
2. Materials and Methods
2.1. Hexagonal Boron Nitride (h-BN) and BNNTs
2.2. Preparation and Characterisation of Exposure Suspensions
2.3. Cell Culture and Exposure
2.4. Interaction with Cells and Uptake
2.5. Cytotoxicity Assays
2.6. Reactive Oxygen Species (ROS) Generation
2.7. Assay Interference Screening Studies
2.8. Data Interpretation and Statistical Analysis
3. Results
3.1. h-BN and BNNT Material Characterization
3.2. Cellular Interaction and Uptake
3.3. Cytotoxicity Assessment
3.3.1. Assay Interference Screening Studies
3.3.2. AlamarBlue (AB) Assay Results (Considering Interferences)
3.3.3. CFDA-AM Assay Results (Considering Interferences)
3.3.4. Neutral Red (NR) Assay Results (Considering Interferences)
3.4. Reactive Oxygen Species (ROS) Level Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
hBN | Hexagonal boron nitride |
BNNT | Boron nitride nanotube |
1D | One dimensional |
2D | Two dimensional |
DCFH-DA | Dichloro-dihydro-fluorescein diacetate |
LDH | Lactate dehydrogenase |
CNT | Carbon nanotube |
ROS | Reactive oxygen species |
MWCNT | Multi-walled carbon nanotubes |
NR | Neutral red |
CFDA-AM | 5-carboxyfluorescein diacetate acetoxymethyl ester |
AB | AlamarBlue |
AFM | Atomic force microscopy |
TEM | Transmission electron microscopy |
PBS | Phosphate-buffered saline |
5-CF | 5-carboxyfluorescein |
DCF | 2′,7′-dichlorofluorescin-diacetate |
LOEC | Lowest observed effect concentration |
OECD | Organisation for Economic Co-operation and Development |
References
- Chen, Y.; Zou, J.; Campbell, S.J.; Caer, G.L. Boron nitride nanotubes: Pronounced resistance to oxidation. Appl. Phys. Lett. 2004, 84, 2430–2432. [Google Scholar] [CrossRef]
- Chao, H.Y.; Nolan, A.M.; Hall, A.T.; Golberg, D.; Park, C.; Yang, W.D.; Mo, Y.; Sharma, R.; Cumings, J. Resistance of Boron Nitride Nanotubes to Radiation-Induced Oxidation. J. Phys. Chem. C Nanomater. Interfaces 2024, 128, 18328–18337. [Google Scholar] [CrossRef]
- Jakubinek, M.B.; Kim, K.S.; Kim, M.J.; Martí, A.A.; Pasquali, M. Recent advances and perspective on boron nitride nanotubes: From synthesis to applications. J. Mater. Res./Pratt’s Guide Ventur. Cap. Sources 2022, 37, 4403–4418. [Google Scholar] [CrossRef]
- Kang, J.H.; Sauti, G.; Park, C.; Yamakov, V.I.; Wise, K.E.; Lowther, S.E.; Fay, C.C.; Thibeault, S.A.; Bryant, R.G. Multifunctional electroactive nanocomposites based on piezoelectric boron nitride nanotubes. ACS Nano 2015, 9, 11942–11950. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, S.; Yapici, N.; Oakley, R.; Sharma, S.; Parashar, V.; Yap, Y.K. Emerging Applications of Boron Nitride Nanotubes in Energy Harvesting, Electronics, and Biomedicine. ACS Omega 2021, 6, 20722–20728. [Google Scholar] [CrossRef]
- Market Research Intellect. Boron Nitride Nanotubes(BNNTs) for Composite Materials Market Size by Product by Application by Geography Competitive Landscape and Forecast. Report ID: 1035872, May 2025, Study Period: 2023–2033. Available online: https://www.marketresearchintellect.com/product/boron-nitride-nanotubes-bnnts-for-composite-materials-market/ (accessed on 10 May 2025).
- Hexagonal Boron Nitride Market Size, Share & Trends Analysis Report by Application (Paints & Coatings, Composites, Lubricants, Personal Care & Cosmetics, Electrical Insulation), By Region, And Segment Forecasts, 2024–2030. Report ID: GVR-4-68040-400-9. Grand View Research. Available online: https://www.grandviewresearch.com/industry-analysis/hexagonal-boron-nitride-market-report (accessed on 10 May 2025).
- Kodali, V.K.; Roberts, J.R.; Shoeb, M.; Wolfarth, M.G.; Bishop, L.; Eye, T.; Barger, M.; Roach, K.A.; Friend, S.; Schwegler-Berry, D.; et al. Acute in vitro and in vivo toxicity of a commercial grade boron nitride nanotube mixture. Nanotoxicology 2017, 11, 1040–1058. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.; Barger, M.; Roach, K.A.; Bowers, L.; Stefaniak, A.B.; Kodali, V.; Glassford, E.; Dunn, K.L.; Dunn, K.H.; Wolfarth, M.; et al. Toxicity evaluation following pulmonary exposure to an as-manufactured dispersed boron nitride nanotube (BNNT) material in vivo. NanoImpact 2020, 19, 100235. [Google Scholar] [CrossRef]
- De Luna La, V.; Loret, T.; He, Y.; Legnani, M.; Lin, H.; Galibert, A.M.; Fordham, A.; Holme, S.; Del Rio Castillo, A.E.; Bonaccorso, F.; et al. Pulmonary toxicity of boron nitride nanomaterials is aspect ratio dependent. ACS Nano 2023, 17, 24919–24935. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.F.; Newman, L.; Jasim, D.; Mukherjee, S.P.; Wang, J.; Vacchi, I.A.; Ménard-Moyon, C.; Bianco, A.; Fadeel, B.; Kostarelos, K.; et al. Size-Dependent pulmonary Impact of thin graphene oxide sheets in mice: Toward Safe-by-Design. Adv. Sci. 2020, 7, 1903200. [Google Scholar] [CrossRef]
- Loret, T.; De Luna La, V.; Fordham, A.; Arshad, A.; Barr, K.; Lozano, N.; Kostarelos, K.; Bussy, C. Innate but Not Adaptive Immunity Regulates Lung Recovery from Chronic Exposure to Graphene Oxide Nanosheets. Adv. Sci. 2022, 9, 2104559. [Google Scholar] [CrossRef]
- Zou, W.; Huo, Y.; Zhang, X.; Jin, C.; Li, X.; Cao, Z. Toxicity of hexagonal boron nitride nanosheets to freshwater algae: Phospholipid membrane damage and carbon assimilation inhibition. J. Hazard. Mater. 2023, 465, 133204. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Cao, X.; Wang, Z.; Dai, Y.; Xing, B. Mechanistic understanding toward the toxicity of graphene-family materials to freshwater algae. Water Res. 2016, 111, 18–27. [Google Scholar] [CrossRef]
- Saxena, P.; Gupta, A.K.; Saharan, V.; Harish, N. Toxicity of boron nitride nanoparticles influencing bio-physicochemical responses in freshwater green algae. Environ. Sci. Pollut. Res. 2022, 30, 23646–23654. [Google Scholar] [CrossRef]
- Da Silva, G.H.; Ji, J.; Maia, M.T.; Mattia, D.; Martinez, D.S.T. Exploring the combined toxicity of boron nitride nanosheets, cadmium and natural organic matter on Daphnia magna. Aquat. Toxicol. 2024, 279, 107198. [Google Scholar] [CrossRef] [PubMed]
- Evariste, L.; Flahaut, E.; Baratange, C.; Barret, M.; Mouchet, F.; Pinelli, E.; Galibert, A.M.; Soula, B.; Gauthier, L. Ecotoxicological assessment of commercial boron nitride nanotubes toward Xenopus laevis tadpoles and host-associated gut microbiota. Nanotoxicology 2020, 15, 35–51. [Google Scholar] [CrossRef] [PubMed]
- Bancel, S.; Cachot, J.; Bon, C.; Rochard, É.; Geffard, O. A critical review of pollution active biomonitoring using sentinel fish: Challenges and opportunities. Environ. Pollut. 2024, 360, 124661. [Google Scholar] [CrossRef]
- Marcuello, C. Present and future opportunities in the use of atomic force microscopy to address the physico-chemical properties of aquatic ecosystems at the nanoscale level. Int. Aquat. Res. 2022, 14, 231–240. [Google Scholar] [CrossRef]
- Zhang, Y.; Chan, C.; Li, Z.; Ma, J.; Meng, Q.; Zhi, C.; Sun, H.; Fan, J. Nanotoxicity of boron nitride nanosheet to bacterial membranes. Langmuir 2019, 35, 6179–6187. [Google Scholar] [CrossRef]
- Lucherelli, M.A.; Qian, X.; Weston, P.; Eredia, M.; Zhu, W.; Samorì, P.; Gao, H.; Bianco, A.; Von Dem Bussche, A. Boron nitride nanosheets can induce water channels across lipid bilayers leading to lysosomal permeabilization. Adv. Mater. 2021, 33, 2103137. [Google Scholar] [CrossRef]
- Liu, S.; Shen, Z.; Wu, B.; Yu, Y.; Hou, H.; Zhang, X.; Ren, H. Cytotoxicity and Efflux Pump Inhibition Induced by Molybdenum Disulfide and Boron Nitride Nanomaterials with Sheetlike Structure. Environ. Sci. Technol. 2017, 51, 10834–10842. [Google Scholar] [CrossRef]
- Horváth, L.; Magrez, A.; Golberg, D.; Zhi, C.; Bando, Y.; Smajda, R.; Horváth, E.; Forró, L.; Schwaller, B. In vitro investigation of the cellular toxicity of boron nitride nanotubes. ACS Nano 2011, 5, 3800–3810. [Google Scholar] [CrossRef] [PubMed]
- Augustine, J.; Cheung, T.; Gies, V.; Boughton, J.; Chen, M.; Jakubek, Z.J.; Walker, S.; Martinez-Rubi, Y.; Simard, B.; Zou, S. Assessing size-dependent cytotoxicity of boron nitride nanotubes using a novel cardiomyocyte AFM assay. Nanoscale Adv. 2019, 1, 1914–1923. [Google Scholar] [CrossRef]
- Lee, S.; Kim, M.J.; Ahn, S.; Koh, B. Purification of boron nitride nanotubes enhances biological application properties. Int. J. Mol. Sci. 2020, 21, 1529. [Google Scholar] [CrossRef]
- Çal, T.; Bucurgat, Ü.Ü. In vitro investigation of the effects of boron nitride nanotubes and curcumin on DNA damage. DARU J. Pharm. Sci. 2019, 27, 203–218. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wu, P.; Rousseas, M.; Okawa, D.; Gartner, Z.; Zettl, A.; Bertozzi, C.R. Boron Nitride Nanotubes Are Noncytotoxic and Can Be Functionalized for Interaction with Proteins and Cells. J. Am. Chem. Soc. 2009, 131, 890–891. [Google Scholar] [CrossRef] [PubMed]
- Horváth, L.; Magrez, A.; Forró, L.; Schwaller, B. Cell type dependence of carbon based nanomaterial toxicity. Phys. Status Solidi (B) 2010, 247, 3059–3062. [Google Scholar] [CrossRef]
- Domanico, M.; Fukuto, A.; Tran, L.M.; Bustamante, J.; Edwards, P.C.; Pinkerton, K.E.; Thomasy, S.M.; Van Winkle, L.S. Cytotoxicity of 2D engineered nanomaterials in pulmonary and corneal epithelium. NanoImpact 2022, 26, 100404. [Google Scholar] [CrossRef]
- Ciofani, G.; Danti, S.; D’Alessandro, D.; Moscato, S.; Menciassi, A. Assessing cytotoxicity of boron nitride nanotubes: Interference with the MTT assay. Biochem. Biophys. Res. Commun. 2010, 394, 405–411. [Google Scholar] [CrossRef]
- OECD. Test No. 249: Fish Cell Line Acute Toxicity—The RTgill-W1 Cell Line Assay, OECD Guidelines for the Testing of Chemicals, Section 2; OECD Publishing: Paris, France, 2021. [Google Scholar] [CrossRef]
- Wörle-Knirsch, J.M.; Pulskamp, K.; Krug, H.F. Oops they did it again! Carbon nanotubes hoax Scientists in viability assays. Nano Lett. 2006, 6, 1261–1268. [Google Scholar] [CrossRef]
- Kroll, A.; Pillukat, M.H.; Hahn, D.; Schnekenburger, J. Interference of engineered nanoparticles with in vitro toxicity assays. Arch. Toxicol. 2012, 86, 1123–1136. [Google Scholar] [CrossRef]
- Ong, K.J.; MacCormack, T.J.; Clark, R.J.; Ede, J.D.; Ortega, V.A.; Felix, L.C.; Dang, M.K.; Ma, G.; Fenniri, H.; Veinot, J.G.; et al. Widespread nanoparticle-assay interference: Implications for nanotoxicity testing. PLoS ONE 2014, 9, e90650. [Google Scholar] [CrossRef]
- Andraos, C.; Yu, I.J.; Gulumian, M. Interference: A Much-Neglected aspect in High-Throughput Screening of nanoparticles. Int. J. Toxicol. 2020, 39, 397–421. [Google Scholar] [CrossRef] [PubMed]
- Yamani, N.E.; Rundén-Pran, E.; Varet, J.; Beus, M.; Dusinska, M.; Fessard, V.; Moschini, E.; Serchi, T.; Cimpan, M.R.; Lynch, I.; et al. Hazard assessment of nanomaterials using in vitro toxicity assays: Guidance on potential assay interferences and mitigating actions to avoid biased results. Nano Today 2024, 55, 102215. [Google Scholar] [CrossRef]
- Boron Nitride Nanotube Purification. U.S. Patent US11629054B2, 18 August 2023.
- Lee, L.E.J.; Clemons, J.H.; Bechtel, D.G.; Caldwell, S.J.; Han, K.; Pasitschniak-Arts, M.; Mosser, D.D.; Bols, N.C. Development and characterization of a rainbow trout liver cell line expressing cytochrome P450-dependent monooxygenase activity. Cell Biol. Toxicol. 1993, 9, 279–294. [Google Scholar] [CrossRef] [PubMed]
- Malhão, F.; Urbatzka, R.; Navas, J.; Cruzeiro, C.; Monteiro, R.; Rocha, E. Cytological, immunocytochemical, ultrastructural and growth characterization of the rainbow trout liver cell line RTL-W1. Tissue Cell 2013, 45, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Thibaut, R.; Schnell, S.; Porte, C. Assessment of metabolic capabilities of PLHC-1 and RTL-W1 fish liver cell lines. Cell Biol. Toxicol. 2009, 25, 611–622. [Google Scholar] [CrossRef]
- Bols, N.C.; Barlian, A.; Chirino-trejo, M.; Caldwell, S.J.; Goegan, P.; Lee, L.E.J. Development of a cell line from primary cultures of rainbow trout, Oncorhynchus mykiss (Walbaum), gills. J. Fish Dis. 1994, 17, 601–611. [Google Scholar] [CrossRef]
- Fryer, J.; Mccain, B.; Leong, J. A Cell Line Derived from Rainbow Trout (Salmo gairdneri) Hepatoma. Fish Pathol. 1981, 15, 193–200. [Google Scholar] [CrossRef]
- Wolf, K.; Quimby, M.C. Established Eurythermic Line of Fish Cells in vitro. Science 1962, 135, 1065–1066. [Google Scholar] [CrossRef]
- Dayeh, V.R.; Bols, N.C.; Tanneberger, K.; Schirmer, K.; Lee, L.E. The use of fish-derived cell lines for investigation of environmental contaminants: An update following OECD’s fish toxicity testing framework No. 171. Curr. Protoc. Toxicol. 2013, 56, 1.5.1–1.5.20. [Google Scholar] [CrossRef]
- Lammel, T.; Boisseaux, P.; Fernández-Cruz, M.; Navas, J.M. Internalization and cytotoxicity of graphene oxide and carboxyl graphene nanoplatelets in the human hepatocellular carcinoma cell line Hep G2. Part. Fibre Toxicol. 2013, 10, 27. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Zhang, D.; Yap, Y.K. Functionalization, dispersion, and cutting of boron nitride nanotubes in water. J. Phys. Chem. C 2011, 116, 1798–1804. [Google Scholar] [CrossRef]
- Wang, H.; Joseph, J.A. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free. Radic. Biol. Med. 1999, 27, 612–616. [Google Scholar] [CrossRef] [PubMed]
- Boyles, M.S.; Young, L.; Brown, D.M.; MacCalman, L.; Cowie, H.; Moisala, A.; Smail, F.; Smith, P.J.; Proudfoot, L.; Windle, A.H.; et al. Multi-walled carbon nanotube induced frustrated phagocytosis, cytotoxicity and pro-inflammatory conditions in macrophages are length dependent and greater than that of asbestos. Toxicol. In Vitro 2015, 29, 1513–1528. [Google Scholar] [CrossRef]
- Facciolà, A.; Visalli, G.; La Maestra, S.; Ceccarelli, M.; D’Aleo, F.; Nunnari, G.; Pellicanò, G.F.; Di Pietro, A. Carbon nanotubes and central nervous system: Environmental risks, toxicological aspects and future perspectives. Environ. Toxicol. Pharmacol. 2019, 65, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Lacerda, L.; Ali-Boucetta, H.; Kraszewski, S.; Tarek, M.; Prato, M.; Ramseyer, C.; Kostarelos, K.; Bianco, A. How do functionalized carbon nanotubes land on, bind to and pierce through model and plasma membranes. Nanoscale 2013, 5, 10242–10250. [Google Scholar] [CrossRef]
- Shi, X.; von dem Bussche, A.; Hurt, R.H.; Kane, A.B.; Gao, H. Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nat. Nanotechnol. 2011, 6, 714–719. [Google Scholar] [CrossRef]
- Bermejo-Nogales, A.; Fernández-Cruz, M.; Navas, J. Fish cell lines as a tool for the ecotoxicity assessment and ranking of engineered nanomaterials. Regul. Toxicol. Pharmacol. 2017, 90, 297–307. [Google Scholar] [CrossRef]
- Liu, D.; Wang, L.; Wang, Z.; Cuschieri, A. Different cellular response mechanisms contribute to the length-dependent cytotoxicity of multi-walled carbon nanotubes. Nanoscale Res. Lett. 2012, 7, 361. [Google Scholar] [CrossRef]
- Xie, X.; Hou, Z.; Duan, G.; Zhang, S.; Zhou, H.; Yang, Z.; Zhou, R. Boron nitride nanosheets elicit significant hemolytic activity via destruction of red blood cell membranes. Colloids Surf. B Biointerfaces 2021, 203, 111765. [Google Scholar] [CrossRef]
- Mao, Y.; Guo, Q.; Geng, X.; Zeng, H.; Liu, S.; Yin, X.; Yang, Z. Hexagonal boron nitride nanodots inhibit cell proliferation of HUVECs and the underlying mechanism. Colloids Interface Sci. Commun. 2023, 56, 100738. [Google Scholar] [CrossRef]
- Zheng, T.; Xu, Y.; Yan, C.; Zhang, S.; Guo, Y.; Hua, S. Functional group driven adsorption of neutral red by boron nitride nanoparticles: Experimental and theoretical studies. Mater. Res. Express 2019, 6, 0950a1. [Google Scholar] [CrossRef]
- Ponti, J.; Kinsner-Ovaskainen, A.; Norlen, H.; Altmeyer, S.; Andreoli, C.; Bogni, A.; Chevillard, S.; De Angelis, I.; Chung, S.; Eom, I.; et al. Interlaboratory Comparison Study of the Colony Forming Efficiency Assay for Assessing Cytotoxicity of Nanomaterials; EUR 27009; Publications Office of the European Union: Luxembourg, 2014; 76p, ISSN 1831-9424. JRC92910. [Google Scholar]
- Otero-González, L.; Sierra-Alvarez, R.; Boitano, S.; Field, J.A. Application and validation of an Impedance-Based real time cell analyzer to measure the toxicity of nanoparticles impacting human bronchial epithelial cells. Environ. Sci. Technol. 2012, 46, 10271–10278. [Google Scholar] [CrossRef]
- Mateti, S.; Wong, C.S.; Liu, Z.; Yang, W.; Li, Y.; Li, L.H.; Chen, Y. Biocompatibility of boron nitride nanosheets. Nano Res. 2017, 11, 334–342. [Google Scholar] [CrossRef]
- Simon, A.; Maletz, S.X.; Hollert, H.; Schäffer, A.; Maes, H.M. Effects of multiwalled carbon nanotubes and triclocarban on several eukaryotic cell lines: Elucidating cytotoxicity, endocrine disruption, and reactive oxygen species generation. Nanoscale Res. Lett. 2014, 9, 396. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K.; Obara, S.; Maru, J.; Endoh, S. Cytotoxicity profiles of multi-walled carbon nanotubes with different physico-chemical properties. Toxicol. Mech. Methods 2020, 30, 477–489. [Google Scholar] [CrossRef]
- Septiadi, D.; Rodriguez-Lorenzo, L.; Balog, S.; Spuch-Calvar, M.; Spiaggia, G.; Taladriz-Blanco, P.; Barosova, H.; Chortarea, S.; Clift, M.J.D.; Teeguarden, J.; et al. Quantification of carbon nanotube doses in adherent cell culture assays using UV-VIS-NIR spectroscopy. Nanomaterials 2019, 9, 1765. [Google Scholar] [CrossRef]
- Wils, R.S.; Jacobsen, N.R.; Di Ianni, E.; Roursgaard, M.; Møller, P. Reactive oxygen species production, genotoxicity and telomere length in FE1-Muta™Mouse lung epithelial cells exposed to carbon nanotubes. Nanotoxicology 2021, 15, 661–672. [Google Scholar] [CrossRef]
- Di Ianni, E.; Erdem, J.S.; Møller, P.; Sahlgren, N.M.; Poulsen, S.S.; Knudsen, K.B.; Zienolddiny, S.; Saber, A.T.; Wallin, H.; Vogel, U.; et al. In vitro-in vivo correlations of pulmonary inflammogenicity and genotoxicity of MWCNT. Part. Fibre Toxicol. 2021, 18, 25. [Google Scholar] [CrossRef]
- Carlin, M.; Kaur, J.; Ciobanu, D.Z.; Song, Z.; Olsson, M.; Totu, T.; Gupta, G.; Peng, G.; González, V.J.; Janica, I.; et al. Hazard assessment of hexagonal boron nitride and hexagonal boron nitride reinforced thermoplastic polyurethane composites using human skin and lung cells. J. Hazard. Mater. 2024, 473, 134686. [Google Scholar] [CrossRef]
- Wang, L.; Luanpitpong, S.; Castranova, V.; Tse, W.; Lu, Y.; Pongrakhananon, V.; Rojanasakul, Y. Carbon nanotubes induce malignant transformation and tumorigenesis of human lung epithelial cells. Nano Lett. 2011, 11, 2796–2803. [Google Scholar] [CrossRef] [PubMed]
- Şen, Ö.; Emanet, M.; Çulha, M. One-Step synthesis of hexagonal boron nitrides, their crystallinity and biodegradation. Front. Bioeng. Biotechnol. 2018, 6, 83. [Google Scholar] [CrossRef] [PubMed]
- Kurapati, R.; Backes, C.; Ménard-Moyon, C.; Coleman, J.N.; Bianco, A. White Graphene undergoes Peroxidase Degradation. Angew. Chem. Int. Ed. 2016, 55, 5506–5511. [Google Scholar] [CrossRef]
- Lobo, K.; Sahoo, P.; Kurapati, R.; Krishna K, V.; Patil, V.; Pandit, A.; Matte, H.S.S.R. Additive-free Aqueous Dispersions of Two-Dimensional Materials with Glial Cell Compatibility and Enzymatic Degradability. Chem.—Eur. J. 2021, 27, 7434–7443. [Google Scholar] [CrossRef] [PubMed]
- ECHA Registry. Available online: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/78377 (accessed on 15 March 2025).
- Vranic, S.; Kurapati, R.; Kostarelos, K.; Bianco, A. Biological and environmental degradation of two-dimensional materials. Nature reviews. Chemistry 2025, 9, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Kalman, J.; Merino, C.; Fernández-Cruz, M.L.; Navas, J.M. Usefulness of fish cell lines for the initial characterization of toxicity and cellular fate of graphene-related materials (carbon nanofibers and graphene oxide). Chemosphere 2018, 218, 347–358. [Google Scholar] [CrossRef]
- Zhang, Y.; Ali, S.F.; Dervishi, E.; Xu, Y.; Li, Z.; Casciano, D.; Biris, A.S. Cytotoxicity effects of graphene and Single-Wall carbon nanotubes in neural Phaeochromocytoma-Derived PC12 cells. ACS Nano 2010, 4, 3181–3186. [Google Scholar] [CrossRef]
Time (h) | Dispersion Medium | Concentration (µg/mL) | Z-ave a (nm) | PDI b | Mean Diameter (nm) Peak 1 c | Mean Diameter (nm) Peak 2 c |
---|---|---|---|---|---|---|
h-BN | ||||||
Stock Mili-Q | 2000 | 394 ± 12 | 0.263 | 456 ± 65 | ||
24 h | L-15 | 200 | 486 ± 89 | 0.226 | 591 ± 112 | |
24 h | EMEM | 200 | 460 ± 9 | 0.258 | 550 ± 38 | |
BNNT | ||||||
Stock Mili-Q | 2000 | 450 ± 20 | 0.568 | 1195 ± 187 | 243 ± 59 | |
24 h | L-15 | 200 | 463 ± 11 | 0.715 | 1280 ± 111 | 262 ± 31 |
24 h | EMEM | 200 | 468 ± 16 | 0.506 | 1314 ± 73 | 236 ± 23 |
Concentration (µg/mL) | 1.56 | 3.12 | 6.25 | 12.5 | 25 | 50 | 100 | 200 |
---|---|---|---|---|---|---|---|---|
Autofluorescence (% compared to control; control: 100%) AlamarBlue Assay | ||||||||
h-BN | 96 | 97 | 100 | 107 | 117 | 144 | 199 | 284 |
BNNT | 100 | 101 | 103 | 107 | 112 | 122 | 134 | 160 |
CFDA-AM assay | ||||||||
h-BN | 95 | 95 | 95 | 94 | 95 | 95 | 97 | 101 |
BNNT | 94 | 95 | 95 | 101 | 106 | 122 | 137 | 167 |
Neutral red uptake assay | ||||||||
h-BN | 100 | 108 | 100 | 100 | 108 | 133 | 167 | 250 |
BNNT | 108 | 108 | 108 | 125 | 125 | 125 | 125 | 150 |
Fluorescence quenching (% compared to control; control: 100%) AlamarBlue Assay | ||||||||
h-BN | 100 | 100 | 100 | 102 | 103 | 103 | 98 | 101 |
BNNT | 96 | 98 | 98 | 97 | 96 | 92 | 84 | 72 |
CFDA-AM assay | ||||||||
h-BN | 99 | 101 | 101 | 100 | 99 | 99 | 91 | 93 |
BNNT | 107 | 106 | 104 | 104 | 104 | 102 | 104 | 107 |
Neutral red uptake assay | ||||||||
h-BN | 100 | 102 | 102 | 102 | 102 | 103 | 97 | 101 |
BNNT | 100 | 102 | 103 | 104 | 100 | 95 | 90 | 82 |
Adsorption interference (% compared to control; control: 100%) AlamarBlue Assay | ||||||||
h-BN | 87 | 88 | 90 | 94 | 92 | 88 | 89 | 99 |
BNNT | 99 | 100 | 104 | 99 | 100 | 99 | 98 | 98 |
CFDA-AM assay | ||||||||
h-BN | 84 | 90 | 90 | 100 | 88 | 90 | 91 | 92 |
BNNT | 89 | 83 | 81 | 80 | 74 | 64 | 53 | 42 |
Neutral red uptake assay | ||||||||
h-BN | 98 | 100 | 100 | 99 | 100 | 97 | 95 | 90 |
BNNT | 104 | 102 | 101 | 101 | 99 | 99 | 94 | 89 |
Concentration (µg/mL) | 1.56 | 3.12 | 6.25 | 12.5 | 25 | 50 | 100 | 200 |
---|---|---|---|---|---|---|---|---|
DCFH-DA assay Autofluorescence (% compared to control; control: 100%) | ||||||||
h-BN | 98 | 100 | 100 | 98 | 100 | 100 | 103 | 107 |
BNNT | 105 | 102 | 110 | 106 | 106 | 111 | 136 | 162 |
Fluorescence quenching | ||||||||
h-BN | 106 | 102 | 105 | 110 | 112 | 115 | 116 | 120 |
BNNT | 103 | 102 | 99 | 97 | 84 | 62 | 51 | 49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Connolly, M.; Flahaut, E.; Navas, J.M. 2D Hexagonal Boron Nitride (h-BN) and 1D Boron Nitride Nanotubes (BNNTs): Distinct Effects at the Cellular Level in Fish Cell Lines. J. Xenobiot. 2025, 15, 97. https://doi.org/10.3390/jox15040097
Connolly M, Flahaut E, Navas JM. 2D Hexagonal Boron Nitride (h-BN) and 1D Boron Nitride Nanotubes (BNNTs): Distinct Effects at the Cellular Level in Fish Cell Lines. Journal of Xenobiotics. 2025; 15(4):97. https://doi.org/10.3390/jox15040097
Chicago/Turabian StyleConnolly, Mona, Emmanuel Flahaut, and José María Navas. 2025. "2D Hexagonal Boron Nitride (h-BN) and 1D Boron Nitride Nanotubes (BNNTs): Distinct Effects at the Cellular Level in Fish Cell Lines" Journal of Xenobiotics 15, no. 4: 97. https://doi.org/10.3390/jox15040097
APA StyleConnolly, M., Flahaut, E., & Navas, J. M. (2025). 2D Hexagonal Boron Nitride (h-BN) and 1D Boron Nitride Nanotubes (BNNTs): Distinct Effects at the Cellular Level in Fish Cell Lines. Journal of Xenobiotics, 15(4), 97. https://doi.org/10.3390/jox15040097