Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,074)

Search Parameters:
Keywords = cable analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 9663 KiB  
Article
Investigation on Structural Performance of Integral Steel Wall Plate Structure in Cable–Pylon Anchorage Zone
by Chen Liang, Yuqing Liu, Yimin Liu and Chi Lu
Appl. Sci. 2025, 15(15), 8672; https://doi.org/10.3390/app15158672 (registering DOI) - 5 Aug 2025
Abstract
To enhance the bearing capacity of cable–pylon anchorage zones in cable-stayed bridges, this paper proposes the integral steel wall plate (IWP) structure and investigates the structural performance of its application in anchorage zones with a steel anchor beam and with a steel anchor [...] Read more.
To enhance the bearing capacity of cable–pylon anchorage zones in cable-stayed bridges, this paper proposes the integral steel wall plate (IWP) structure and investigates the structural performance of its application in anchorage zones with a steel anchor beam and with a steel anchor box. The proposed structure contains an end plate, a surface plate, and several perforated side plates, forming steel cabins that encase the concrete pylon wall, where the steel and concrete are connected by perfobond connectors on side plates. A half-scaled experiment and a finite element analysis were first conducted on the IWP with the steel anchor beam to study the deformation at the steel–concrete interface, as well as the stress distribution in steel plates and rebars. The results were compared with experimental data of a conventional type of anchorage zone. Then, finite element models of anchorages with steel anchor boxes were established based on the geometries of an as-built bridge, and the performance of the IWP structure was compared with conventional details. Finally, the effects of plate thickness and connector arrangement were investigated. Results show that the proposed IWP structure offers excellent performance when applied with an anchor beam or anchor box, and it can effectively reduce principal tensile stress on the concrete pylon wall compared with conventional anchorage details. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

18 pages, 7499 KiB  
Article
Transformer Winding Fault Locating Using Frequency Domain Reflectometry (FDR) Technology
by Hao Yun, Yizhou Zhang, Yufei Sun, Liang Wang, Lulin Xu, Daning Zhang and Jialu Cheng
Electronics 2025, 14(15), 3117; https://doi.org/10.3390/electronics14153117 - 5 Aug 2025
Abstract
Detecting power transformer winding degradations at an early stage is very important for the safe operation of nuclear power plants. Most transformer failures are caused by insulation breakdown; the winding turn-to-turn short circuit fault is frequently encountered. Experience has shown that routine testing [...] Read more.
Detecting power transformer winding degradations at an early stage is very important for the safe operation of nuclear power plants. Most transformer failures are caused by insulation breakdown; the winding turn-to-turn short circuit fault is frequently encountered. Experience has shown that routine testing techniques, e.g., winding resistance, leakage inductance, and sweep frequency response analysis (SFRA), are not sensitive enough to identify minor turn-to-turn short defects. The SFRA technique is effective only if the fault is in such a condition that the flux distribution in the core is prominently distorted. This paper proposes the frequency domain reflectometry (FDR) technique for detecting and locating transformer winding defects. FDR measures the wave impedance and its change along the measured windings. The wire over a plane model is selected as the transmission line model for the transformer winding. The effectiveness is verified through lab experiments on a twist pair cable simulating the transformer winding and field testing on a real transformer. The FDR technique successfully identified and located the turn-to-turn short fault that was not detected by other testing techniques. Using FDR as a complementary tool for winding condition assessment will be beneficial. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

11 pages, 1267 KiB  
Article
Universal Screening Criteria for VIV of Free Spans, V*
by Hayden Marcollo, Matthew Behan and Craig Dillon-Gibbons
J. Mar. Sci. Eng. 2025, 13(8), 1501; https://doi.org/10.3390/jmse13081501 - 5 Aug 2025
Abstract
Vortex-induced vibrations (VIVs) pose significant risks to the structural integrity of subsea cables and pipelines under free-span conditions. It is extremely helpful to be able to screen for VIV and understand for a particular cable or pipeline what the minimum free-span threshold lengths [...] Read more.
Vortex-induced vibrations (VIVs) pose significant risks to the structural integrity of subsea cables and pipelines under free-span conditions. It is extremely helpful to be able to screen for VIV and understand for a particular cable or pipeline what the minimum free-span threshold lengths are beyond which in-line and/or cross-flow VIV can be excited, causing fatigue problems. To date screening is a more complex and detailed task. This paper introduces a universal dimensionless velocity, V*, and one graph that can be used across all types of VIV free spans to quickly assess minimum free-span threshold lengths. Natural frequencies are not required to be calculated for screening each time, as they are implicit in the curve. The universal criteria are developed via non-dimensional analysis to establish the significant physical mechanisms, after which the relationships are populated, forming a single curve for in-line and for cross-flow VIV with a typical mass ratio and a conservative zero as-laid tension case. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Graphical abstract

24 pages, 59662 KiB  
Article
Numerical Analysis of Composite Stiffened NiTiNOL-Steel Wire Ropes and Panels Undergoing Nonlinear Vibrations
by Teguh Putranto, Totok Yulianto, Septia Hardy Sujiatanti, Dony Setyawan, Ahmad Fauzan Zakki, Muhammad Zubair Muis Alie and Wibowo Wibowo
Modelling 2025, 6(3), 77; https://doi.org/10.3390/modelling6030077 - 4 Aug 2025
Abstract
This research explores the application of NiTiNOL-steel (NiTi–ST) wire ropes as nonlinear damping devices for mitigating vibrations in composite stiffened panels. A dynamic model is formulated by coupling the composite panel with a modified Bouc–Wen hysteresis representation and employing the first-order shear deformation [...] Read more.
This research explores the application of NiTiNOL-steel (NiTi–ST) wire ropes as nonlinear damping devices for mitigating vibrations in composite stiffened panels. A dynamic model is formulated by coupling the composite panel with a modified Bouc–Wen hysteresis representation and employing the first-order shear deformation theory (FSDT), based on Hamilton’s principle. Using the Galerkin truncation method (GTM), the model is converted into a system of nonlinear ordinary differential equations. The dynamic response to axial harmonic excitations is analyzed, emphasizing the vibration reduction provided by the embedded NiTi–ST ropes. Finite element analysis (FEA) validates the model by comparing natural frequencies and force responses with and without ropes. A newly developed experimental apparatus demonstrates that NiTi–ST cables provide outstanding vibration damping while barely affecting the system’s inherent frequency. The N3a configuration of NiTi–ST ropes demonstrates optimal vibration reduction, influenced by excitation frequency, amplitude, length-to-width ratio, and composite layering. Full article
(This article belongs to the Section Modelling in Engineering Structures)
Show Figures

Figure 1

27 pages, 4883 KiB  
Article
Stochastic Vibration of Damaged Cable System Under Random Loads
by Yihao Wang, Wei Li and Drazan Kozak
Vibration 2025, 8(3), 44; https://doi.org/10.3390/vibration8030044 - 4 Aug 2025
Abstract
This study proposes an integrated framework that combines nonlinear stochastic vibration analysis with reliability assessment to address the safety issues of cable systems under damage conditions. First of all, a mathematical model of the damaged cable is established by introducing damage parameters, and [...] Read more.
This study proposes an integrated framework that combines nonlinear stochastic vibration analysis with reliability assessment to address the safety issues of cable systems under damage conditions. First of all, a mathematical model of the damaged cable is established by introducing damage parameters, and its static configuration is determined. Using the Pearl River Huangpu Bridge as a case study, the accuracy of the analytical solution for the cable’s sag displacement is validated through the finite difference method (FDM). Furthermore, a quantitative relationship between the damage parameters and structural response under stochastic excitation is developed, and the nonlinear stochastic dynamic equations governing the in-plane and out-of-plane motions of the damaged cable are derived. Subsequently, a Gaussian Radial Basis Function Neural Network (GRBFNN) method is employed to solve for the steady-state probability density function of the system response, enabling a detailed analysis of how various damage parameters affect structural behavior. Finally, the First-Order and Second-Order Reliability Method (FORM/SORM) are used to compute the reliability index and failure probability, which are further validated using Monte Carlo simulation (MCS). Results show that the severity parameter η shows the highest sensitivity in influencing the failure probability among the damage parameters. For the system of the Pearl River Huangpu bridge, an increase in the damage extent δ from 0.1 to 0.4 can reduce the reliability-based service life of by approximately 40% under fixed values of the damage severity and location, and failure risk is highest when the damage is located at the midspan of the cable. This study provides a theoretical framework from the point of stochastic vibration for evaluating the response and associated reliability of mechanical systems; the results can be applied in practice with guidance for the engineering design and avoid potential damages of suspended cables. Full article
Show Figures

Figure 1

27 pages, 39231 KiB  
Article
Study on the Distribution Characteristics of Thermal Melt Geological Hazards in Qinghai Based on Remote Sensing Interpretation Method
by Xing Zhang, Zongren Li, Sailajia Wei, Delin Li, Xiaomin Li, Rongfang Xin, Wanrui Hu, Heng Liu and Peng Guan
Water 2025, 17(15), 2295; https://doi.org/10.3390/w17152295 - 1 Aug 2025
Viewed by 139
Abstract
In recent years, large-scale linear infrastructure developments have been developed across hundreds of kilometers of permafrost regions on the Qinghai–Tibet Plateau. The implementation of major engineering projects, including the Qinghai–Tibet Highway, oil pipelines, communication cables, and the Qinghai–Tibet Railway, has spurred intensified research [...] Read more.
In recent years, large-scale linear infrastructure developments have been developed across hundreds of kilometers of permafrost regions on the Qinghai–Tibet Plateau. The implementation of major engineering projects, including the Qinghai–Tibet Highway, oil pipelines, communication cables, and the Qinghai–Tibet Railway, has spurred intensified research into permafrost dynamics. Climate warming has accelerated permafrost degradation, leading to a range of geological hazards, most notably widespread thermokarst landslides. This study investigates the spatiotemporal distribution patterns and influencing factors of thermokarst landslides in Qinghai Province through an integrated approach combining field surveys, remote sensing interpretation, and statistical analysis. The study utilized multi-source datasets, including Landsat-8 imagery, Google Earth, GF-1, and ZY-3 satellite data, supplemented by meteorological records and geospatial information. The remote sensing interpretation identified 1208 cryogenic hazards in Qinghai’s permafrost regions, comprising 273 coarse-grained soil landslides, 346 fine-grained soil landslides, 146 thermokarst slope failures, 440 gelifluction flows, and 3 frost mounds. Spatial analysis revealed clusters of hazards in Zhiduo, Qilian, and Qumalai counties, with the Yangtze River Basin and Qilian Mountains showing the highest hazard density. Most hazards occur in seasonally frozen ground areas (3500–3900 m and 4300–4900 m elevation ranges), predominantly on north and northwest-facing slopes with gradients of 10–20°. Notably, hazard frequency decreases with increasing permafrost stability. These findings provide critical insights for the sustainable development of cold-region infrastructure, environmental protection, and hazard mitigation strategies in alpine engineering projects. Full article
Show Figures

Figure 1

30 pages, 12322 KiB  
Article
Dynamic Modeling and Validation of Dual-Cable Double-Pendulum Systems for Gantry Cranes
by Bowen Jin, Ji Zeng, Pan Gao, He Zhang and Shenwei Ge
Machines 2025, 13(8), 676; https://doi.org/10.3390/machines13080676 - 1 Aug 2025
Viewed by 158
Abstract
This paper presents a novel dynamic modeling framework for gantry crane systems based on the cart double pendulum with dual cables (CDPD) model. The CDPD model systematically incorporates the effects of dual suspension cables, equalizer beams, and closed-chain kinematic constraints, enabling an accurate [...] Read more.
This paper presents a novel dynamic modeling framework for gantry crane systems based on the cart double pendulum with dual cables (CDPD) model. The CDPD model systematically incorporates the effects of dual suspension cables, equalizer beams, and closed-chain kinematic constraints, enabling an accurate simulation of both symmetric and asymmetric lifting scenarios. Utilizing Kane’s method, the model efficiently handles redundant coordinates and holonomic constraints, resulting in a compact and numerically robust formulation. Validation results demonstrate strict energy conservation and consistency with traditional models in limiting cases. The proposed approach provides a unified and extensible foundation for the advanced analysis, control, and optimization of large-scale gantry crane operations. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

21 pages, 4688 KiB  
Article
Nondestructive Inspection of Steel Cables Based on YOLOv9 with Magnetic Flux Leakage Images
by Min Zhao, Ning Ding, Zehao Fang, Bingchun Jiang, Jiaming Zhong and Fuqin Deng
J. Sens. Actuator Netw. 2025, 14(4), 80; https://doi.org/10.3390/jsan14040080 - 1 Aug 2025
Viewed by 222
Abstract
The magnetic flux leakage (MFL) method is widely acknowledged as a highly effective non-destructive evaluation (NDE) technique for detecting local damage in ferromagnetic structures such as steel wire ropes. In this study, a multi-channel MFL sensor module was developed, incorporating a purpose-designed Hall [...] Read more.
The magnetic flux leakage (MFL) method is widely acknowledged as a highly effective non-destructive evaluation (NDE) technique for detecting local damage in ferromagnetic structures such as steel wire ropes. In this study, a multi-channel MFL sensor module was developed, incorporating a purpose-designed Hall sensor array and magnetic yokes specifically shaped for steel cables. To validate the proposed damage detection method, artificial damages of varying degrees were inflicted on wire rope specimens through experimental testing. The MFL sensor module facilitated the scanning of the damaged specimens and measurement of the corresponding MFL signals. In order to improve the signal-to-noise ratio, a comprehensive set of signal processing steps, including channel equalization and normalization, was implemented. Subsequently, the detected MFL distribution surrounding wire rope defects was transformed into MFL images. These images were then analyzed and processed utilizing an object detection method, specifically employing the YOLOv9 network, which enables accurate identification and localization of defects. Furthermore, a quantitative defect detection method based on image size was introduced, which is effective for quantifying defects using the dimensions of the anchor frame. The experimental results demonstrated the effectiveness of the proposed approach in detecting and quantifying defects in steel cables, which combines deep learning-based analysis of MFL images with the non-destructive inspection of steel cables. Full article
Show Figures

Figure 1

29 pages, 1289 KiB  
Article
An Analysis of Hybrid Management Strategies for Addressing Passenger Injuries and Equipment Failures in the Taipei Metro System: Enhancing Operational Quality and Resilience
by Sung-Neng Peng, Chien-Yi Huang, Hwa-Dong Liu and Ping-Jui Lin
Mathematics 2025, 13(15), 2470; https://doi.org/10.3390/math13152470 - 31 Jul 2025
Viewed by 282
Abstract
This study is the first to systematically integrate supervised machine learning (decision tree) and association rule mining techniques to analyze accident data from the Taipei Metro system, conducting a large-scale data-driven investigation into both passenger injury and train malfunction events. The research demonstrates [...] Read more.
This study is the first to systematically integrate supervised machine learning (decision tree) and association rule mining techniques to analyze accident data from the Taipei Metro system, conducting a large-scale data-driven investigation into both passenger injury and train malfunction events. The research demonstrates strong novelty and practical contributions. In the passenger injury analysis, a dataset of 3331 cases was examined, from which two highly explanatory rules were extracted: (i) elderly passengers (aged > 61) involved in station incidents are more likely to suffer moderate to severe injuries; and (ii) younger passengers (aged ≤ 61) involved in escalator incidents during off-peak hours are also at higher risk of severe injury. This is the first study to quantitatively reveal the interactive effect of age and time of use on injury severity. In the train malfunction analysis, 1157 incidents with delays exceeding five minutes were analyzed. The study identified high-risk condition combinations—such as those involving rolling stock, power supply, communication, and signaling systems—associated with specific seasons and time periods (e.g., a lift value of 4.0 for power system failures during clear mornings from 06:00–12:00, and 3.27 for communication failures during summer evenings from 18:00–24:00). These findings were further cross-validated with maintenance records to uncover underlying causes, including brake system failures, cable aging, and automatic train operation (ATO) module malfunctions. Targeted preventive maintenance recommendations were proposed. Additionally, the study highlighted existing gaps in the completeness and consistency of maintenance records, recommending improvements in documentation standards and data auditing mechanisms. Overall, this research presents a new paradigm for intelligent metro system maintenance and safety prediction, offering substantial potential for broader adoption and practical application. Full article
Show Figures

Figure 1

15 pages, 4141 KiB  
Article
Influence of Friction on Pre-Stressing Construction of Suspen-Dome Structures
by Miao Liu, Pengyuan Li, Ni Zhang and Zhancai Lao
Buildings 2025, 15(15), 2697; https://doi.org/10.3390/buildings15152697 - 31 Jul 2025
Viewed by 159
Abstract
Suspension dome structures are widely utilized due to their superior performance compared to conventional structures. The condition of the cables, particularly the forces they experience, is critical for ensuring the safety of the overall structures. However, friction between cables and joints significantly disrupts [...] Read more.
Suspension dome structures are widely utilized due to their superior performance compared to conventional structures. The condition of the cables, particularly the forces they experience, is critical for ensuring the safety of the overall structures. However, friction between cables and joints significantly disrupts cable force distribution, particularly during pre-stressing construction. This paper integrates a tension-compensation method with a numerical approach that accurately accounts for friction effects. A computational flowchart was introduced and subsequently applied to analyze a practical suspension dome structure. We assessed the impact of friction on cable forces, structural deformations, and the mechanical state of the cable–strut system. Furthermore, we quantified the consequences of excessive tensioning. The findings demonstrate that the method presented in this paper can efficiently be employed for the analysis of large-scale complex structures and is readily accessible to structural designers. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

13 pages, 2212 KiB  
Article
Double-End Location Technology of Partial Discharge in Cables Based on Frequency-Domain Reflectometry
by Wang Miao, Hongjing Liu, Ci Song, Hongda Li, Nan He, Jingzhu Teng, Baoqin Cao, Ruonan Bai, Xianglong Li and Haibao Mu
Sensors 2025, 25(15), 4710; https://doi.org/10.3390/s25154710 - 30 Jul 2025
Viewed by 198
Abstract
To realize the region determination and accurate location of cable partial discharge, this paper proposes a cable partial discharge double-end location technique based on frequency-domain reflectometry. The cable partial discharge double-end location technique based on frequency-domain reflectometry mainly includes the frequency band modulation [...] Read more.
To realize the region determination and accurate location of cable partial discharge, this paper proposes a cable partial discharge double-end location technique based on frequency-domain reflectometry. The cable partial discharge double-end location technique based on frequency-domain reflectometry mainly includes the frequency band modulation technique and partial discharge location method. The frequency band modulation technique determines the effective frequency band range of the acquired cable transfer function through the frequency band range of the partial discharge signals measured at both ends, which ensures the reliability of the transfer function. The partial discharge location method constructs the cable partial discharge location function and the region determination function via spectral analysis of the cable transfer function obtained from the partial discharge signals, which realizes region determination and determines precise location of the cable partial discharge, respectively. Our simulation and experiment show that the cable partial discharge double-end location technique based on frequency-domain reflectometry can effectively determine the existence region of cable partial discharge and its accurate location (with a location error of less than 1%), showing good potential for practical application in engineering. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

17 pages, 4667 KiB  
Article
Workspace Analysis and Dynamic Modeling of 6-DoF Multi-Pattern Cable-Driven Hybrid Mobile Robot
by Jiahao Song, Meiqi Wang, Jiabao Wu, Qing Liu and Shuofei Yang
Machines 2025, 13(8), 659; https://doi.org/10.3390/machines13080659 - 28 Jul 2025
Viewed by 273
Abstract
A cable-driven hybrid mobile robot is a kind of robot consisting of two modules connected in series, which uses multiple parallel cables to drive the moving platforms. Cable-driven robots benefit from a large workspace, low inertia, excellent dynamic performance due to the lightweight [...] Read more.
A cable-driven hybrid mobile robot is a kind of robot consisting of two modules connected in series, which uses multiple parallel cables to drive the moving platforms. Cable-driven robots benefit from a large workspace, low inertia, excellent dynamic performance due to the lightweight and high extensibility of cables, making them ideal for a wide range of applications, such as sports cameras, large radio telescopes, and planetary exploration. Considering the fundamental dynamic constraint imposed by the unilateral constraint of cables, the workspace and dynamic modeling for cable-driven robots require specialized study. In this paper, a novel cable-driven hybrid robot, which has two motion patterns, is designed, and an arc intersection method for analyzing workspace is applied to solve the robot workspace of two motion patterns. Based on the workspace analysis, a dynamic model for the cable-driven hybrid robot is established, laying the foundation for subsequent trajectory planning. Simulation results in MATLAB R2021a demonstrate that the cable-driven hybrid robot has a large workspace in both motion patterns and is capable of meeting various motion requirements, indicating promising application potential. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

20 pages, 2772 KiB  
Article
Cable Force Optimization of Circular Ring Pylon Cable-Stayed Bridges Based on Response Surface Methodology and Multi-Objective Particle Swarm Optimization
by Shengdong Liu, Fei Chen, Qingfu Li and Xiyu Ma
Buildings 2025, 15(15), 2647; https://doi.org/10.3390/buildings15152647 - 27 Jul 2025
Viewed by 177
Abstract
Cable force distribution in cable-stayed bridges critically impacts structural safety and efficiency, yet traditional optimization methods struggle with unconventional designs due to nonlinear mechanics and computational inefficiency. This study proposes a hybrid approach combining Response Surface Methodology (RSM) and Multi-Objective Particle Swarm Optimization [...] Read more.
Cable force distribution in cable-stayed bridges critically impacts structural safety and efficiency, yet traditional optimization methods struggle with unconventional designs due to nonlinear mechanics and computational inefficiency. This study proposes a hybrid approach combining Response Surface Methodology (RSM) and Multi-Objective Particle Swarm Optimization (MOPSO) to overcome these challenges. RSM constructs surrogate models for strain energy and mid-span displacement, reducing reliance on finite element analysis, while MOPSO optimizes Pareto solution sets for rapid cable force adjustment. Validated through an engineering case, the method reduces the main girder’s max bending moment by 8.7%, mid-span displacement by 31.2%, and strain energy by 7.1%, improving stiffness and mitigating stress concentrations. The response surface model demonstrates prediction errors of 0.35% for strain energy and 5.1% for maximum vertical mid-span deflection. By synergizing explicit modeling with intelligent algorithms, this methodology effectively resolves the longstanding efficiency–accuracy trade-off in cable force optimization for cable-stayed bridges. It achieves over 80% reduction in computational costs while enhancing critical structural performance metrics. Engineers are thereby equipped with a rapid and reliable optimization framework for geometrically complex cable-stayed bridges, delivering significant improvements in structural safety and construction feasibility. Ultimately, this approach establishes both theoretical substantiation and practical engineering benchmarks for designing non-conventional cable-stayed bridge configurations. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

26 pages, 5031 KiB  
Article
Insulation Condition Assessment of High-Voltage Single-Core Cables Via Zero-Crossing Frequency Analysis of Impedance Phase Angle
by Fang Wang, Zeyang Tang, Zaixin Song, Enci Zhou, Mingzhen Li and Xinsong Zhang
Energies 2025, 18(15), 3985; https://doi.org/10.3390/en18153985 - 25 Jul 2025
Viewed by 172
Abstract
To address the limitations of low detection efficiency and poor spatial resolution of traditional cable insulation diagnosis methods, a novel cable insulation diagnosis method based on impedance spectroscopy has been proposed. An impedance spectroscopy analysis model of the frequency response of high-voltage single-core [...] Read more.
To address the limitations of low detection efficiency and poor spatial resolution of traditional cable insulation diagnosis methods, a novel cable insulation diagnosis method based on impedance spectroscopy has been proposed. An impedance spectroscopy analysis model of the frequency response of high-voltage single-core cables under different aging conditions has been established. The initial classification of insulation condition is achieved based on the impedance phase deviation between the test cable and the reference cable. Under localized aging conditions, the impedance phase spectroscopy is more than twice as sensitive to dielectric changes as the amplitude spectroscopy. Leveraging this advantage, a multi-parameter diagnostic framework is developed that integrates key spectral features such as the first phase angle zero-crossing frequency, initial phase, and resonance peak amplitude. The proposed method enables quantitative estimation of aging severity, spatial extent, and location. This technique offers a non-invasive, high-resolution solution for advanced cable health diagnostics and provides a foundation for practical deployment of power system asset management. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

25 pages, 1696 KiB  
Article
Dual-Level Electric Submersible Pump (ESP) Failure Classification: A Novel Comprehensive Classification Bridging Failure Modes and Root Cause Analysis
by Mostafa A. Sobhy, Gehad M. Hegazy and Ahmed H. El-Banbi
Energies 2025, 18(15), 3943; https://doi.org/10.3390/en18153943 - 24 Jul 2025
Viewed by 302
Abstract
Electric submersible pumps (ESPs) are critical for artificial lift operations; however, they are prone to frequent failures, often resulting in high operational costs and production downtime. Traditional ESP failure classifications are limited by lack of standardization and the conflation of failure modes with [...] Read more.
Electric submersible pumps (ESPs) are critical for artificial lift operations; however, they are prone to frequent failures, often resulting in high operational costs and production downtime. Traditional ESP failure classifications are limited by lack of standardization and the conflation of failure modes with root causes. To address these limitations, this study proposes a new two-step integrated failure modes and root cause (IFMRC) classification system. The new framework clearly distinguishes between failure modes and root causes, providing a systematic, structured approach that enhances fault diagnosis and failure analysis and can lead to better failure prevention strategies. This methodology was validated using a case study of over 4000 ESP installations. The data came from Egypt’s Western Desert, covering a decade of operational data. The sources included ESP databases, workover records, and detailed failure investigation (DIFA) reports. The failure modes were categorized into electrical, mechanical, hydraulic, chemical, and operational types, while root causes were linked to environmental, design, operational, and equipment factors. Statistical analysis, in this case study, revealed that motor short circuits, low flow conditions, and cable short circuits were the most frequent failure modes, with excessive heat, scale deposition, and electrical grounding faults being the dominant root causes. This study underscores the importance of accurate root cause failure classification, robust data acquisition, and expanded failure diagnostics to improve ESP reliability. The proposed IFMRC framework addresses limitations in conventional taxonomies and facilitates ongoing enhancement of ESP design, operation, and maintenance in complex field conditions. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

Back to TopTop