Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (415)

Search Parameters:
Keywords = bud-leaves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4139 KiB  
Article
Design and Development of an Intelligent Chlorophyll Content Detection System for Cotton Leaves
by Wu Wei, Lixin Zhang, Xue Hu and Siyao Yu
Processes 2025, 13(8), 2329; https://doi.org/10.3390/pr13082329 - 22 Jul 2025
Viewed by 230
Abstract
In order to meet the needs for the rapid detection of crop growth and support variable management in farmland, an intelligent chlorophyll content in cotton leaves (CCC) detection system based on hyperspectral imaging (HSI) technology was designed and developed. The system includes a [...] Read more.
In order to meet the needs for the rapid detection of crop growth and support variable management in farmland, an intelligent chlorophyll content in cotton leaves (CCC) detection system based on hyperspectral imaging (HSI) technology was designed and developed. The system includes a near-infrared (NIR) hyperspectral image acquisition module, a spectral extraction module, a main control processor module, a model acceleration module, a display module, and a power module, which are used to achieve rapid and non-destructive detection of chlorophyll content. Firstly, spectral images of cotton canopy leaves during the seedling, budding, and flowering-boll stages were collected, and the dataset was optimized using the first-order differential algorithm (1D) and Savitzky–Golay five-term quadratic smoothing (SG) algorithm. The results showed that SG had better processing performance. Secondly, the sparrow search algorithm optimized backpropagation neural network (SSA-BPNN) and one-dimensional convolutional neural network (1DCNN) algorithms were selected to establish a chlorophyll content detection model. The results showed that the determination coefficients Rp2 of the chlorophyll SG-1DCNN detection model during the seedling, budding, and flowering-boll stages were 0.92, 0.97, and 0.95, respectively, and the model performance was superior to SG-SSA-BPNN. Therefore, the SG-1DCNN model was embedded into the detection system. Finally, a CCC intelligent detection system was developed using Python 3.12.3, MATLAB 2020b, and ENVI, and the system was subjected to application testing. The results showed that the average detection accuracy of the CCC intelligent detection system in the three stages was 98.522%, 99.132%, and 97.449%, respectively. Meanwhile, the average detection time for the samples is only 20.12 s. The research results can effectively solve the problem of detecting the nutritional status of cotton in the field environment, meet the real-time detection needs of the field environment, and provide solutions and technical support for the intelligent perception of crop production. Full article
(This article belongs to the Special Issue Design and Control of Complex and Intelligent Systems)
Show Figures

Figure 1

22 pages, 3879 KiB  
Article
Optimal Dark Tea Fertilization Enhances the Growth and Flower Quality of Tea Chrysanthemum by Improving the Soil Nutrient Availability in Simultaneous Precipitation and High-Temperature Regions
by Jiayi Hou, Jiayuan Yin, Lei Liu and Lu Xu
Agronomy 2025, 15(7), 1753; https://doi.org/10.3390/agronomy15071753 - 21 Jul 2025
Viewed by 326
Abstract
The simplex strategies of fertilizer management and problems caused by simultaneous precipitation and high-temperature (SPH) climate were the main factors that led to yield loss and quality decline in the continuous cropping of tea chrysanthemum (Dendranthema morifolium ‘Jinsi Huang’). In this study, [...] Read more.
The simplex strategies of fertilizer management and problems caused by simultaneous precipitation and high-temperature (SPH) climate were the main factors that led to yield loss and quality decline in the continuous cropping of tea chrysanthemum (Dendranthema morifolium ‘Jinsi Huang’). In this study, with sustainable biofertilizers being proposed as a potential solution. However, their effects under such constraints are underexplored. In this study, we compared different proportions of a sustainable dark tea biofertilizer, made with two commonly used fertilizers, by their contributions to the morphological, photosynthetic, and flowering traits of D. morifolium ‘Jinsi Huang’. The results showed that increasing the dark tea biofertilizer application to 4.5 kg·m−2 significantly enhanced the soil alkali hydrolyzed nitrogen (596.53% increase), available phosphorus (64.11%), and rapidly available potassium (75.56%) compared to the levels in yellow soil. This nutrient enrichment in soil caused D. morifolium ‘Jinsi Huang’ to produce more leaves (272.84% increase) and flower buds (1041.67%), along with a strengthened photosynthetic capacity (higher Fv/Fm values and light saturation point). These improvements alleviated the photoinhibition caused by SPH climate conditions, ultimately leading to significantly higher contents of chlorogenic acid (38.23% increase) and total flavonoids (80.28%) in the harvested flowers compared to the control group. Thus, dark tea biofertilizer is a cost-effective and efficient additive for growing tea chrysanthemum in SPH regions due to improving soil quality and causing nutritional and functional components to accumulate in harvest flowers, which greatly promotes the commercial value of rural revitalization industries centered around tea chrysanthemum. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

14 pages, 1393 KiB  
Article
Mitigating Water Stress and Enhancing Aesthetic Quality in Off-Season Potted Curcuma cv. ‘Jasmine Pink’ via Potassium Silicate Under Deficit Irrigation
by Vannak Sour, Anoma Dongsansuk, Supat Isarangkool Na Ayutthaya, Soraya Ruamrungsri and Panupon Hongpakdee
Horticulturae 2025, 11(7), 856; https://doi.org/10.3390/horticulturae11070856 - 20 Jul 2025
Viewed by 410
Abstract
Curcuma spp. is a popular ornamental crop valued for its vibrant appearance and suitability for both regular and off-season production. As global emphasis on freshwater conservation increases and with a demand for compact potted plants, reducing water use while maintaining high aesthetic quality [...] Read more.
Curcuma spp. is a popular ornamental crop valued for its vibrant appearance and suitability for both regular and off-season production. As global emphasis on freshwater conservation increases and with a demand for compact potted plants, reducing water use while maintaining high aesthetic quality presents a key challenge for horticulturists. Potassium silicate (PS) has been proposed as a foliar spray to alleviate plant water stress. This study aimed to evaluate the effects of PS on growth, ornamental traits, and photosynthetic parameters of off-season potted Curcuma cv. ‘Jasmine Pink’ under deficit irrigation (DI). Plants were subjected to three treatments in a completely randomized design: 100% crop evapotranspiration (ETc), 50% ETc, and 50% ETc with 1000 ppm PS (weekly sprayed on leaves for 11 weeks). Both DI treatments (50% ETc and 50% ETc + PS) reduced plant height by 7.39% and 9.17%, leaf number by 16.99% and 7.03%, and total biomass by 21.13% and 20.58%, respectively, compared to 100% ETc. Notably, under DI, PS-treated plants maintained several parameters equivalent to the 100% ETc treatment, including flower bud emergence, blooming period, green bract number, effective quantum yield of PSII (ΔF/Fm′), and electron transport rate (ETR). In addition, PS application increased leaf area by 8.11% and compactness index by 9.80% relative to untreated plants. Photosynthetic rate, ΔF/Fm′, and ETR increased by 31.52%, 13.63%, and 9.93%, while non-photochemical quenching decreased by 16.51% under water-limited conditions. These findings demonstrate that integrating deficit irrigation with PS foliar application can enhance water use efficiency and maintain ornamental quality in off-season potted Curcuma, promoting sustainable water management in horticulture. Full article
Show Figures

Figure 1

21 pages, 3187 KiB  
Article
Green Extract from Pre-Harvest Tobacco Waste as a Non-Conventional Source of Anti-Aging Ingredients for Cosmetic Applications
by Mariana Leal, María A. Moreno, María E. Orqueda, Mario Simirgiotis, María I. Isla and Iris C. Zampini
Plants 2025, 14(14), 2189; https://doi.org/10.3390/plants14142189 - 15 Jul 2025
Viewed by 510
Abstract
The cigarette production from Nicotiana tabacum generates significant amounts of waste, with an estimated 68.31 million tons of pre- and post-harvest waste discarded annually. The pre-harvest waste includes the upper parts of the plant, inflorescences, and bracts, which are removed to help the [...] Read more.
The cigarette production from Nicotiana tabacum generates significant amounts of waste, with an estimated 68.31 million tons of pre- and post-harvest waste discarded annually. The pre-harvest waste includes the upper parts of the plant, inflorescences, and bracts, which are removed to help the growth of the lower leaves. This study explores the potential of apical leaves from Nicotiana tabacum var. Virginia, discarded during the budding stage (pre-harvest waste). The leaves were extracted using environmentally friendly solvents (green solvents), including distilled water (DW) and two natural deep eutectic solvents (NaDESs), one consisting of simple sugars, fructose, glucose, and sucrose (FGS) and the other consisting of choline chloride and urea (CU). The anti-inflammatory and anti-aging potential of these green extracts was assessed by the inhibition of key enzymes related to skin aging. The xanthine oxidase and lipoxygenase activities were mostly inhibited by CU extracts with IC50 values of 63.50 and 8.0 μg GAE/mL, respectively. The FGS extract exhibited the greatest hyaluronidase inhibition (49.20%), followed by the CU extract (33.20%) and the DW extract (20.80%). Regarding elastase and collagenase inhibition, the CU extract exhibited the highest elastase inhibition, while all extracts inhibited collagenase activity, with values exceeding 65%. Each extract had a distinct chemical profile determined by LC-ESI-QTOF-MS/MS and spectrophotometric methods, with several shared compounds present in different proportions. CU extract is characterized by high concentrations of rutin, nicotiflorin, and azelaic acid, while FGS and DW extracts share major compounds such as quinic acid, fructosyl pyroglutamate, malic acid, and gluconic acid. Ames test and Caenorhabditis elegans assay demonstrated that at the concentrations at which the green tobacco extracts exhibit biological activities, they did not show toxicity. The results support the potential of N. tabacum extracts obtained with NaDESs as antiaging and suggest their promising applications in the cosmetic and cosmeceutical industries. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

18 pages, 6726 KiB  
Article
Genome-Wide Identification and Analysis of the AHL Gene Family in Pepper (Capsicum annuum L.)
by Xiao-Yan Sui, Yan-Long Li, Xi Wang, Yi Zhong, Qing-Zhi Cui, Yin Luo, Bing-Qian Tang, Feng Liu and Xue-Xiao Zou
Int. J. Mol. Sci. 2025, 26(13), 6527; https://doi.org/10.3390/ijms26136527 - 7 Jul 2025
Viewed by 456
Abstract
AT-hook motif nuclear-localized (AHL) genes play critical roles in chromatin remodeling and gene transcription regulation, profoundly influencing plant growth, development, and stress responses. While AHL genes have been extensively characterized in multiple plant species, their biological functions in pepper (Capsicum [...] Read more.
AT-hook motif nuclear-localized (AHL) genes play critical roles in chromatin remodeling and gene transcription regulation, profoundly influencing plant growth, development, and stress responses. While AHL genes have been extensively characterized in multiple plant species, their biological functions in pepper (Capsicum annuum L.) remain largely uncharacterized. In this study, we identified 45 CaAHL genes in the pepper genome through bioinformatics approaches. Comprehensive analyses were conducted to examine their chromosomal distribution, phylogenetic relationships, and the structural and functional features of their encoded proteins. Phylogenetic clustering classified the CaAHL proteins into six distinct subgroups. Transcriptome profiling revealed widespread expression of CaAHL genes across diverse tissues—including roots, stems, leaves, flowers, seeds, pericarp, placenta, and fruits—at various developmental stages. Quantitative real-time PCR further demonstrated that CaAHL1, CaAHL33, and CaAHL23 exhibited consistently high expression throughout flower bud development, whereas CaAHL36 showed preferential upregulation at early bud development stages. Expression profiling under hormone treatments and abiotic stresses indicated that CaAHL36 and CaAHL23 are auxin-inducible but are repressed by ABA, cold, heat, salt, and drought stress. Subcellular localization assays in Nicotiana benthamiana leaf epidermal cells showed that both CaAHL36 and CaAHL23 were predominantly localized in the nucleus, with faint expression also detected in the cytoplasm. Collectively, this study provides foundational insights into the CaAHL gene family, laying the groundwork for future functional investigations of these genes in pepper. Full article
(This article belongs to the Special Issue Vegetable Genetics and Genomics, 3rd Edition)
Show Figures

Figure 1

17 pages, 3134 KiB  
Article
Validation of Fiber-Dominant Expressing Gene Promoters in Populus trichocarpa
by Mengjie Guo, Ruxia Wang, Bo Wang, Wenjing Xu, Hui Hou, Hao Cheng, Yun Zhang, Chong Wang and Yuxiang Cheng
Plants 2025, 14(13), 1948; https://doi.org/10.3390/plants14131948 - 25 Jun 2025
Viewed by 560
Abstract
Wood is an important raw material for industrial applications. Its fiber-specific genetic modification provides an effective strategy to alter wood characteristics in tree breeding. Here, we performed a cross-analysis of previously reported single-cell RNA sequencing and the AspWood database during wood formation to [...] Read more.
Wood is an important raw material for industrial applications. Its fiber-specific genetic modification provides an effective strategy to alter wood characteristics in tree breeding. Here, we performed a cross-analysis of previously reported single-cell RNA sequencing and the AspWood database during wood formation to identify potential xylem fiber-dominant expressing genes in poplar. As a result, 32 candidate genes were obtained, and subsequently, we further examined the expression of these genes in fibers and/or vessels of stem secondary xylem using the laser capture microdissection technique and RT-qPCR. Analysis identified nine candidate genes, including PtrFLA12-2, PtrIRX12, PtrFLA12-6, PtrMYB52, PtrMYB103, PtrMAP70, PtrLRR-1, PtrKIFC2-3, and PtrNAC12. Next, we cloned the promoter regions of the nine candidate genes and created promoter::GUS transgenic poplars. Histochemical GUS staining was used to investigate the tissue expression activities of these gene promoters in transgenic poplars. In one month, transgenic plantlets grown in medium showed intensive GUS staining signals that were visible in the leaves and apical buds, suggesting substantial expression activities of these gene promoters in plantlets predominantly undergoing primary growth. In contrast, for three-month-old transgenic poplars in the greenhouse with predominantly developed secondary stem tissues, the promoters of seven of nine candidate genes, including PtrMYB103, PtrIRX12, and PtrMAP70, showed secondary xylem fiber-dominant GUS signals with considerable spatial specificity. Overall, this study presents xylem fiber-dominant promoters that are well-suited for specifically expressing genes of interest in wood fibers for forest tree breeding. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

14 pages, 5685 KiB  
Article
Construction of an Overexpression Library for Chinese Cabbage Orphan Genes in Arabidopsis and Functional Analysis of BOLTING RESISTANCE 4-Mediated Flowering Delay
by Ruiqi Liao, Ruiqi Zhang, Xiaonan Li and Mingliang Jiang
Plants 2025, 14(13), 1947; https://doi.org/10.3390/plants14131947 - 25 Jun 2025
Cited by 1 | Viewed by 420
Abstract
Orphan genes (OGs), which are unique to a specific taxon and have no detectable sequence homology to any known genes across other species, play a pivotal role in governing species-specific phenotypic traits and adaptive evolution. In this study, 20 OGs of [...] Read more.
Orphan genes (OGs), which are unique to a specific taxon and have no detectable sequence homology to any known genes across other species, play a pivotal role in governing species-specific phenotypic traits and adaptive evolution. In this study, 20 OGs of Chinese cabbage (Brassica rapa OGs, BrOGs) were transferred into Arabidopsis thaliana by genetic transformation to construct an overexpression library in which 50% of the transgenic lines had a delayed flowering phenotype, 15% had an early flowering phenotype, and 35% showed no difference in flowering time compared to control plants. There were many other phenotypes attached to these transgenic lines, such as leaf color, number of rosette leaves, and silique length. To understand the impact of BrOGs on delayed flowering, BrOG142OE, which showed the most significantly delayed flowering phenotype, was chosen for further analysis, and BrOG142 was renamed BOLTING RESISTANCE 4 (BR4). In BR4OE, the expression of key flowering genes, including AtFT and AtSOC1, significantly decreased, and AtFLC and AtFRI expression increased. GUS staining revealed BR4 promoter activity mainly in the roots, flower buds and leaves. qRT-PCR showed that BR4 primarily functions in the flowers, flower buds, and leaves of Chinese cabbage. BR4 is a protein localized in the nucleus, cytoplasm, and cell membrane. The accelerated flowering time phenotype of BR4OE was observed under gibberellin and vernalization treatments, indicating that BR4 regulates flowering time in response to these treatments. These results provide a foundation for elucidating the mechanism by which OGs regulate delayed flowering and have significance for the further screening of bolting-resistant Chinese cabbage varieties. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

18 pages, 1439 KiB  
Article
Study on the Response of Cotton Leaf Color to Plant Water Content Changes and Optimal Irrigation Thresholds
by Binbin Mao, Lulu Wang, Junhui Cheng, Bing Chen, Jiandong Wang, Kai Zhang and Xiaowei Liu
Agronomy 2025, 15(6), 1477; https://doi.org/10.3390/agronomy15061477 - 18 Jun 2025
Viewed by 460
Abstract
Real-time monitoring of cotton moisture status and determination of appropriate irrigation thresholds are essential for achieving precision irrigation. Currently employed diagnostic methods based on physiological indicators, remote sensing, or soil moisture measurements typically present limitations including cumbersome procedures, high labor intensity, requirements for [...] Read more.
Real-time monitoring of cotton moisture status and determination of appropriate irrigation thresholds are essential for achieving precision irrigation. Currently employed diagnostic methods based on physiological indicators, remote sensing, or soil moisture measurements typically present limitations including cumbersome procedures, high labor intensity, requirements for specialized technical expertise, and delayed results. To address these challenges, this study investigated the relationship between plant water content and leaf RGB color values (red, green, and blue color values measured using LScolor technology) during the bud, flowering, and boll development stages, with the objective of establishing a predictive model for rapid, real-time moisture status monitoring. Given that leaf position and color values (R, G, and B) of different functional leaves may influence the relationship between leaf color and plant water content, and this relationship varies across different temporal periods, a two-year experiment was conducted. In 2023, leaf color data from the top five functional leaves were measured at five time points daily throughout the irrigation cycle. In 2024, the following four irrigation treatments were established: one conventional irrigation control treatment (CK) and three irrigation treatments at 72% (T1), 70% (T2), and 68% (T3) plant water content thresholds. Results demonstrated that the following: (1) plant water content initially declined during the day and subsequently showed slight recovery, indicating cotton’s particular susceptibility to water stress between 2:30 p.m. and 7:00 p.m.; (2) plant water content continuously decreased across five measurement periods following irrigation during the bud, flowering, and boll development stages, with R and G color values of the five functional leaves showing declining trends between 2:30 p.m. and 7:00 p.m., while B color values exhibited no consistent pattern; (3) correlation analysis revealed significant positive correlations between plant water content and R and G color values of the five functional leaves during the 2:30 p.m. to 5:00 p.m. period, with highly significant correlations observed for the third and fourth leaves from the apex; (4) univariate and bivariate linear regression models were successfully established between cotton water content and R and G color values of the third and fourth leaves from the top; and (5) under 72% plant water content conditions, cotton achieved the highest yield and Irrigation Water Use Efficiency, indicating that 72% represents the optimal irrigation threshold. In conclusion, integrating leaf color–plant water content relationships with the 72% irrigation threshold enables rapid, non-destructive, large-scale diagnosis of cotton moisture status, providing a robust foundation for implementing effective precision irrigation strategies. Full article
(This article belongs to the Special Issue Water Saving in Irrigated Agriculture: Series II)
Show Figures

Figure 1

24 pages, 3341 KiB  
Article
Valorization of Tagetes erecta L. Leaves to Obtain Polyphenol-Rich Extracts: Impact of Fertilization Practice, Phenological Plant Stage, and Extraction Strategy
by Narda Mejía-Resendiz, Martha-Estrella García-Pérez, Gina Rosalinda De Nicola, Noé Aguilar-Rivera, Emma-Gloria Ramos-Ramírez, María Galindo, Miguel Avalos-Viveros and José-Juan Virgen-Ortiz
Agronomy 2025, 15(6), 1444; https://doi.org/10.3390/agronomy15061444 - 13 Jun 2025
Viewed by 620
Abstract
Tagetes erecta L. is an ornamental crop known for its medicinal qualities. Large amounts of waste are produced in the commercial usage of T. erecta flowers, including leaves that could be used to develop new eco-friendly phenolic extracts with additional value for the [...] Read more.
Tagetes erecta L. is an ornamental crop known for its medicinal qualities. Large amounts of waste are produced in the commercial usage of T. erecta flowers, including leaves that could be used to develop new eco-friendly phenolic extracts with additional value for the food industry. To maximize the phenol content in the leaf extracts, this study used a Box–Behnken design with Response Surface Methodology, considering three extraction methods (Soxhlet distillation, heat, and vacuum-assisted extraction), three cropping practices (without fertilizer, chemical fertilizer, and vermicompost), and three phenological stages (plants without buds, with buds, and in flower). Extracts from plants fertilized with vermicompost (Eisenia foetida, 10 t ha−1), collected during the blossoming stage and extracted via Soxhlet distillation, exhibited the highest phenol content (25.66 mg GAE/g). Further chemical characterization of the optimized extract (UV-Vis, UV-fluorescence, FTIR, GC-MS, HPLC) confirmed the occurrence of polyphenols in the extract, including quercetin, chlorogenic, gallic, p-coumaric, 3-hydroxycinnamic, and caffeic acids. This underscores the significance of T. erecta leaf residues as a valuable source of bioactive molecules, highlighting the importance of integrating agricultural practices and chemical extraction methods to enhance the phenolic content in leaf extracts from this species. Full article
Show Figures

Figure 1

22 pages, 17907 KiB  
Article
LGN-YOLO: A Leaf-Oriented Region-of-Interest Generation Method for Cotton Top Buds in Fields
by Yufei Xie and Liping Chen
Agriculture 2025, 15(12), 1254; https://doi.org/10.3390/agriculture15121254 - 10 Jun 2025
Viewed by 433
Abstract
As small-sized targets, cotton top buds pose challenges for traditional full-image search methods, leading to high sparsity in the feature matrix and resulting in problems such as slow detection speeds and wasted computational resources. Therefore, it is difficult to meet the dual requirements [...] Read more.
As small-sized targets, cotton top buds pose challenges for traditional full-image search methods, leading to high sparsity in the feature matrix and resulting in problems such as slow detection speeds and wasted computational resources. Therefore, it is difficult to meet the dual requirements of real-time performance and accuracy for field automatic topping operations. To address the low feature density and redundant information in traditional full-image search methods for small cotton top buds, this study proposes LGN-YOLO, a leaf-morphology-based region-of-interest (ROI) generation network based on an improved version of YOLOv11n. The network leverages young-leaf features around top buds to determine their approximate distribution area and integrates linear programming in the detection head to model the spatial relationship between young leaves and top buds. Experiments show that it achieves a detection accuracy of over 90% for young cotton leaves in the field and can accurately identify the morphology of young leaves. The ROI generation accuracy reaches 63.7%, and the search range compression ratio exceeds 90%, suggesting that the model possesses a strong capability to integrate target features and that the output ROI retains relatively complete top-bud feature information. The ROI generation speed reaches 138.2 frames per second, meeting the real-time requirements of automated topping equipment. Using the ROI output by this method as the detection region can address the problem of feature sparsity in small targets during traditional detection, achieve pre-detection region optimization, and thus reduce the cost of mining detailed features. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

19 pages, 17007 KiB  
Article
Genome-Wide Characterization and Expression Analysis of the Cysteine-Rich Polycomb-like Protein Gene Family in Response to Hormone Signaling in Apple (Malus domestica)
by Le Jiang, Min Zhu, Ying Huang and Quanyan Zhang
Int. J. Mol. Sci. 2025, 26(12), 5528; https://doi.org/10.3390/ijms26125528 - 10 Jun 2025
Viewed by 544
Abstract
Cysteine-rich polycomb-like protein (CPP) transcription factors play critical roles in plant growth, development, and responses to stresses and hormone signaling. However, the research on the CPP gene family remains unexplored in apple. In this study, a total of 10 CPP genes (MdCPP1 [...] Read more.
Cysteine-rich polycomb-like protein (CPP) transcription factors play critical roles in plant growth, development, and responses to stresses and hormone signaling. However, the research on the CPP gene family remains unexplored in apple. In this study, a total of 10 CPP genes (MdCPP1MdCPP10) were identified and unevenly distributed across seven scaffolds. Phylogenetic and conserved motif analyses revealed that these 10 CXC domain-containing MdCPPs could be classified into three subfamilies. Evolutionary tree and synteny analyses demonstrated that apple shared the highest number of orthologous gene pairs with white pear compared to Arabidopsis. By analyzing the MdCPP gene promoter, a large number of cis-acting elements related to hormone and stress response were discovered. In addition, transcriptomic data demonstrated tissue-specific expression patterns of MdCPP genes, with MdCPP5 and MdCPP8 showing the highest expression in buds and leaves. The qRT-PCR results indicated that MdCPP genes have different expression responses to SA, GA, JA, and IAA treatments. Notably, MdCPP4, MdCPP6, MdCPP8, and MdCPP9 were significantly upregulated under different hormone treatments. Among them, the upregulation of MdCPP6 was the most significant. These findings establish a foundation for further functional characterization of MdCPPs and provide theoretical support for their potential applications in apple genetic improvement and agricultural production. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Graphical abstract

22 pages, 4494 KiB  
Article
Summer Drought Delays Leaf Senescence and Shifts Radial Growth Towards the Autumn in Corylus Taxa
by Kristine Vander Mijnsbrugge, Art Pareijn, Stefaan Moreels, Sharon Moreels, Damien Buisset, Karen Vancampenhout and Eduardo Notivol Paino
Forests 2025, 16(6), 907; https://doi.org/10.3390/f16060907 - 28 May 2025
Viewed by 386
Abstract
Background: Understanding the mechanisms by which woody perennials adapt to extreme water deficits is important in regions experiencing increasingly frequent and intense droughts. Methods: We investigated the effects of drought severity in the shrubs Corylus avellana L., C. maxima Mill., and their morphological [...] Read more.
Background: Understanding the mechanisms by which woody perennials adapt to extreme water deficits is important in regions experiencing increasingly frequent and intense droughts. Methods: We investigated the effects of drought severity in the shrubs Corylus avellana L., C. maxima Mill., and their morphological intermediate forms, all from local Belgian origin, and C. avellana from a Spanish-Pyrenean origin. Potted saplings in a common garden were not receiving any water for a duration of 30 days in July 2021 and developed a range of visual stress symptoms. We assessed responses across the various symptom categories. Results: Droughted plants senesced later than the controls (up to 6 days). The most severely affected plants disproportionately displayed the longest delay (21 days). The delayed leaf senescence was reflected in the subsequent bud burst which was delayed for the droughted plants, with again the largest delay observed for the most severely affected plants. Interestingly, radial growth shifted towards the autumn among the drought-treated plants, suggesting compensation growth after growing conditions normalized. The Spanish-Pyrenean provenance, characterized by smaller plants with smaller leaves, developed visual drought symptoms later than the local provenance during the drought. Conclusions: The results indicate that severe early summer drought, followed by rewatering, not only diminishes radial growth but also prolongs the growth period, and delays leaf senescence. A prolonged time frame for radial growth and a delayed leaf senescence indicate a longer period in which carbon is incorporated in woody tissue or in non-structural carbohydrates. This can help the fine tuning of carbon sequestration modeling. The Pyrenean provenance, adapted to high altitude, holds an advantage under water-limited conditions. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

28 pages, 7351 KiB  
Article
A Three-Dimensional Phenotype Extraction Method Based on Point Cloud Segmentation for All-Period Cotton Multiple Organs
by Pengyu Chu, Bo Han, Qiang Guo, Yiping Wan and Jingjing Zhang
Plants 2025, 14(11), 1578; https://doi.org/10.3390/plants14111578 - 22 May 2025
Cited by 1 | Viewed by 834
Abstract
Phenotypic data of cotton can accurately reflect the physiological status of plants and their adaptability to environmental conditions, playing a significant role in the screening of germplasm resources and genetic improvement. Therefore, this study proposes a cotton phenotypic data extraction algorithm that integrates [...] Read more.
Phenotypic data of cotton can accurately reflect the physiological status of plants and their adaptability to environmental conditions, playing a significant role in the screening of germplasm resources and genetic improvement. Therefore, this study proposes a cotton phenotypic data extraction algorithm that integrates ResDGCNN with an improved region-growing method and constructs a 3D point cloud dataset of cotton covering the entire growth period under real growth conditions. To address the challenge of significant structural variations in cotton organs across different growth stages, we designed an innovative point cloud segmentation algorithm, ResDGCNN, which integrates residual learning with dynamic graph convolution to enhance organ segmentation performance throughout all developmental stages. In addition, to address the challenge of accurately segmenting overlapping regions between different cotton organs, we introduced an optimization strategy that combines point distance mapping with curvature-based normal vectors and developed an improved region-growing algorithm to achieve fine segmentation of multiple cotton organs, including leaves, stems, and flower buds. Experimental data show that, in the task of organ segmentation throughout the entire cotton growth cycle, the ResDGCNN model achieved a segmentation accuracy of 67.55%, with a 4.86% improvement in mIoU compared to the baseline model. In the fine-grained segmentation of overlapping leaves, the model achieved an R2 of 0.962 and an RMSE of 2.0. The average relative error in stem length estimation was 0.973, providing a reliable solution for acquiring 3D phenotypic data of cotton. Full article
Show Figures

Figure 1

17 pages, 4414 KiB  
Article
Comparative Study by HPTLC of Selected Capparis spinosa Samples (Buds and Leaves) from the Cycladic Islands in Greece
by Evgenia Fotiadou, Antigoni Cheilari, Konstantia Graikou and Ioanna Chinou
Foods 2025, 14(10), 1827; https://doi.org/10.3390/foods14101827 - 21 May 2025
Viewed by 612
Abstract
Capparis spinosa is an edible plant with a long history in the Mediterranean region since antiquity. Its flower buds and leaves are mostly consumed salted or fermented (in vinegar) and are rarely eaten raw or dried. For the first time, caper samples subjected [...] Read more.
Capparis spinosa is an edible plant with a long history in the Mediterranean region since antiquity. Its flower buds and leaves are mostly consumed salted or fermented (in vinegar) and are rarely eaten raw or dried. For the first time, caper samples subjected to different preservation processes (dried, salted, and desalted) were studied, foraged from the most producing Cycladic islands in Greece (Sifnos, Serifos, and Tinos). The quantitative determination of the flavonoids rutin and quercetin was carried out using high performance thin-layer chromatography (HPTLC), revealing the abundance of rutin in the buds and leaves (9.26–76.85 mg/g dry extract). Only one sample of desalted buds from Serifos showed a sufficient amount of quercetin (2.88 mg/g dry extract). The determination of total phenolic content (TPC) showed a decrease during brine (salted) preservation (11.7–37.7 mg GAE/g extract) compared to air-dried samples (50.9–62.4 mg GAE/g extract). The DPPH evaluation (8.0–35.2% inhibition at 200 μg/mL) was in agreement with the TPC results. All extracts showed stronger activity against Gram positive bacteria and the human pathogenic fungi C. glabrata. The samples from Sifnos exerted better bioactivities, with air-drying being the most effective preservation process in terms of antioxidant properties and phenolic content, although it resulted in a more bitter taste. Due to its high economic value, the caper holds great potential for further exploitation through better established and optimized processes in the food industry. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

18 pages, 2322 KiB  
Article
Heavy Metal Contamination of Guizhou Tea Gardens: Soil Enrichment, Low Bioavailability, and Consumption Risks
by Zhonggen Li, Xuemei Cai, Guan Wang and Qingfeng Wang
Agriculture 2025, 15(10), 1096; https://doi.org/10.3390/agriculture15101096 - 19 May 2025
Viewed by 740
Abstract
The content and health impact of harmful heavy metals in agricultural products from strong geological background concentration areas have received increasing attention. To investigate the impact of soil heavy metal contamination on the tea plantation gardens of Guizhou Province, a major tea-producing area [...] Read more.
The content and health impact of harmful heavy metals in agricultural products from strong geological background concentration areas have received increasing attention. To investigate the impact of soil heavy metal contamination on the tea plantation gardens of Guizhou Province, a major tea-producing area with strong geological background concentrations in China, a total of 37 paired soil–tender tea leaf samples (containing one bud and two leaves) were collected and analyzed for eight harmful heavy metals. The results showed that the average contents of Hg, As, Pb, Cd, Cr, Ni, Sb, and Tl in the surface soil (0–20 cm) were 0.26, 23.9, 37.9, 0.29, 75.9, 37, 2.78, and 0.84 mg/kg, respectively. The majority of the soil Hg, As, Pb, Sb, and Tl levels exceeded their background values for cultivated land soil in Guizhou Province to some extent. The geo-accumulation index revealed that Sb and As are the main pollutants of tea garden soil. The average contents of Hg, As, Pb, Cd, Cr, Ni, Sb, and Tl in the tea leaves were 4, 49, 310, 55, 717, 12,100, 30, and 20 μg/kg (on a dry weight basis), respectively, all of which were significantly lower than their national recommended limits for tea. The bioconcentration factors of these eight heavy metals in tea leaves were relatively low when compared with those in soil, ranging between 0.003 (for As) and 0.603 (for Ni). The health risk assessment indicated that the total hazard quotient (THQ) due to drinking tea was in the order of Tl > Ni > As > Pb > Cd >Sb > Hg > Cr, with both the THQ for each heavy metal and the health risk index (HI) being less than 0.29, indicating that the risk of exposure to these heavy metals through drinking Guizhou green tea is low. Although some harmful heavy metals are present in the tea garden soil of Guizhou, their bioavailability for young tea leaves is extremely low. This may be related to the physical and chemical properties of the soil, such as the high proportion of organic matter (up to 9%) which strongly binds with these elements. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

Back to TopTop