Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,304)

Search Parameters:
Keywords = breeding base

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4204 KiB  
Article
Audouin’s Gull Colony Itinerancy: Breeding Districts as Units for Monitoring and Conservation
by Massimo Sacchi, Barbara Amadesi, Adriano De Faveri, Gilles Faggio, Camilla Gotti, Arnaud Ledru, Sergio Nissardi, Bernard Recorbet, Marco Zenatello and Nicola Baccetti
Diversity 2025, 17(8), 526; https://doi.org/10.3390/d17080526 (registering DOI) - 28 Jul 2025
Abstract
We investigated the spatial structure and colony itinerancy of Audouin’s gull (Ichthyaetus audouinii) adult breeders across multiple breeding sites in the central Mediterranean Sea during 25 years of fieldwork. Using cluster analysis of marked individuals from different years and sites, we [...] Read more.
We investigated the spatial structure and colony itinerancy of Audouin’s gull (Ichthyaetus audouinii) adult breeders across multiple breeding sites in the central Mediterranean Sea during 25 years of fieldwork. Using cluster analysis of marked individuals from different years and sites, we identified five spatial breeding units of increasing hierarchical scale—Breeding Sites, Colonies, Districts, Regions and Marine Sectors—which reflect biologically meaningful boundaries beyond simple geographic proximity. To determine the most appropriate scale for monitoring local populations, we applied multievent capture–recapture models and examined variation in survival and site fidelity across these units. Audouin’s gulls frequently change their location at the Breeding Site and Colony levels from one year to another, without apparent survival costs. In contrast, dispersal beyond Districts boundaries was found to be rare and associated with reduced survival rates, indicating that breeding Districts represent the most relevant biological unit for identifying local populations. The survival disadvantage observed in individuals leaving their District likely reflects increased extrinsic mortality in unfamiliar environments and the selective dispersal of lower-quality individuals. Within breeding Districts, birds may benefit from local knowledge and social information, supporting demographic stability and higher fitness. Our findings highlight the value of adopting a District-based framework for long-term monitoring and conservation of this endangered species. At this scale, demographic trends such as population growth or decline emerge more clearly than when assessed at the level of singular colonies. This approach can enhance our understanding of population dynamics in other mobile species and support more effective conservation strategies aligned with natural population structure. Full article
(This article belongs to the Special Issue Ecology, Diversity and Conservation of Seabirds—2nd Edition)
27 pages, 2608 KiB  
Article
Phenotypic Profiling of Anchote (Coccinia abyssinica (Lam.) Cogn) Accessions Through Agro-Morphological and Physiological Markers
by Dejene Bekele Dibaba, Temesgen Magule Olango, Bizuayehu Tesfaye Asfaw, Desta Fikadu Mijena and Meseret Tesema Terfa
Plants 2025, 14(15), 2334; https://doi.org/10.3390/plants14152334 - 28 Jul 2025
Abstract
Anchote (Coccinia abyssinica) is a neglected high-potential food and nutrition security tuber crop in Ethiopia. Phenotyping core germplasm collections using agro-morphological and physiological markers is essential for effective crop improvement and utilization. A total of 282 anchote germplasms were profiled using [...] Read more.
Anchote (Coccinia abyssinica) is a neglected high-potential food and nutrition security tuber crop in Ethiopia. Phenotyping core germplasm collections using agro-morphological and physiological markers is essential for effective crop improvement and utilization. A total of 282 anchote germplasms were profiled using six qualitative and twenty-six quantitative agro-morphological and physiological traits. Augmented Block Design was used for the experiment at the Debre Zeit Agricultural Research Center. The chi-square test and Shannon diversity index indicated the presence of substantial phenotypic variation and diversity among the accessions based on the predominant qualitative traits studied. The quantitative agro-morphological and physiological traits showed wider variability and ranges for the accessions. The broad-sense heritability and genetic advance as a percentage of the mean were notably high for quantitative traits such as root yield, vine length, and leaf area index. A significantly positive correlation was observed among agronomically important traits such as root yield and root diameter as well as root yield and leaf area. The principal component analysis for qualitative and quantitative traits found that ten components explained 72.2% of the variation for qualitative traits, whereas nine components accounted for 69.96% of the variation in quantitative traits. The primary contributors to the variations are traits such as root (shape, flesh color, and yield), leaf (color, length, diameter, area) and fruit (length, diameter, and weight). Further, the accessions were grouped into two and three clusters based on qualitative and quantitative traits, respectively, indicating that quantitative characters better differentiated among the accessions. Similarly, the tanglegram showed little similarity between the qualitative and quantitative agro-morphological and physiological traits in clustering the accessions. These findings indicate the presence of sizable trait variation among the accessions that can be exploited as a selection marker to design and facilitate conservation and breeding strategies of anchote. Full article
16 pages, 775 KiB  
Article
Residue Elimination Patterns and Determination of the Withdrawal Times of Seven Antibiotics in Taihang Chickens
by Huan Chen, Cheng Zhang, Nana Gao, Guohua Yan, Yandong Li, Xuejing Wang, Liyong Wu, Heping Bai, Hongyu Ge, Huage Liu and Juxiang Liu
Animals 2025, 15(15), 2219; https://doi.org/10.3390/ani15152219 - 28 Jul 2025
Abstract
Antibiotic residues in poultry pose health and resistance risks, necessitating breed-specific WDTs. In this study, the residue elimination patterns of seven antibiotics in Taihang chicken tissues under free-range conditions were studied and the appropriate WDT was formulated. A total of 240 healthy Taihang [...] Read more.
Antibiotic residues in poultry pose health and resistance risks, necessitating breed-specific WDTs. In this study, the residue elimination patterns of seven antibiotics in Taihang chicken tissues under free-range conditions were studied and the appropriate WDT was formulated. A total of 240 healthy Taihang chickens aged 100 days were randomly divided into 8 groups, each comprising 30 chickens. Chickens in groups 1 to 7 were administered oxytetracycline, chlortetracycline, erythromycin, tylosin, tylvalosin, lincomycin, and tiamulin, respectively. Regarding the administration method, we adopted the highest dose and maximum course of treatment recommended by the Veterinary Pharmacopoeia of the People’s Republic of China. Group 8 served as the control group. Muscle, sebum, liver, and kidney samples were collected at 4 h, 1 d, 2 d, 3 d, 5 d, 7 d, 10 d, 13 d, and 16 d after drug withdrawal. Our results demonstrated that the drug residues after drug withdrawal gradually decreased with the increase in drug withdrawal days, and the elimination rate in the early stage of drug withdrawal was significantly faster than that in the later stage. At 4 h after drug withdrawal, the drug residues in various tissues reached their highest values. In most cases, the drug concentrations in the kidney and liver were higher than those in the muscles and sebum; however, some drugs also exhibited concentration peaks in the sebum. On the first day of drug withdrawal, the amount of residues in various tissues decreased rapidly. In general, the elimination rate of various drugs in the muscles, liver, and kidneys is faster but slower in the sebum. Based on the WDT calculation software WT1.4, the recommended WDTs for oxytetracycline, chlortetracycline, erythromycin, tylosin, tylvalosin, lincomycin, and tiamulin chickens are 4 d, 5 d, 11 d, 8 d, 13 d, 13 d, and 7 d, respectively. These findings support food safety and industry development. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

18 pages, 853 KiB  
Article
Elucidating Genotypic Variation in Quinoa via Multidimensional Agronomic, Physiological, and Biochemical Assessments
by Samreen Nazeer and Muhammad Zubair Akram
Plants 2025, 14(15), 2332; https://doi.org/10.3390/plants14152332 - 28 Jul 2025
Abstract
Quinoa (Chenopodium quinoa Willd.) has emerged as a climate-resilient, nutrient-dense crop with increasing global popularity because of its adaptability under current environmental variations. To address the limited understanding of quinoa’s genotypic performance under local agro-environmental conditions, this study hypothesized that elite genotypes [...] Read more.
Quinoa (Chenopodium quinoa Willd.) has emerged as a climate-resilient, nutrient-dense crop with increasing global popularity because of its adaptability under current environmental variations. To address the limited understanding of quinoa’s genotypic performance under local agro-environmental conditions, this study hypothesized that elite genotypes would exhibit significant variation in agronomic, physiological, and biochemical traits. This study aimed to elucidate genotypic variability among 23 elite quinoa lines under field conditions in Faisalabad, Pakistan, using a multidimensional framework that integrated phenological, physiological, biochemical, root developmental, and yield-related attributes. The results revealed that significant variation was observed across all measured parameters, highlighting the diverse adaptive strategies and functional capacities among the tested genotypes. More specifically, genotypes Q4, Q11, Q15, and Q126 demonstrated superior agronomic potential and canopy-level physiological efficiencies, including high biomass accumulation, low infrared canopy temperatures and sustained NDVI values. Moreover, Q9 and Q52 showed enhanced accumulation of antioxidant compounds such as phenolics and anthocyanins, suggesting potential for functional food applications and breeding program for improving these traits in high-yielding varieties. Furthermore, root trait analysis revealed Q15, Q24, and Q82 with well-developed root systems, suggesting efficient resource acquisition and sufficient support for above-ground plant parts. Moreover, principal component analysis further clarified genotype clustering based on trait synergistic effects. These findings support the use of multidimensional phenotyping to identify ideotypes with high yield potential, physiological efficiency and nutritional value. The study provides a foundational basis for quinoa improvement programs targeting climate adaptability and quality enhancement. Full article
Show Figures

Figure 1

15 pages, 1158 KiB  
Article
A Novel Conservation Genomic Strategy: Selection for the Probability of Offspring Heterozygosity
by Attila Zsolnai, András Nagy, Gábor Szalai, Ino Curik, István Anton, Péter Hudák and László Varga
Animals 2025, 15(15), 2217; https://doi.org/10.3390/ani15152217 - 28 Jul 2025
Abstract
The primary objective of any conservation breeding program is to preserve the genetic diversity of populations. This objective is a persistent challenge, especially in small populations which are prone to loss of heterozygosity. In this study, we proposed a novel parent-selection strategy aimed [...] Read more.
The primary objective of any conservation breeding program is to preserve the genetic diversity of populations. This objective is a persistent challenge, especially in small populations which are prone to loss of heterozygosity. In this study, we proposed a novel parent-selection strategy aimed at the long-term maintenance of high levels of genetic diversity. Our approach is based on estimating the Probability of Offspring Heterozygosity (POH)—the likelihood that a mating will produce heterozygous offspring—using SNP genotype data. This strategy was evaluated through computer simulations, where parental pairs with the highest POH values were preferentially selected to produce the next generation. Simulations explored the effects of varying the number of breeding pairs, and the number of unlinked SNP markers. Selection based on POH resulted in observed heterozygosity (HOBS) consistently exceeding expected heterozygosity (HEXP), a trend that was sustained for up to 1000 generations. While further evaluation is needed within more complex population genetic frameworks—accounting for linkage disequilibrium, recombination, optimal contribution, and phenotypic selection—our findings highlight the potential of POH as a valuable tool for enhancing genetic diversity in conservation breeding programs. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

17 pages, 1036 KiB  
Review
Systematic Review of the Ovitrap Surveillance of Aedes Mosquitoes in Brazil (2012–2022)
by Raquel Fernandes Silva Chagas do Nascimento, Alexandre da Silva Xavier, Tania Ayllón Santiago, Daniel Cardoso Portela Câmara, Izabel Cristina dos Reis, Edson Oliveira Delatorre, Patrícia Carvalho de Sequeira, Vitor Henrique Ferreira-de-Lima, Tamara Nunes Lima-Camara and Nildimar Alves Honório
Trop. Med. Infect. Dis. 2025, 10(8), 212; https://doi.org/10.3390/tropicalmed10080212 - 28 Jul 2025
Abstract
Background: Arthropod-borne diseases primarily affect tropical and subtropical regions, exhibiting seasonal patterns that peak during hot and rainy months when conditions favor mosquito vector proliferation. Factors such as high temperatures, elevated humidity, rainfall, urbanization, and the abundance of natural and artificial breeding sites [...] Read more.
Background: Arthropod-borne diseases primarily affect tropical and subtropical regions, exhibiting seasonal patterns that peak during hot and rainy months when conditions favor mosquito vector proliferation. Factors such as high temperatures, elevated humidity, rainfall, urbanization, and the abundance of natural and artificial breeding sites influence Aedes vector dynamics. In this context, arboviruses pose significant public health challenges, likely worsened by global warming. In Brazil, Aedes (Stegomyia) aegypti (Linnaeus, 1762) is the primary vector for yellow fever, dengue, chikungunya, and Zika. Aedes (Stegomyia) albopictus (Skuse, 1894) is an important global arbovirus vector and is considered a potential vector in Brazil. Entomological surveillance of these species often uses oviposition traps targeting immature stages. Evaluating studies that use ovitraps to collect Ae. aegypti and Ae. albopictus egg is essential for improving mosquito surveillance strategies. This study systematically reviewed peer-reviewed articles on ovitrap-based surveillance of Aedes mosquitoes in Brazil, published in Portuguese and English from 2012 to 2022. The findings suggest that ovitraps are an effective method for detecting the presence or absence of Ae. aegypti and Ae. albopictus, serving as a reliable proxy for estimating mosquito abundance in Brazilian contexts. Full article
Show Figures

Figure 1

13 pages, 1384 KiB  
Article
Molecular Epidemiology of Brucella spp. in Aborted Livestock in the Ningxia Hui Autonomous Region, China
by Cai Yin, Cong Yang, Yawen Wu, Jing Di, Taotao Bai, Yumei Wang, Yuling Zhang, Longlong Luo, Shuang Zhou, Long Ma, Xiaoliang Wang, Qiaoying Zeng and Zhixin Li
Vet. Sci. 2025, 12(8), 702; https://doi.org/10.3390/vetsci12080702 - 28 Jul 2025
Abstract
Brucellosis is caused by Brucella spp.; it can result in fetal loss and abortion, resulting in economic losses and negative effects on human health. Herein, a cross-sectional study on the epidemiology of Brucella spp. in aborted livestock in Ningxia from 2022 to 2023 [...] Read more.
Brucellosis is caused by Brucella spp.; it can result in fetal loss and abortion, resulting in economic losses and negative effects on human health. Herein, a cross-sectional study on the epidemiology of Brucella spp. in aborted livestock in Ningxia from 2022 to 2023 was conducted. A total of 749 aborted tissue samples from 215 cattle and 534 sheep were collected from farmers who reported abortions that were supported by veterinarians trained in biosecurity. The samples were analyzed using qPCR and were cultured for Brucella spp. when a positive result was obtained; the samples were speciated using AMOS-PCR. MLST and MLVA were employed for genotype identification. The results demonstrated that 8.68% of the samples were identified as being positive for Brucella spp. based on qPCR results. In total, 14 field strains of Brucella spp. were subsequently isolated, resulting in 11 B. melitensis, 2 B. abortus, and 1 B. suis. being identified via AMOS-PCR. Four sequence types were identified via MLST—ST7 and ST8 (B. melitensis), ST2 (B. abortus), and ST14 (B. suis)—with ST8 predominating. Five MLVA-8 genotypes and seven MLVA-11 genotypes were identified, with MLVA-11 GT116 predominating in livestock. Thus, at least three Brucella species are circulating in aborted livestock in Ningxia. This suggests a significant risk of transmission to other animals and humans. Therefore, disinfection and safe treatment procedures for aborted livestock and their products should be carried out to interrupt the transmission pathway; aborted livestock should be examined to determine zoonotic causes and targeted surveillance should be strengthened to improve the early detection of infectious causes, which will be of benefit to the breeding industry and public health security. Full article
Show Figures

Figure 1

27 pages, 2663 KiB  
Article
Impact of Abiotic Stress-Reducing Cultivation Technologies and Long-Term Storage on the Oxidative Potential of Edible Potato Tubers (Solanum tuberosum L.)
by Jarosław Pobereżny, Elżbieta Wszelaczyńska, Jarosław Chmielewski, Barbara Gworek, Wiesław Szulc, Beata Rutkowska and Joanna Korczyk-Szabó
Agriculture 2025, 15(15), 1629; https://doi.org/10.3390/agriculture15151629 - 27 Jul 2025
Abstract
Currently, in the context of the emphasis on introducing a reduction in mineral fertilization and the increase in pressure on sustainable agriculture, magnesium fertilization and the use of biostimulants are becoming an alternative tool to increase the quality of potato tuber yield. This [...] Read more.
Currently, in the context of the emphasis on introducing a reduction in mineral fertilization and the increase in pressure on sustainable agriculture, magnesium fertilization and the use of biostimulants are becoming an alternative tool to increase the quality of potato tuber yield. This study aimed to assess the impact of potato genotype, cultivation technology, and long-term storage on the susceptibility of tubers to enzymatic browning. Two edible potato varieties were examined: the early ‘Wega’ and the mid-early ‘Soraya’. It was demonstrated that the varieties maintained their characteristic browning susceptibility consistent with their breeding descriptions. The ‘Wega’ variety exhibited decreasing browning susceptibility immediately after harvest; however, after 6 months of storage, its susceptibility significantly increased, exceeding that of the ‘Soraya’ variety. Additionally, the application of magnesium fertilization (90 kg ha−1) and biostimulant treatment (3 L ha−1) most effectively reduced the oxidative potential of the tubers, thereby decreasing browning susceptibility. This is due to a significant change in the concentration of organic acids responsible for enzymatic browning processes. A decrease in the content of chlorogenic acid by 9.4% and 8.4% and an increase in the content of citric and ascorbic acid by 11.1%, 5.3%, and 13.6% were achieved. Storage significantly affected the chemical composition of the tubers. An increase in chlorogenic (7.3%) and citric (5.8%) acids and a decrease in ascorbic (34%) acid content were observed. These changes correlated with the intensification of browning, with the increase in chlorogenic acid and the decrease in ascorbic acid having the greatest influence. The results indicate that the technology based on supplementary fertilization and biostimulation improves the quality of potato raw material without a significant increase in production costs. Further research on varieties with different vegetation lengths and those intended for food processing and starch production is advised. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
31 pages, 6501 KiB  
Review
From Hormones to Harvests: A Pathway to Strengthening Plant Resilience for Achieving Sustainable Development Goals
by Dipayan Das, Hamdy Kashtoh, Jibanjyoti Panda, Sarvesh Rustagi, Yugal Kishore Mohanta, Niraj Singh and Kwang-Hyun Baek
Plants 2025, 14(15), 2322; https://doi.org/10.3390/plants14152322 - 27 Jul 2025
Abstract
The worldwide agriculture industry is facing increasing problems due to rapid population increase and increasingly unfavorable weather patterns. In order to reach the projected food production targets, which are essential for guaranteeing global food security, innovative and sustainable agricultural methods must be adopted. [...] Read more.
The worldwide agriculture industry is facing increasing problems due to rapid population increase and increasingly unfavorable weather patterns. In order to reach the projected food production targets, which are essential for guaranteeing global food security, innovative and sustainable agricultural methods must be adopted. Conventional approaches, including traditional breeding procedures, often cannot handle the complex and simultaneous effects of biotic pressures such as pest infestations, disease attacks, and nutritional imbalances, as well as abiotic stresses including heat, salt, drought, and heavy metal toxicity. Applying phytohormonal approaches, particularly those involving hormonal crosstalk, presents a viable way to increase crop resilience in this context. Abscisic acid (ABA), gibberellins (GAs), auxin, cytokinins, salicylic acid (SA), jasmonic acid (JA), ethylene, and GA are among the plant hormones that control plant stress responses. In order to precisely respond to a range of environmental stimuli, these hormones allow plants to control gene expression, signal transduction, and physiological adaptation through intricate networks of antagonistic and constructive interactions. This review focuses on how the principal hormonal signaling pathways (in particular, ABA-ET, ABA-JA, JA-SA, and ABA-auxin) intricately interact and how they affect the plant stress response. For example, ABA-driven drought tolerance controls immunological responses and stomatal behavior through antagonistic interactions with ET and SA, while using SnRK2 kinases to activate genes that react to stress. Similarly, the transcription factor MYC2 is an essential node in ABA–JA crosstalk and mediates the integration of defense and drought signals. Plants’ complex hormonal crosstalk networks are an example of a precisely calibrated regulatory system that strikes a balance between growth and abiotic stress adaptation. ABA, JA, SA, ethylene, auxin, cytokinin, GA, and BR are examples of central nodes that interact dynamically and context-specifically to modify signal transduction, rewire gene expression, and change physiological outcomes. To engineer stress-resilient crops in the face of shifting environmental challenges, a systems-level view of these pathways is provided by a combination of enrichment analyses and STRING-based interaction mapping. These hormonal interactions are directly related to the United Nations Sustainable Development Goals (SDGs), particularly SDGs 2 (Zero Hunger), 12 (Responsible Consumption and Production), and 13 (Climate Action). This review emphasizes the potential of biotechnologies to use hormone signaling to improve agricultural performance and sustainability by uncovering the molecular foundations of hormonal crosstalk. Increasing our understanding of these pathways presents a strategic opportunity to increase crop resilience, reduce environmental degradation, and secure food systems in the face of increasing climate unpredictability. Full article
Show Figures

Figure 1

16 pages, 3903 KiB  
Article
Identification of Salt Tolerance-Related NAC Genes in Wheat Roots Based on RNA-Seq and Association Analysis
by Lei Zhang, Aili Wei, Weiwei Wang, Xueqi Zhang, Zhiyong Zhao and Linyi Qiao
Plants 2025, 14(15), 2318; https://doi.org/10.3390/plants14152318 - 27 Jul 2025
Abstract
Excavating new salt tolerance genes and utilizing them to improve salt-tolerant wheat varieties is an effective way to utilize salinized soil. The NAC gene family plays an important role in plant response to salt stress. In this study, 446 NAC sequences were isolated [...] Read more.
Excavating new salt tolerance genes and utilizing them to improve salt-tolerant wheat varieties is an effective way to utilize salinized soil. The NAC gene family plays an important role in plant response to salt stress. In this study, 446 NAC sequences were isolated from the whole genome of common wheat and classified into 118 members based on subgenome homology, named TaNAC1 to TaNAC118. Transcriptome analysis of salt-tolerant wheat breeding line CH7034 roots revealed that 144 of the 446 TaNAC genes showed significant changes in expression levels at least two time points after NaCl treatment. These differentially expressed TaNACs were divided into four groups, and Group 4, containing the largest number of 78 genes, exhibited a successive upregulation trend after salt treatment. Single nucleotide polymorphisms (SNPs) of the TaNAC gene family in 114 wheat germplasms were retrieved from the public database and were subjected to further association analysis with the relative salt-injury rates (RSIRs) of six root phenotypes, and then 20 SNPs distributed on chromosomes 1B, 2B, 2D, 3B, 3D, 5B, 5D, and 7A were correlated with phenotypes involving salt tolerance (p < 0.0001). Combining the results of RT-qPCR and association analysis, we further selected three NAC genes from Group 4 as candidate genes that related to salt tolerance, including TaNAC26-D3.2, TaNAC33-B, and TaNAC40-B. Compared with the wild type, the roots of the tanac26-d3.2 mutant showed shorter length, less volume, and reduced biomass after being subjected to salt stress. Four SNPs of TaNAC26-D3.2 formed two haplotypes, Hap1 and Hap2, and germplasms with Hap2 exhibited better salt tolerance. Snp3, in exon 3 of TaNAC26-D3.2, causing a synonymous mutation, was developed into a Kompetitive Allele-Specific PCR marker, K3, to distinguish the two haplotypes, which can be further used for wheat germplasm screening or marker-assisted breeding. This study provides new genes and molecular markers for improvement of salt tolerance in wheat. Full article
Show Figures

Figure 1

20 pages, 1940 KiB  
Article
Linkages Between Sorghum bicolor Root System Architectural Traits and Grain Yield Performance Under Combined Drought and Heat Stress Conditions
by Alec Magaisa, Elizabeth Ngadze, Tshifhiwa P. Mamphogoro, Martin P. Moyo and Casper N. Kamutando
Agronomy 2025, 15(8), 1815; https://doi.org/10.3390/agronomy15081815 - 26 Jul 2025
Viewed by 50
Abstract
Breeding programs often overlook the use of root traits. Therefore, we investigated the relevance of sorghum root traits in explaining its adaptation to combined drought and heat stress (CDHS). Six (i.e., three pre-release lines + three checks) sorghum genotypes were established at two [...] Read more.
Breeding programs often overlook the use of root traits. Therefore, we investigated the relevance of sorghum root traits in explaining its adaptation to combined drought and heat stress (CDHS). Six (i.e., three pre-release lines + three checks) sorghum genotypes were established at two low-altitude (i.e., <600 masl) locations with a long-term history of averagely very high temperatures in the beginning of the summer season, under two management (i.e., CDHS and well-watered (WW)) regimes. At each location, the genotypes were laid out in the field using a randomized complete block design (RCBD) replicated two times. Root trait data, namely root diameter (RD), number of roots (NR), number of root tips (NRT), total root length (TRL), root depth (RDP), root width (RW), width–depth ratio (WDR), root network area (RNA), root solidity (RS), lower root area (LRA), root perimeter (RP), root volume (RV), surface area (SA), root holes (RH) and root angle (RA) were gathered using the RhizoVision Explorer software during the pre- and post-flowering stage of growth. RSA traits differentially showed significant (p < 0.05) correlations with grain yield (GY) at pre- and post-flowering growth stages and under CDHS and WW conditions also revealing genotypic variation estimates exceeding 50% for all the traits. Regression models varied between pre-flowering (p = 0.013, R2 = 47.15%, R2 Predicted = 29.32%) and post-flowering (p = 0.000, R2 = 85.64%, R2 Predicted = 73.30%) growth stages, indicating post-flowering as the optimal stage to relate root traits to yield performance. RD contributed most to the regression model at post-flowering, explaining 51.79% of the 85.64% total variation. The Smith–Hazel index identified ICSV111IN and ASAREACA12-3-1 as superior pre-release lines, suitable for commercialization as new varieties. The study demonstrated that root traits (in particular, RD, RW, and RP) are linked to crop performance under CDHS conditions and should be incorporated in breeding programs. This approach may accelerate genetic gains not only in sorghum breeding programs, but for other crops, while offering a nature-based breeding strategy for stress adaptation in crops. Full article
Show Figures

Figure 1

18 pages, 7295 KiB  
Article
Genome-Wide Identification, Evolution, and Expression Analysis of the DMP Gene Family in Peanut (Arachis hypogaea L.)
by Pengyu Qu, Lina He, Lulu Xue, Han Liu, Xiaona Li, Huanhuan Zhao, Liuyang Fu, Suoyi Han, Xiaodong Dai, Wenzhao Dong, Lei Shi and Xinyou Zhang
Int. J. Mol. Sci. 2025, 26(15), 7243; https://doi.org/10.3390/ijms26157243 - 26 Jul 2025
Viewed by 67
Abstract
Peanut (Arachis hypogaea L.) is a globally important oilseed cash crop, yet its limited genetic diversity and unique reproductive biology present persistent challenges for conventional crossbreeding. Traditional breeding approaches are often time-consuming and inadequate, mitigating the pace of cultivar development. Essential for [...] Read more.
Peanut (Arachis hypogaea L.) is a globally important oilseed cash crop, yet its limited genetic diversity and unique reproductive biology present persistent challenges for conventional crossbreeding. Traditional breeding approaches are often time-consuming and inadequate, mitigating the pace of cultivar development. Essential for double fertilization and programmed cell death (PCD), DUF679 membrane proteins (DMPs) represent a membrane protein family unique to plants. In the present study, a comprehensive analysis of the DMP gene family in peanuts was conducted, which included the identification of 21 family members. Based on phylogenetic analysis, these genes were segregated into five distinct clades (I–V), with AhDMP8A, AhDMP8B, AhDMP9A, and AhDMP9B in clade IV exhibiting high homology with known haploid induction genes. These four candidates also displayed significantly elevated expression in floral tissues compared to other organs, supporting their candidacy for haploid induction in peanuts. Subcellular localization prediction, confirmed through co-localization assays, demonstrated that AhDMPs primarily localize to the plasma membrane, consistent with their proposed roles in the reproductive signaling process. Furthermore, chromosomal mapping and synteny analyses revealed that the expansion of the AhDMP gene family is largely driven by whole-genome duplication (WGD) and segmental duplication events, reflecting the evolutionary dynamics of the tetraploid peanut genome. Collectively, these findings establish a foundational understanding of the AhDMP gene family and highlight promising targets for future applications in haploid induction-based breeding strategies in peanuts. Full article
Show Figures

Graphical abstract

18 pages, 1724 KiB  
Article
Ecological Product Value Realization in Agricultural Heritage System Sites: A Case Study of Wannian Rice Culture System in China
by Jingyi Li, Zhidong Li, Bojie Wang, Yan Mei, Youyu Luo and Qingwen Min
Sustainability 2025, 17(15), 6791; https://doi.org/10.3390/su17156791 - 25 Jul 2025
Viewed by 113
Abstract
The value realization of ecological products is an important part of rural and agricultural development. As a significant force for protecting traditional agricultural systems and promoting rural revitalization, agricultural heritage systems (AHSs) have formed diverse value realization paths of ecological products in the [...] Read more.
The value realization of ecological products is an important part of rural and agricultural development. As a significant force for protecting traditional agricultural systems and promoting rural revitalization, agricultural heritage systems (AHSs) have formed diverse value realization paths of ecological products in the process of dynamic protection and adaptive management. Through theoretical research, this article analyzed the characteristics of ecological products in AHS sites (EPAHSSs) and summarized the framework of value realization paths of EPAHSSs. Then, the Wannian Rice Culture System in China was selected as a case for conducting empirical research. The results showed that EPAHSSs exhibit obvious uniqueness in terms of climate environment, germplasm resources, farming and breeding models, and cultural heritage. The value realization paths of EPAHSSs mainly include industrial development support, such as the extension of agricultural industrial chains and the development of tourism, as well as fiscal transfer payments. The case analysis results indicated that Wannian County contains a rich variety of ecological products and developed a value realization pathway mainly based on the integration of industries and supplemented by fiscal transfer payments during the process of protection and development. However, further optimization is needed to promote the development of tourism and other paths. This study not only contributes to the sustainable development of the Wannian Rice Culture System, but the proposed framework is also applicable to other heritage systems and similar regions. Full article
(This article belongs to the Section Social Ecology and Sustainability)
Show Figures

Figure 1

16 pages, 982 KiB  
Article
Impact of Cattle Breed in scRNA-Seq Reference on Muscle Fiber Type Deconvolution from Bulk RNA-Seq: A Comparison of Software Tools
by Raphael P. Moreira, Marcelo R. Vicari, Henrique A. Mulim, Theresa M. Casey, Jacquelyn Boerman, Xing Fu and Hinayah R. Oliveira
BioTech 2025, 14(3), 56; https://doi.org/10.3390/biotech14030056 - 25 Jul 2025
Viewed by 99
Abstract
While bulk RNA sequencing provides a comprehensive view of transcriptomes, it lacks cell type specificity. Single-cell RNA sequencing (scRNA-seq) overcomes this limitation by providing detailed insights at the individual cell level, though it involves higher costs. Deconvolution methods can estimate cell type proportions [...] Read more.
While bulk RNA sequencing provides a comprehensive view of transcriptomes, it lacks cell type specificity. Single-cell RNA sequencing (scRNA-seq) overcomes this limitation by providing detailed insights at the individual cell level, though it involves higher costs. Deconvolution methods can estimate cell type proportions in bulk RNA-seq data, but their results may vary based on the scRNA-seq reference data and software used. This study investigates the estimation of muscle fiber type proportions through deconvolution analysis of Longissimus dorsi muscle bulk RNA-seq data from late-gestation Holstein Friesian multiparous cows. Four software tools (i.e., CIBERSORTx, Cellanneal, DeconvR-NNLS, and DeconvR-RLM) were compared using scRNA-seq reference data from Brahman and Wagyu cattle breeds, which included proportions of types I, IIa, and IIx myofibers. Kruskal–Wallis and Dunn’s tests revealed that the breed of reference data significantly influenced the proportions of type IIa and IIx muscle fibers across different deconvolution methods. To the best of our knowledge, this is the first study to show that the cattle breed used in reference scRNA-seq data can substantially impact deconvolution outcomes, highlighting a critical consideration for accurate cell type proportion estimation in livestock genomics. These findings suggest that future deconvolution studies should carefully consider breed compatibility between reference and target datasets. Full article
Show Figures

Figure 1

12 pages, 1644 KiB  
Brief Report
RNA-Seq Identification of Peanut Callus-Specific Promoters and Evaluation of Base-Editing Efficiency
by Lulu Xue, Han Liu, Huanhuan Zhao, Pengyu Qu, Xiaona Li, Xiaobo Wang, Bingyan Huang, Ziqi Sun, Suoyi Han, Xiaodong Dai, Wenzhao Dong, Lei Shi and Xinyou Zhang
Plants 2025, 14(15), 2290; https://doi.org/10.3390/plants14152290 - 25 Jul 2025
Viewed by 153
Abstract
Prolonged expression of gene-editing components in CRISPR-modified plants can interfere with phenotypic analysis of target traits, increase the risk of off-target mutations, and lead to unnecessary metabolic burden. To mitigate these issues in peanut (Arachis hypogaea L.), callus-specific promoters were screened to [...] Read more.
Prolonged expression of gene-editing components in CRISPR-modified plants can interfere with phenotypic analysis of target traits, increase the risk of off-target mutations, and lead to unnecessary metabolic burden. To mitigate these issues in peanut (Arachis hypogaea L.), callus-specific promoters were screened to restrict Cas9 expression to the callus stage, minimizing its activity in regenerated plants. In this study, six callus-specific genes in peanut were identified by mining RNA sequencing datasets and validating their expression profiles using quantitative reverse transcriptase PCR. The promoters of Arahy.H0FE8D, Arahy.WT3AEF, Arahy.I20Q6X, Arahy.ELJ55T, and Arahy.N9CMH4 were cloned and assessed for their expression activity. Beta-glucuronidase (GUS) histochemical staining confirmed that all five promoters were functional in peanut callus. Further investigation revealed their ability to drive cytosine base editing via a deaminase-nCas9 fusion protein, with all promoters successfully inducing precise base substitutions in peanut. Notably, PAh-H0FE8D, PAh-WT3AEF, PAh-ELJ55T, and PAh-N9CMH4 exhibited comparable or higher editing efficiencies than the commonly used cauliflower mosaic virus 35S promoter. These findings provide valuable tools for improving the biosafety of CRISPR-based genome editing in peanut breeding programs. Full article
(This article belongs to the Special Issue Advances in Oil Regulation in Seeds and Vegetative Tissues)
Show Figures

Figure 1

Back to TopTop