Residue Elimination Patterns and Determination of the Withdrawal Times of Seven Antibiotics in Taihang Chickens
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Drugs and Reagents
2.3. Experimental Design
2.4. Sample Preparation
2.5. Liquid Chromatography–Mass Spectrometry Conditions
2.6. Method Validation
3. Results
3.1. Method Validation Results
3.2. Residue Elimination Pattern
3.2.1. Elimination Pattern of Oxytetracycline and Chlortetracycline, and Their Main Metabolites
3.2.2. Elimination Pattern of Erythromycin, Tylosin, and Tylvalosin, and Their Main Metabolites
3.2.3. Elimination Pattern of Lincomycin and Its Main Metabolites
3.2.4. Elimination Pattern of Tiamulin and Its Main Metabolites
3.3. WDTs and MRLs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministry of Agriculture and Rural Affairs of China. China Agricultural Development Report; Ministry of Agriculture and Rural Affairs of China: Beijing, China, 2024. [Google Scholar]
- Zhao, S.; Li, R.; Li, M.; Wang, Y.; Wang, J.; Yuan, R. Evaluation of the effects of Chinese Dietary Guidelines on nutrition, environment, and cost. Chin. J. Popul. Resour. Environ. 2024, 22, 515–525. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Chen, J.; Ying, G.G.; Deng, W.J. Antibiotic Residues in Food: Extraction, Analysis, and Human Health Concerns. J. Agric. Food Chem. 2019, 67, 7569–7586. [Google Scholar] [CrossRef]
- Patel, T.; Marmulak, T.; Gehring, R.; Pitesky, M.; Clapham, M.O.; Tell, L.A. Drug residues in poultry meat: A literature review of commonly used veterinary antibacterials and anthelmintics used in poultry. J. Vet. Pharmacol. Ther. 2018, 41, 761–789. [Google Scholar] [CrossRef]
- GB 31650-2019; National Food Safety Standard—Maximum Residue Limits for Veterinary Drugs in Foods. China Agriculture Press: Beijing, China, 2019.
- Han, H.; Sun, Y.; Fan, Y.; Zhang, H.; Yang, J.; Chi, R.; Gao, Y.; Liu, J.; Li, K.; Li, W.; et al. Microbial Diversity and Community Composition of Duodenum Microbiota of High and Low Egg-Yielding Taihang Chickens Identified Using 16S rRNA Amplicon Sequencing. Life 2022, 12, 1262. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wang, W.; Zhang, Z.; Wang, D.; Ding, H.; Liu, H.; Zang, S.; Zhou, R. Genome-wide re-sequencing reveals selection signatures for important economic traits in Taihang chickens. Poult. Sci. 2024, 103, 104240. [Google Scholar] [CrossRef]
- Wei, M.; Xie, P.; Chen, R. Research Progress on Meat and Egg Quality of Taihang Chickens. North. Anim. Husb. 2023, 1994–2023, 31. [Google Scholar]
- Liu, H.; Ni, H.; Zhang, Z.; Liu, H. Industrial Status, Existing Problems and Development Measures of Taihang Chickens. Hebei Agric. 2021, 27, 33–36. [Google Scholar]
- Chen, H.; Wu, X.; Cui, S.; Li, Y.; Mu, Y.; Gao, J.; Liu, H.; Liu, J. Residue Elimination Patterns and Determination of the Withdrawal Times of Seven Antibiotics in Eggs of Taihang Chickens. Animals 2024, 14, 3701. [Google Scholar] [CrossRef] [PubMed]
- Chinese Veterinary Pharmacopoeia Committee. Guidelines for the Use of Veterinary Drugs in Veterinary Pharmacopoeia of the People’s Republic of China (2020 Edition); China Agriculture Press: Beijing, China, 2021. [Google Scholar]
- Chinese Veterinary Pharmacopoeia Committee. Quality Standard of Veterinary Drugs (2017 Edition); China Agriculture Press: Beijing, China, 2017. [Google Scholar]
- Li, X.; Chen, L.; Yue, H.; Feng, H.; Xu, E.; Wei, X.; Han, X.; Deng, L.; Li, Z. Depletion of florfenicol and florfenicol amine in eggs of laying hens and growing pullets after oral administration. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2020, 37, 1449–1458. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Jiang, R.; Guo, W.; Guo, C.; Li, S.; Wang, J.; Wang, S.; Li, Y. Screening and Analysis of Multiclass Veterinary Drug Residues in Animal Source Foods using UPLC-Q-Exactive Orbitrap/MS. Bull. Environ. Contam. Toxicol. 2021, 107, 228–238. [Google Scholar] [CrossRef]
- Verdon, E.; Couedor, P.; Sanders, P. Multi-residue monitoring for the simultaneous determination of five nitrofurans (furazolidone, furaltadone, nitrofurazone, nitrofurantoine, nifursol) in poultry muscle tissue through the detection of their five major metabolites (AOZ, AMOZ, SEM, AHD, DNSAH) by liquid chromatography coupled to electrospray tandem mass spectrometry—in-house validation in line with Commission Decision 657/2002/EC. Anal. Chim. Acta 2007, 586, 336–347. [Google Scholar] [PubMed]
- Veterinary Drug Quality Standards; 2020 Commission of Chinese Veterinary Pharmacopoeia: Beijing, China, 2020.
- Yan, X.; Liu, J.; Jia, Y.; Yao, Z.; Zhou, M.; Song, S.; Yuan, S.; Zhang, D.; Zhang, N. The pharmacokinetics of tilmicosin in plasma and joint dialysate in an experimentally Mycoplasma synoviae infection model. Poult. Sci. 2023, 102, 102572. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, A.M.; Ahmed, Y.M.; Ahmed, M.T. Feeding cyromazine to Luhmann hens: Residues in tissues and effects on some biochemical constituents. J. Egypt. Soc. Parasitol. 1994, 24, 259–269. [Google Scholar] [PubMed]
- Pea, F. Intracellular pharmacokinetics of antibacterials and their clinical implications. Clin. Pharmacokinet. 2018, 57, 177–189. [Google Scholar] [CrossRef]
- Riviere, J.E.; Papich, M.G. Veterinary Pharmacology and Therapeutics, 10th ed.; Wiley-Blackwell Publisher: Hoboken, NJ, USA, 2017. [Google Scholar]
- Ye, M.; Yuan, L.; Liao, Q.; Xiang, J.; Zhang, L.; Ai, Q.; Qiu, S.; Dong, Y.; Yu, X.; Zhang, D. Residue Depletion and Withdrawal Interval Estimations of Sulfamonomethoxine or Doxycycline Residues in Chinese Taihe Black-Bone Silky Fowls. Animals 2025, 15, 640. [Google Scholar] [CrossRef]
- Li, Y.; Du, J.; Yang, Q.; Li, R.; Jin, S.; Guo, X.; Wang, X.; Zhang, W.; Xu, L. The withdrawal time of enrofloxacin, sulfachloropyrazine sodium, and doxycycline as well as the in vitro binding interaction with melanin in black-feathered silky fowl. Food Chem. X 2024, 24, 101994. [Google Scholar] [CrossRef]
- Církva, A.; Málková, I.; Rejtharová, M.; Vernerová, E.; Hera, A.; Bureš, J. Residue study of nitroimidazoles depletion in chicken feathers in comparison with some other selected matrixes. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2019, 36, 1206–1217. [Google Scholar] [CrossRef]
- Chiesa, L.M.; Nobile, M.; Panseri, S.; Arioli, F. Suitability of feathers as control matrix for antimicrobial treatments detection compared to muscle and liver of broilers. Food Control 2018, 91, 268–275. [Google Scholar] [CrossRef]
- Cornejo, J.; Pokrant, E.; Carvallo, C.; Maddaleno, A.; San Martín, B. Depletion of tylosin residues in feathers, muscle and liver from broiler chickens after completion of antimicrobial therapy. Food Addit. Contam. Part A 2017, 35, 448–457. [Google Scholar] [CrossRef]
- Anadón, A.; Gamboa, F.; Martínez, M.A.; Castellano, V.; Martínez, M.; Ares, I.; Ramos, E.; Suarez, F.H.; Martínez-Larrañaga, M.R. Plasma disposition and tissue depletion of chlortetracycline in the food producing animals, chickens for fattening. Food Chem. Toxicol. 2012, 50, 2714–2721. [Google Scholar] [CrossRef]
- Pokrant, E.; Maddaleno, A.; Lobos, R.; Trincado, L.; Lapierre, L.; San Martín, B.; Cornejo, J. Assessing the depletion of lincomycin in feathers from treated broiler chickens: A comparison with the concentration of its residues in edible tissues. Food Addit. Contam. Part A 2019, 36, 1647–1653. [Google Scholar] [CrossRef]
- Vinothini, P.; Ramesh, S.; Sooraj Nair, V.; Preetha, S.P.; Sriram, P. Pharmacokinetics and relative bioavailability of tiamulin in broiler chicken as influenced by different routes of administration. J. Vet. Pharmacol. Ther. 2019, 42, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Qiu, J.; Li, R.; Li, D.; Wang, Q.; Wang, Q.; Ma, Y.; Yang, W.; Xu, R.; Liu, L.; et al. Comparative study of the plasma pharmacokinetics and tissue residues of trimethoprim in silky fowls and 817 broilers after single oral administration. Poult. Sci. 2023, 102, 103060. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.J.; Zhang, M.; Chen, Q.X.; Ning, J.; Wei, T.; Qin, J.P. Studies on the elimination of tilmicosin in yellow-feathered broilers. Chin. J. Vet. Drugs 2013, 47, 27–30. [Google Scholar]
- Shao, H.T.; Gao, L.; Li, H.T.; Zhang, M.; Chen, J.C.; Duan, M.H.; Li, Z.E.; Dai, Y.; Li, X.P.; Yang, F. Egg residue and depletion of meloxicam in Jing Hong laying hens following multiple oral doses. Poult. Sci. 2023, 102, 102761. [Google Scholar] [CrossRef]
- Sha, L.; Tang, X.; Liu, D.; Xu, Y.; Ding, Y.U.; Ding, F. Detection and Quantitation of Lomefloxacin and Pefloxacin Residues in the Organ Tissues and Eggs of Laying Hens. J. Food Prot. 2018, 81, 810–814. [Google Scholar] [CrossRef]
Drug Name | Chinese Veterinary Pharmacopoeia WDT | Manufacturer and Batch Number |
---|---|---|
50% oxytetracycline hydrochloride soluble powder | 5 days | Hebei Xiangda Hezhong Biotechnology Co., Ltd. (Shijiazhuang, China) batch number 20220702 |
20% chlortetracycline hydrochloride soluble powder | 7 days | Baoding Ji Zhong Pharmaceutical Co., Ltd. (Baoding, China) batch number 20220703 |
5% erythromycin thiocyanate soluble powder | 3 days | Baoding Ji Zhong Pharmaceutical Co., Ltd. batch number 20220906 |
50% tylosin tartrate soluble powder | 1 days | Baoding Ji Zhong Pharmaceutical Co., Ltd. batch number 202202002 |
20% tylvalosin tartrate soluble powder | 5 days | Zhangjiakou Wanquan District Ketai Biotechnology Co., Ltd. (Zhangjiakou, China) batch number 22081401 |
5% lincomycin hydrochloride soluble powder | 5 days | Hebei Zhenghe Biopharmaceutical Co., Ltd. (Xingtai, China) batch number 20230043 |
45% tiamulin fumarate soluble powder | 5 days | Hebei Weili Biotechnology Co., Ltd. (Shijiazhuang, China) batch number 20220538 |
Analyte | Retention Time/min | Precursor Ion (m/z) | Daughter Ion (m/z) | Collision Voltage/V | Cone Voltage/V |
---|---|---|---|---|---|
Oxytetracycline | 2.50 | 460.8 | 200.7 | 44 | 2 |
425.8 | 20 | ||||
Chlortetracycline | 3.28 | 478.8 | 153.7 | 26 | 34 |
443.8 | 20 | ||||
Erythromycin A | 3.45 | 734.2 | 158.1 | 30 | 30 |
576.2 | 18 | ||||
Tylosin A | 3.47 | 916.2 | 145.1 | 35 | 20 |
174.1 | 35 | ||||
Tylvalosin | 3.76 | 1042.7 | 109.1 | 45 | 30 |
174.1 | 45 | ||||
3-O-Acetyltylosin | 3.56 | 958.5 | 174.1 | 44 | 30 |
772.4 | 44 | ||||
Lincomycin | 2.04 | 407.0 | 126.2 | 22 | 30 |
359.2 | 16 | ||||
Tiamulin | 3.59 | 494.4 | 119.0 | 25 | 10 |
192.1 | 19 |
Residual Marker | Regression Equation | R2 Correlation Coefficient | LOD/(µg/kg) | LOQ/(µg/kg) |
---|---|---|---|---|
Oxytetracycline | y = 13037.3x + 11524.2 | 0.9977 | 0.5 | 2.0 |
Chlortetracycline | y = 8021.96x − 964.676 | 0.9995 | 0.5 | 2.0 |
Erythromycin A | y = 2682.41x − 1897.21 | 0.9958 | 0.5 | 2.0 |
Tylosin A | y = 7941.16x + 14,196 | 0.9913 | 1.0 | 5.0 |
Tylvalosin | y = 180.583x + 68.504 | 0.9987 | 0.2 | 1.0 |
3-O-Acetyltylosin | y = 3130.63x + 6298.73 | 0.9919 | 1.0 | 5.0 |
Lincomycin | y = 1835.12x + 3640.36 | 0.9959 | 0.2 | 1.0 |
Tiamulin | y = 92568.2x + 162944 | 0.9951 | 0.2 | 1.0 |
Analyte | Matrix | Spiked Concentration (μg/kg) | Recovery (%) (n = 6) | Intra-Day RSD (%) (n = 6) | Inter-Day RSD (%) (n = 6) | CCα (μg/kg) | CCβ (μg/kg) |
---|---|---|---|---|---|---|---|
Oxytetracycline | Muscle | 10 | 76 | 3.7 | 4.4 | 0.322 | 0.424 |
Skin and fat | 10 | 74 | 3.6 | 3.9 | 0.316 | 0.342 | |
Liver | 10 | 72 | 3.9 | 3.0 | 0.327 | 0.502 | |
Kidney | 10 | 73 | 4.1 | 3.8 | 0.388 | 0.446 | |
Muscle | 25 | 71 | 3.8 | 4.4 | 0.302 | 0.507 | |
Skin and fat | 25 | 73 | 3.7 | 3.8 | 0.296 | 0.469 | |
Liver | 25 | 72 | 4.0 | 2.9 | 0.309 | 0.478 | |
Kidney | 25 | 74 | 3.5 | 3.7 | 0.326 | 0.338 | |
Muscle | 50 | 73 | 3.4 | 3.6 | 0.296 | 0.471 | |
Skin and fat | 50 | 72 | 3.9 | 3.7 | 0.283 | 0.482 | |
Liver | 50 | 75 | 3.1 | 4.1 | 0.277 | 0.422 | |
Kidney | 50 | 73 | 4.0 | 3.9 | 0.293 | 0.433 | |
Chlortetracycline | Muscle | 10 | 72 | 3.8 | 2.8 | 0.269 | 0.463 |
Skin and fat | 10 | 73 | 4.1 | 3.2 | 0.299 | 0.452 | |
Liver | 10 | 72 | 3.7 | 3.7 | 0.324 | 0.437 | |
Kidney | 10 | 71 | 4.0 | 2.0 | 0.304 | 0.439 | |
Muscle | 25 | 74 | 3.3 | 2.8 | 0.253 | 0.476 | |
Skin and fat | 25 | 73 | 3.8 | 3.1 | 0.266 | 0.442 | |
Liver | 25 | 72 | 3.6 | 2.5 | 0.284 | 0.471 | |
Kidney | 25 | 73 | 2.9 | 2.7 | 0.256 | 0.455 | |
Muscle | 50 | 73 | 3.2 | 3.4 | 0.278 | 0.493 | |
Skin and fat | 50 | 72 | 2.7 | 3.3 | 0.301 | 0.402 | |
Liver | 50 | 71 | 2.5 | 2.6 | 0.261 | 0.443 | |
Kidney | 50 | 74 | 4.0 | 2.3 | 0.263 | 0.461 | |
Erythromycin A | Muscle | 10 | 80 | 2.4 | 3.4 | 0.343 | 0.458 |
Skin and fat | 10 | 78 | 2.5 | 3.2 | 0.326 | 0.404 | |
Liver | 10 | 80 | 1.9 | 3.6 | 0.335 | 0.426 | |
Kidney | 10 | 82 | 2.6 | 3.7 | 0.336 | 0.472 | |
Muscle | 25 | 77 | 3.0 | 3.8 | 0.338 | 0.476 | |
Skin and fat | 25 | 80 | 2.9 | 3.1 | 0.345 | 0.435 | |
Liver | 25 | 79 | 2.3 | 3.3 | 0.321 | 0.472 | |
Kidney | 25 | 78 | 2.7 | 3.5 | 0.348 | 0.451 | |
Muscle | 50 | 81 | 2.8 | 3.4 | 0.320 | 0.445 | |
Skin and fat | 50 | 80 | 2.2 | 3.2 | 0.329 | 0.423 | |
Liver | 50 | 78 | 3.1 | 2.9 | 0.335 | 0.444 | |
Kidney | 50 | 79 | 2.5 | 3.1 | 0.343 | 0.458 | |
Tylosin A | Muscle | 10 | 72 | 2.8 | 3.7 | 0.336 | 0.426 |
Skin and fat | 10 | 71 | 2.7 | 2.4 | 0.272 | 0.415 | |
Liver | 10 | 70 | 3.6 | 2.9 | 0.256 | 0.416 | |
Kidney | 10 | 73 | 4.2 | 2.4 | 0.339 | 0.457 | |
Muscle | 25 | 72 | 2.6 | 3.2 | 0.248 | 0.452 | |
Skin and fat | 25 | 72 | 3.4 | 2.6 | 0.337 | 0.437 | |
Liver | 25 | 72 | 3.2 | 2.7 | 0.323 | 0.462 | |
Kidney | 25 | 71 | 2.7 | 2.3 | 0.293 | 0.474 | |
Muscle | 50 | 73 | 3.2 | 3.1 | 0.268 | 0.433 | |
Skin and fat | 50 | 70 | 2.8 | 2.8 | 0.262 | 0.402 | |
Liver | 50 | 72 | 3.6 | 2.2 | 0.274 | 0.413 | |
Kidney | 50 | 71 | 2.5 | 3.5 | 0.291 | 0.472 | |
Tylvalosin | Muscle | 10 | 83 | 2.4 | 3.7 | 0.293 | 0.347 |
Skin and fat | 10 | 80 | 3.4 | 3.6 | 0.296 | 0.373 | |
Liver | 10 | 81 | 2.9 | 3.8 | 0.285 | 0.362 | |
Kidney | 10 | 82 | 3.5 | 4.3 | 0.320 | 0.415 | |
Muscle | 25 | 81 | 3.2 | 4.0 | 0.334 | 0.417 | |
Skin and fat | 25 | 83 | 2.7 | 2.9 | 0.326 | 0.422 | |
Liver | 25 | 82 | 2.2 | 3.3 | 0.313 | 0.408 | |
Kidney | 25 | 80 | 3.0 | 4.0 | 0.306 | 0.411 | |
Muscle | 50 | 84 | 3.3 | 3.8 | 0.315 | 0.433 | |
Skin and fat | 50 | 81 | 3.1 | 3.6 | 0.318 | 0.418 | |
Liver | 50 | 84 | 3.6 | 3.5 | 0.316 | 0.454 | |
Kidney | 50 | 83 | 2.8 | 3.2 | 0.308 | 0.437 | |
3-O-Acetyltylosin | Muscle | 10 | 75 | 3.2 | 3.3 | 0.295 | 0.394 |
Skin and fat | 10 | 74 | 3.5 | 3.2 | 0.310 | 0.403 | |
Liver | 10 | 73 | 3.6 | 2.9 | 0.325 | 0.415 | |
Kidney | 10 | 72 | 3.4 | 3.0 | 0.333 | 0.428 | |
Muscle | 25 | 73 | 3.7 | 2.7 | 0.325 | 0.444 | |
Skin and fat | 25 | 74 | 3.2 | 2.8 | 0.316 | 0.438 | |
Liver | 25 | 75 | 3.3 | 3.1 | 0.286 | 0.466 | |
Kidney | 25 | 76 | 2.9 | 3.5 | 0.347 | 0.454 | |
Muscle | 50 | 72 | 2.8 | 3.6 | 0.322 | 0.461 | |
Skin and fat | 50 | 73 | 3.0 | 2.8 | 0.358 | 0.463 | |
Liver | 50 | 74 | 2.8 | 3.1 | 0.336 | 0.428 | |
Kidney | 50 | 75 | 3.2 | 2.7 | 0.325 | 0.409 | |
Lincomycin | Muscle | 10 | 92 | 2.8 | 2.9 | 0.302 | 0.422 |
Skin and fat | 10 | 90 | 3.1 | 2.8 | 0.254 | 0.418 | |
Liver | 10 | 91 | 2.9 | 2.4 | 0.337 | 0.434 | |
Kidney | 10 | 90 | 3.3 | 2.8 | 0.303 | 0.416 | |
Muscle | 25 | 88 | 2.7 | 3.2 | 0.349 | 0.423 | |
Skin and fat | 25 | 92 | 2.6 | 2.5 | 0.382 | 0.447 | |
Liver | 25 | 89 | 2.3 | 2.8 | 0.301 | 0.417 | |
Kidney | 25 | 91 | 2.5 | 3.2 | 0.267 | 0.426 | |
Muscle | 50 | 93 | 2.4 | 2.9 | 0.283 | 0.427 | |
Skin and fat | 50 | 90 | 2.4 | 2.7 | 0.277 | 0.429 | |
Liver | 50 | 93 | 3.1 | 2.2 | 0.269 | 0.415 | |
Kidney | 50 | 94 | 2.7 | 2.7 | 0.284 | 0.433 | |
Tiamulin | Muscle | 10 | 99 | 3.6 | 2.1 | 0.245 | 0.472 |
Skin and fat | 10 | 98 | 3.8 | 2.3 | 0.223 | 0.401 | |
Liver | 10 | 97 | 3.1 | 2.0 | 0.265 | 0.454 | |
Kidney | 10 | 98 | 3.0 | 2.2 | 0.222 | 0.428 | |
Muscle | 25 | 99 | 3.0 | 1.7 | 0.257 | 0.481 | |
Skin and fat | 25 | 97 | 2.8 | 2.4 | 0.241 | 0.477 | |
Liver | 25 | 95 | 3.3 | 2.7 | 0.270 | 0.468 | |
Kidney | 25 | 98 | 3.2 | 3.4 | 0.259 | 0.426 | |
Muscle | 50 | 96 | 2.9 | 1.9 | 0.266 | 0.461 | |
Skin and fat | 50 | 97 | 2.6 | 2.1 | 0.238 | 0.503 | |
Liver | 50 | 99 | 2.2 | 1.8 | 0.274 | 0.432 | |
Kidney | 50 | 96 | 3.3 | 1.9 | 0.233 | 0.486 |
Veterinary Drug | Sample | 31650 MRLs | CAC MRLs | EU MRLs | Chinese Veterinary Pharmacopoeia WDT | Recommended WDT in Taihang Chickens |
---|---|---|---|---|---|---|
Oxytetracycline | muscle | 200 | 200 | 200 | 5 days | 4 days |
liver | 600 | 600 | 600 | |||
kidney | 1200 | 1200 | 1200 | |||
Chlortetracycline | muscle | 200 | 200 | 200 | 7 days | 5 days |
liver | 600 | 600 | 600 | |||
kidney | 1200 | 1200 | 1200 | |||
Erythromycin | muscle | 100 | 100 | 100 | 3 days | 11 days |
skin and fat | 100 | 100 | 100 | |||
liver | 100 | 100 | 100 | |||
kidney | 100 | 100 | 100 | |||
Tylosin | muscle | 100 | 100 | 100 | 1 days | 8 days |
skin and fat | 100 | 100 | 100 | |||
liver | 100 | 100 | 100 | |||
kidney | 100 | 100 | 100 | |||
Tylvalosin | skin and fat | 50 | 50 | 5 days | 13 days | |
liver | 50 | 50 | ||||
Lincomycin | muscle | 200 | 200 | 200 | 5 days | 13 days |
skin and fat | 100 | 100 | 100 | |||
liver | 500 | 500 | 500 | |||
kidney | 500 | 500 | 500 | |||
Tiamulin | muscle | 100 | 100 | 5 days | 7 days | |
skin and fat | 100 | 100 | ||||
liver | 1000 | 1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Zhang, C.; Gao, N.; Yan, G.; Li, Y.; Wang, X.; Wu, L.; Bai, H.; Ge, H.; Liu, H.; et al. Residue Elimination Patterns and Determination of the Withdrawal Times of Seven Antibiotics in Taihang Chickens. Animals 2025, 15, 2219. https://doi.org/10.3390/ani15152219
Chen H, Zhang C, Gao N, Yan G, Li Y, Wang X, Wu L, Bai H, Ge H, Liu H, et al. Residue Elimination Patterns and Determination of the Withdrawal Times of Seven Antibiotics in Taihang Chickens. Animals. 2025; 15(15):2219. https://doi.org/10.3390/ani15152219
Chicago/Turabian StyleChen, Huan, Cheng Zhang, Nana Gao, Guohua Yan, Yandong Li, Xuejing Wang, Liyong Wu, Heping Bai, Hongyu Ge, Huage Liu, and et al. 2025. "Residue Elimination Patterns and Determination of the Withdrawal Times of Seven Antibiotics in Taihang Chickens" Animals 15, no. 15: 2219. https://doi.org/10.3390/ani15152219
APA StyleChen, H., Zhang, C., Gao, N., Yan, G., Li, Y., Wang, X., Wu, L., Bai, H., Ge, H., Liu, H., & Liu, J. (2025). Residue Elimination Patterns and Determination of the Withdrawal Times of Seven Antibiotics in Taihang Chickens. Animals, 15(15), 2219. https://doi.org/10.3390/ani15152219