Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,103)

Search Parameters:
Keywords = bore

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 12507 KiB  
Article
Soil Amplification and Code Compliance: A Case Study of the 2023 Kahramanmaraş Earthquakes in Hayrullah Neighborhood
by Eyübhan Avcı, Kamil Bekir Afacan, Emre Deveci, Melih Uysal, Suna Altundaş and Mehmet Can Balcı
Buildings 2025, 15(15), 2746; https://doi.org/10.3390/buildings15152746 - 4 Aug 2025
Abstract
In the earthquakes that occurred in the Pazarcık (Mw = 7.7) and Elbistan (Mw = 7.6) districts of Kahramanmaraş Province on 6 February 2023, many buildings collapsed in the Hayrullah neighborhood of the Onikişubat district. In this study, we investigated whether there was [...] Read more.
In the earthquakes that occurred in the Pazarcık (Mw = 7.7) and Elbistan (Mw = 7.6) districts of Kahramanmaraş Province on 6 February 2023, many buildings collapsed in the Hayrullah neighborhood of the Onikişubat district. In this study, we investigated whether there was a soil amplification effect on the damage occurring in the Hayrullah neighborhood of the Onikişubat district of Kahramanmaraş Province. Firstly, borehole, SPT, MASW (multi-channel surface wave analysis), microtremor, electrical resistivity tomography (ERT), and vertical electrical sounding (VES) tests were carried out in the field to determine the engineering properties and behavior of soil. Laboratory tests were also conducted using samples obtained from bore holes and field tests. Then, an idealized soil profile was created using the laboratory and field test results, and site dynamic soil behavior analyses were performed on the extracted profile. According to The Turkish Building Code (TBC 2018), the earthquake level DD-2 design spectra of the project site were determined and the average design spectrum was created. Considering the seismicity of the project site and TBC (2018) criteria (according to site-specific faulting, distance, and average shear wave velocity), 11 earthquake ground motion sets were selected and harmonized with DD-2 spectra in short, medium, and long periods. Using scaled motions, the soil profile was excited with 22 different earthquake scenarios and the results were obtained for the equivalent and non-linear models. The analysis showed that the soft soil conditions in the area amplified ground shaking by up to 2.8 times, especially for longer periods (1.0–2.5 s). This level of amplification was consistent with the damage observed in mid- to high-rise buildings, highlighting the important role of local site effects in the structural losses seen during the Kahramanmaraş earthquakes. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

24 pages, 4217 KiB  
Article
Contact Load Measurement and Validation for Tapered Rollers in Wind Turbine Main Bearing
by Zhenggang Guo, Jingqi Yu, Wanxiu Hao and Yuming Niu
Sensors 2025, 25(15), 4726; https://doi.org/10.3390/s25154726 (registering DOI) - 31 Jul 2025
Viewed by 192
Abstract
Addressing the need for contact load detection in wind turbine main bearings during service, a roller contact load measurement method is proposed. An analytical model characterizes the contact load-to-inner bore strain mapping relationship. To overcome the inherent low sensitivity of direct bore strain [...] Read more.
Addressing the need for contact load detection in wind turbine main bearings during service, a roller contact load measurement method is proposed. An analytical model characterizes the contact load-to-inner bore strain mapping relationship. To overcome the inherent low sensitivity of direct bore strain measurement, bore-to-measurement-point sensitivity analysis was optimized. Multiple structurally optimized sensor brackets were designed to enhance strain measurement sensitivity, and their performance was comparatively evaluated via simulation. To mitigate sensitivity fluctuations caused by roller rotation phase variations, a strain–phase–load calculation method incorporating real-time phase compensation was developed and verified through simulation analysis. A dedicated roller contact load testing system was constructed and experimental validation was conducted. Results demonstrate 95% accuracy in contact load acquisition. This method accurately obtains roller contact loads in wind turbine main bearings, proving crucial for studying bearing mechanical behavior, predicting fatigue life, optimizing structural design, and enhancing reliability. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

17 pages, 2622 KiB  
Article
A Method for Evaluating the Performance of Main Bearings of TBM Based on Entropy Weight–Grey Correlation Degree
by Zhihong Sun, Yuanke Wu, Hao Xiao, Panpan Hu, Zhenyong Weng, Shunhai Xu and Wei Sun
Sensors 2025, 25(15), 4715; https://doi.org/10.3390/s25154715 (registering DOI) - 31 Jul 2025
Viewed by 211
Abstract
The main bearing of a tunnel boring machine (TBM) is a critical component of the main driving system that enables continuous excavation, and its performance is crucial for ensuring the safe operation of the TBM. Currently, there are few testing technologies for TBM [...] Read more.
The main bearing of a tunnel boring machine (TBM) is a critical component of the main driving system that enables continuous excavation, and its performance is crucial for ensuring the safe operation of the TBM. Currently, there are few testing technologies for TBM main bearings, and a comprehensive testing and evaluation system has yet to be established. This study presents an experimental investigation using a self-developed, full-scale TBM main bearing test bench. Based on a representative load spectrum, both operational condition tests and life cycle tests are conducted alternately, during which the signals of the main bearing are collected. The observed vibration signals are weak, with significant vibration attenuation occurring in the large structural components. Compared with the test bearing, which reaches a vibration amplitude of 10 g in scale tests, the difference is several orders of magnitude smaller. To effectively utilize the selected evaluation indicators, the entropy weight method is employed to assign weights to the indicators, and a comprehensive analysis is conducted using grey relational analysis. This strategy results in the development of a comprehensive evaluation method based on entropy weighting and grey relational analysis. The main bearing performance is evaluated under various working conditions and the same working conditions in different time periods. The results show that the greater the bearing load, the lower the comprehensive evaluation coefficient of bearing performance. A multistage evaluation method is adopted to evaluate the performance and condition of the main bearing across multiple working scenarios. With the increase of the test duration, the bearing performance exhibits gradual degradation, aligning with the expected outcomes. The findings demonstrate that the proposed performance evaluation method can effectively and accurately evaluate the performance of TBM main bearings, providing theoretical and technical support for the safe operation of TBMs. Full article
Show Figures

Figure 1

22 pages, 4650 KiB  
Article
IoT Monitoring and Evaluating System for the Construction Quality of Foundation Pile
by Kai Wu, Peng Zhang, Jiejun Yuan, Xiaqing Qian and Runen Qi
Buildings 2025, 15(15), 2660; https://doi.org/10.3390/buildings15152660 - 28 Jul 2025
Viewed by 239
Abstract
The quality of foundation pile is greatly influenced by human factors, and quality assessment is delayed. This paper introduces a new evaluation system based on Internet of Things (IoT) monitoring data of the foundation pile construction process. First, an IoT monitoring system of [...] Read more.
The quality of foundation pile is greatly influenced by human factors, and quality assessment is delayed. This paper introduces a new evaluation system based on Internet of Things (IoT) monitoring data of the foundation pile construction process. First, an IoT monitoring system of foundation pile construction process quality is established to monitor the key parameters for quality control in the foundation pile construction process, such as pile length, position, verticality, water–cement ratio, grouting volume, drilling/lifting speed, etc. Next, the absolute gray relational degree analysis method and the analytic hierarchy process (AHP) entropy-weighted combination weighting method are used to divide the monitoring data into different levels and determine the weight coefficients for quality indicators during foundation pile construction. Last, the IoT monitoring and evaluation system of the foundation piles construction process quality is applied to engineering. The results indicate that the monitoring system is convenient and efficient, and the quality evaluation method is reliable. The construction process quality of cement-mixing piles is rated as excellent. The construction process quality of bored piles Z0103 and Z0232 is excellent, and pile Z0012 is qualified. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 88349 KiB  
Article
Dynamic Assessment of Street Environmental Quality Using Time-Series Street View Imagery Within Daily Intervals
by Puxuan Zhang, Yichen Liu and Yihua Huang
Land 2025, 14(8), 1544; https://doi.org/10.3390/land14081544 - 27 Jul 2025
Viewed by 293
Abstract
Rapid urbanization has intensified global settlement density, significantly increasing the importance of urban street environmental quality, which profoundly affects residents’ physical and psychological well-being. Traditional methods for evaluating urban environmental quality have largely overlooked dynamic perceptual changes occurring throughout the day, resulting in [...] Read more.
Rapid urbanization has intensified global settlement density, significantly increasing the importance of urban street environmental quality, which profoundly affects residents’ physical and psychological well-being. Traditional methods for evaluating urban environmental quality have largely overlooked dynamic perceptual changes occurring throughout the day, resulting in incomplete assessments. To bridge this methodological gap, this study presents an innovative approach combining advanced deep learning techniques with time-series street view imagery (SVI) analysis to systematically quantify spatio-temporal variations in the perceived environmental quality of pedestrian-oriented streets. It further addresses two central questions: how perceived environmental quality varies spatially across sections of a pedestrian-oriented street and how these perceptions fluctuate temporally throughout the day. Utilizing Golden Street, a representative living street in Shanghai’s Changning District, as the empirical setting, street view images were manually collected at 96 sampling points across multiple time intervals within a single day. The collected images underwent semantic segmentation using the DeepLabv3+ model, and emotional scores were quantified through the validated MIT Place Pulse 2.0 dataset across six subjective indicators: “Safe,” “Lively,” “Wealthy,” “Beautiful,” “Depressing,” and “Boring.” Spatial and temporal patterns of these indicators were subsequently analyzed to elucidate their relationships with environmental attributes. This study demonstrates the effectiveness of integrating deep learning models with time-series SVI for assessing urban environmental perceptions, providing robust empirical insights for urban planners and policymakers. The results emphasize the necessity of context-sensitive, temporally adaptive urban design strategies to enhance urban livability and psychological well-being, ultimately contributing to more vibrant, secure, and sustainable pedestrian-oriented urban environments. Full article
(This article belongs to the Special Issue Planning for Sustainable Urban and Land Development, Second Edition)
Show Figures

Figure 1

9 pages, 273 KiB  
Article
Suture or Device? A Real-World Analysis of the Closure Strategies in Patients Undergoing LAA Occlusion
by Saif Zako, Kathrin Klein, Asena Öz, Maei Elsobki, Philipp Mourikis, Carolin Helten, David Naguib, Malte Kelm, Tobias Zeus and Amin Polzin
J. Clin. Med. 2025, 14(15), 5245; https://doi.org/10.3390/jcm14155245 - 24 Jul 2025
Viewed by 235
Abstract
Background: Left atrial appendage occlusion (LAAO) is a valuable alternative to long-term anticoagulation in patients with atrial fibrillation (AF) and a high bleeding risk. However, effective vascular closure following large-bore venous access remains a clinical challenge, particularly in patients with multiple comorbidities. [...] Read more.
Background: Left atrial appendage occlusion (LAAO) is a valuable alternative to long-term anticoagulation in patients with atrial fibrillation (AF) and a high bleeding risk. However, effective vascular closure following large-bore venous access remains a clinical challenge, particularly in patients with multiple comorbidities. This study compares two venous closure techniques—Z-sutures and the suture-mediated ProGlide™ device—regarding their safety and efficacy in patients undergoing LAAO. Methods: We conducted a single-center observational study including 163 patients treated with LAAO between 2021 and 2024. Closure was achieved via a Z-suture (n = 126) or the ProGlide™ (n = 37) based on operator preference. The primary endpoint was clinically relevant bleeding (BARC ≥ 2). The secondary endpoints included 30-day mortality and hospital stay duration. Results: The Z-suture group included older and more comorbid patients. Despite these differences, the bleeding rates were comparable between groups. Clinically relevant bleeding was infrequent (Z-suture: 12.6%; ProGlide™: 13.5%). No 30-day deaths occurred in either group, and their hospital stay durations were similar. Conclusions: Both the Z-suture and ProGlide™ techniques demonstrated comparable safety and efficacy. Due to their simplicity and potential cost advantage, Z-sutures may be a practical alternative in routine care for high-risk patients. Full article
(This article belongs to the Special Issue Interventional Cardiology: Recent Advances and Future Perspectives)
Show Figures

Graphical abstract

20 pages, 2336 KiB  
Article
Microbial DNA-Based Monitoring of Underground Crude Oil Storage Bases Using Water-Sealed Rock-Cavern Tanks
by Ayae Goto, Shunichi Watanabe, Katsumasa Uruma, Yuki Momoi, Takuji Oomukai and Hajime Kobayashi
Water 2025, 17(15), 2197; https://doi.org/10.3390/w17152197 - 23 Jul 2025
Viewed by 267
Abstract
Strategic petroleum reserves are critical for energy security. In Japan, 0.5 million kiloliters of crude oil (12% of the state-owned reserves) is stored using underground rock-cavern tanks, which comprise unlined horizontal tunnels bored into bedrock. Crude oil is held within the tank by [...] Read more.
Strategic petroleum reserves are critical for energy security. In Japan, 0.5 million kiloliters of crude oil (12% of the state-owned reserves) is stored using underground rock-cavern tanks, which comprise unlined horizontal tunnels bored into bedrock. Crude oil is held within the tank by water inside the tank, the pressure of which is kept higher than that of the crude oil by natural groundwater and irrigation water. This study applied microbial DNA-based monitoring to assess the water environments in and around national petroleum-stockpiling bases (the Kuji, Kikuma, and Kushikino bases) using the rock-cavern tanks. Forty-five water samples were collected from the rock-cavern tanks, water-supply tunnels, and observation wells. Principal-component analysis and hierarchical clustering indicated that microbial profiles of the water samples reflect the local environments of their origins. Particularly, the microbial profiles of water inside the rock-cavern tanks were distinct from other samples, revealing biological conditions and hence environmental characteristics within the tanks. Moreover, the clustering analysis indicated distinct features of water samples that have not been detected by other monitoring methods. Thus, microbial DNA-based monitoring provides valuable information on the in situ environments of rock-cavern tanks and can serve as an extremely sensitive measurement to monitor the underground oil storage. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

16 pages, 5658 KiB  
Article
Pressure Effect on the Rheological Behavior of Highly Filled Solid Propellant During Extrusion Flow
by Jun Zhang, Wei Zheng, Zhifeng Yuan, Junbo Chen, Jiangfeng Pei and Ping Xue
Polymers 2025, 17(15), 2003; https://doi.org/10.3390/polym17152003 - 22 Jul 2025
Viewed by 279
Abstract
Currently, the shear-extrusion behavior of solid propellants (SPs), which comprise a significant volume fraction of micro-/nanoscale solid particles (e.g., octogen/HMX), nitroglycerin as a plasticizer/solvent, nitrocellulose as a binder, and other functional additives, is still insufficiently understood. While the rheology of highly filled polymers [...] Read more.
Currently, the shear-extrusion behavior of solid propellants (SPs), which comprise a significant volume fraction of micro-/nanoscale solid particles (e.g., octogen/HMX), nitroglycerin as a plasticizer/solvent, nitrocellulose as a binder, and other functional additives, is still insufficiently understood. While the rheology of highly filled polymers has been extensively documented, the rheological behavior of SPs within the practical processing temperature range of 80–95 °C remains poorly understood. This study investigated, in particular, the pressure dependence of the viscosity of SPs melts during steady-state shear flow. Steady-state shear measurements were conducted using a twin-bore capillary rheometer with capillary dies of varying diameters and lengths to explore the viscosity dependence of SPs. The results reveal that interface defects between octogen particles and the polymer matrix generate a melt pressure range of 3–30 MPa in the long capillary die, underscoring the non-negligible impact of pressure on the measured viscosity (η). At constant temperature and shear rate, the measured viscosity of SPs exhibits strong pressure dependence, showing notable deviations in pressure sensitivity (β), which was found to be greatly relevant to the contents of solvent and solid particles. Such discrepancies are attributed to the compressibility of particle–particle and particle–polymer networks during capillary flow. The findings emphasize the critical role of pressure effect on the rheological properties of SPs, which is essential for optimizing manufacturing processes and ensuring consistent propellant performance. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

22 pages, 3860 KiB  
Article
Spatiotemporal Dynamics of Emerging Foot-and-Mouth Disease, Bluetongue, and Peste Des Petits Ruminants in Algeria
by Ilhem Zouyed, Sabrina Boussena, Nacira Ramdani, Houssem Eddine Damerdji, Julio A. Benavides and Hacène Medkour
Viruses 2025, 17(7), 1008; https://doi.org/10.3390/v17071008 - 17 Jul 2025
Viewed by 501
Abstract
Foot-and-mouth disease (FMD), bluetongue (BT), and Peste des Petits Ruminants (PPR) are major emerging and re-emerging viral infections affecting ruminants. These diseases can threaten livestock health, food security, and economic stability in low- and middle-income countries, including Algeria. However, their dynamics remain mostly [...] Read more.
Foot-and-mouth disease (FMD), bluetongue (BT), and Peste des Petits Ruminants (PPR) are major emerging and re-emerging viral infections affecting ruminants. These diseases can threaten livestock health, food security, and economic stability in low- and middle-income countries, including Algeria. However, their dynamics remain mostly unknown, limiting the implementation of effective preventive and control measures. We analyzed outbreak data reported by Algerian veterinary authorities and the WAHIS database from 2014 to 2022 for FMD; from 2006 to 2020 for BT; and from 2011 to 2022 for PPR to investigate their spatiotemporal patterns and environmental drivers. Over these periods, Algeria reported 1142 FMD outbreaks (10,409 cases; 0.16/1000 incidence), 167 BT outbreaks (602 cases; 0.018/1000), and 222 PPR outbreaks (3597 cases; 0.096/1000). Small ruminants were the most affected across all diseases, although cattle bore the highest burden of FMD. BT primarily impacted sheep, and PPR showed a higher incidence in goats. Disease peaks occurred in 2014 for FMD, 2008 for BT, and 2019 for PPR. Spatial analyses revealed distinct ecological hotspots: sub-humid and semi-arid zones for FMD and BT, and semi-arid/Saharan regions for PPR. These patterns may be influenced by species susceptibility, animal movement, trade, and climatic factors such as temperature and rainfall. The absence of consistent temporal trends and the persistence of outbreaks suggest multiple drivers, including insufficient vaccination coverage, under-reporting, viral evolution, and environmental persistence. Our findings underscore the importance of targeted species- and region-specific control strategies, including improved surveillance, cross-border coordination, and climate-informed risk mapping. Strengthening One Health frameworks will be essential to mitigate the re-emergence and spread of these diseases. Full article
(This article belongs to the Special Issue Emerging Microbes, Infections and Spillovers, 2nd Edition)
Show Figures

Figure 1

9 pages, 1484 KiB  
Article
In-Bore MRI-Guided Ureteral Stent Placement During Prostate Cancer Cryoablation—A Case Series
by Sydney Whalen, David Woodrum, Scott Thompson, Dan Adamo, Derek Lomas and Lance Mynderse
Diagnostics 2025, 15(14), 1781; https://doi.org/10.3390/diagnostics15141781 - 15 Jul 2025
Viewed by 305
Abstract
Introduction: Ureteral stents are widely used in the specialty of urology to preserve renal function and provide ureteral patency in cases of urolithiasis, strictures, malignancy, and trauma. This paper presents a novel application of prophylactic ureteral stents deployed under MRI-guidance for ureteral [...] Read more.
Introduction: Ureteral stents are widely used in the specialty of urology to preserve renal function and provide ureteral patency in cases of urolithiasis, strictures, malignancy, and trauma. This paper presents a novel application of prophylactic ureteral stents deployed under MRI-guidance for ureteral protection in the setting of in-bore salvage cryoablation therapy for recurrent and metastatic prostate cancer. This is the first known case series of ureteral stent placement using near real-time MRI. Materials and Methods: A retrospective chart review was performed for all patients who underwent MRI-guided ureteral stent placement prior to in-bore cryoablation therapy from 2021 to 2022. Each case was managed by an interdisciplinary team of urologists and interventional radiologists. Preoperative and postoperative data were collected for descriptive analysis. Physics safety testing was conducted on the cystoscope and viewing apparatus prior to its implementation for stent deployment. Results: A total of seven males, mean age 73.4 years (range 65–81), underwent successful prophylactic, cystoscopic MRI-guided ureteral stent placement prior to cryoablation therapy of their prostate cancer. No intraoperative complications occurred. A Grade 2 postoperative complication of pyelonephritis and gross hematuria following stent removal occurred in one case. The majority of patients were discharged the same day as their procedure. Conclusions: This case series demonstrates the feasibility of in-bore cystoscopic aided MRI guidance for ureteral stent placement. Ureteral stents can be used to increase the safety margin of complex cryoablation treatments close to the ureter. Furthermore, by following the meticulous MRI safety protocols established by MRI facility safety design guidelines, MRI conditional tools can aid therapy in the burgeoning interventional MRI space. Full article
(This article belongs to the Special Issue Challenges in Urology: From the Diagnosis to the Management)
Show Figures

Figure 1

22 pages, 5644 KiB  
Article
Analysis of the Impact of the Drying Process and the Effects of Corn Race on the Physicochemical Characteristics, Fingerprint, and Cognitive-Sensory Characteristics of Mexican Consumers of Artisanal Tostadas
by Oliver Salas-Valdez, Emmanuel de Jesús Ramírez-Rivera, Adán Cabal-Prieto, Jesús Rodríguez-Miranda, José Manuel Juárez-Barrientos, Gregorio Hernández-Salinas, José Andrés Herrera-Corredor, Jesús Sebastián Rodríguez-Girón, Humberto Marín-Vega, Susana Isabel Castillo-Martínez, Jasiel Valdivia-Sánchez, Fernando Uribe-Cuauhtzihua and Víctor Hugo Montané-Jiménez
Processes 2025, 13(7), 2243; https://doi.org/10.3390/pr13072243 - 14 Jul 2025
Viewed by 712
Abstract
The objective of this study was to analyze the impact of solar and hybrid dryers on the physicochemical characteristics, fingerprints, and cognitive-sensory perceptions of Mexican consumers of traditional tostadas made with corn of different races. Corn tostadas from different native races were evaluated [...] Read more.
The objective of this study was to analyze the impact of solar and hybrid dryers on the physicochemical characteristics, fingerprints, and cognitive-sensory perceptions of Mexican consumers of traditional tostadas made with corn of different races. Corn tostadas from different native races were evaluated with solar and hybrid (solar-photovoltaic solar panels) dehydration methods. Proximal chemical quantification, instrumental analysis (color, texture), fingerprint by Fourier transform infrared spectroscopy (FTIR), and sensory-cognitive profile (emotions and memories) and its relationship with the level of pleasure were carried out. The data were evaluated using analysis of variance models, Cochran Q, and an external preference map (PREFMAP). The results showed that the drying method and corn race significantly (p < 0.05) affected only moisture content, lipids, carbohydrates, and water activity. Instrumental color was influenced by the corn race effect, and the dehydration type influenced the fracturability effect. FTIR fingerprinting results revealed that hybrid samples exhibited higher intensities, particularly associated with higher lime concentrations, indicating a greater exposure of glycosidic or protein structures. Race and dehydration type effects impacted the intensity of sensory attributes, emotions, and memories. PREFMAP vector model results revealed that consumers preferred tostadas from the Solar-Chiquito, Hybrid-Pepitilla, Hybrid-Cónico, and Hybrid-Chiquito races for their higher protein content, moisture, high fracturability, crunchiness, porousness, sweetness, doughy flavor, corn flavor, and burnt flavor, while images of these tostadas evoked positive emotions (tame, adventurous, free). In contrast, the Solar-Pepitilla tostada had a lower preference because it was perceived as sour and lime-flavored, and its tostada images evoked more negative emotions and memories (worried, accident, hurt, pain, wild) and fewer positive cognitive aspects (joyful, warm, rainy weather, summer, and interested). However, the tostadas of the Solar-Cónico race were the ones that were most rejected due to their high hardness and yellow to blue tones and for evoking negative emotions (nostalgic and bored). Full article
(This article belongs to the Special Issue Applications of Ultrasound and Other Technologies in Food Processing)
Show Figures

Figure 1

10 pages, 361 KiB  
Article
Effects of Photoperiod on the Developmental Duration and Reproduction of Sclerodermus sichuanensis
by Kui Kang, Lina Wang, Zhongjiu Xiao, Shaobo Wang, Ke Wei, Xiaoyi Wang, Yanlong Zhang and Yanlong Tang
Insects 2025, 16(7), 701; https://doi.org/10.3390/insects16070701 - 8 Jul 2025
Viewed by 339
Abstract
Sclerodermus sichuanensis, a parasitic wasp, plays a significant role in wood-boring forest pest control in China. Research has shown that the photoperiod significantly affects the development and reproduction of parasitic wasps. However, the effects of the photoperiod on S. sichuanensis have not [...] Read more.
Sclerodermus sichuanensis, a parasitic wasp, plays a significant role in wood-boring forest pest control in China. Research has shown that the photoperiod significantly affects the development and reproduction of parasitic wasps. However, the effects of the photoperiod on S. sichuanensis have not yet been reported. This study investigates the impact of different photoperiods on the developmental duration and reproduction of S. sichuanensis. The wasps were reared under four photoperiod conditions: 0L:24D, 8L:16D, 16L:8D, and 24L:0D. The results show that increased light duration shortened the egg, larval, and pupal stages, with the total developmental period decreasing by up to 17 days. The number of offspring was highest in the 8L:16D and 16L:8D treatments, while constant light (24L:0D) led to a significant decrease in offspring numbers. The parasitism rate and pre-oviposition period were also affected by light exposure, with the longest pre-oviposition period observed in complete darkness. These findings indicate that the photoperiod plays a crucial role in regulating the development and reproductive efficiency of S. sichuanensis, suggesting that appropriate light conditions could enhance the efficiency of its use in pest control. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

23 pages, 939 KiB  
Article
Academic Emotions, Emotion Regulation, Academic Motivation, and Approaches to Learning: A Person-Centered Approach
by Christos Rentzios, Evangelia Karagiannopoulou and Georgios Ntritsos
Behav. Sci. 2025, 15(7), 900; https://doi.org/10.3390/bs15070900 - 3 Jul 2025
Viewed by 1265
Abstract
Contemporary educational literature suggests that academic emotions and emotion regulation should be explored in tandem, while academic motivation has been discussed both as a self-regulation metacognitive construct and as a construct inherently tied to motivation. The present study uses a person-centered approach to [...] Read more.
Contemporary educational literature suggests that academic emotions and emotion regulation should be explored in tandem, while academic motivation has been discussed both as a self-regulation metacognitive construct and as a construct inherently tied to motivation. The present study uses a person-centered approach to explore profiles of university students based on academic emotions, emotion regulation, academic self-regulation, and approaches to learning. In addition, the impact of students’ profiles on academic performance (GPA) is investigated. The sample consists of 509 university students studying at a Greek university social science department. Cluster techniques and multivariate analysis of variance are used to identify the profiles and test for differences among them. Students were grouped in clusters that revealed both consistent and dissonant patterns of scores on the relevant variables. Analysis reveals three distinct profiles: (a) the “Anxious, effectively-engaged, and organized learners”, (b) the “Deep, Happy, and intrinsically motivated learners” and (c) the “Disengaged, Bored, and Suppressing Learners”. These profiles open new insights into educational literature, revealing links among learning, emotional, and motivational factors. Practical implications and directions for future research are discussed. Full article
Show Figures

Figure 1

12 pages, 839 KiB  
Article
Iterative Solver of the Wet-Bed Step Riemann Problem
by Renyi Xu and Alistair G. L. Borthwick
Water 2025, 17(13), 1994; https://doi.org/10.3390/w17131994 - 2 Jul 2025
Viewed by 201
Abstract
This study presents a one-dimensional solver of the shallow water equations designed for the wet-bed step Riemann problem. Nonlinear mass and momentum equations incorporating shock and rarefaction waves in a straight one-dimensional channel are expressed as a pair of equations that depend solely [...] Read more.
This study presents a one-dimensional solver of the shallow water equations designed for the wet-bed step Riemann problem. Nonlinear mass and momentum equations incorporating shock and rarefaction waves in a straight one-dimensional channel are expressed as a pair of equations that depend solely on local depth values either side of the step. These unified equations are uniquely designed for the four conditions involving shock and rarefaction waves that can occur in the Step Riemann Problem. The Levenberg–Marquardt method is used to solve these simplified nonlinear equations. Four verification tests are considered for shallow free surface flow in a wet-bed channel with a step. These cases involve two rarefactions, opposing shock-like hydraulic bores, and a rarefaction and shock-like bore. The numerical predictions are in close agreement with existing theory, demonstrating that the method is very effective at solving the wet-bed step Riemann problem. Full article
(This article belongs to the Special Issue Hydraulics and Hydrodynamics in Fluid Machinery, 2nd Edition)
Show Figures

Figure 1

17 pages, 257 KiB  
Article
Effective Professional Development and Gamification Enacting Curriculum Changes in Critical Mathematics Education
by Ciara Mc Kevitt, Sarah Porcenaluk and Cornelia Connolly
Educ. Sci. 2025, 15(7), 843; https://doi.org/10.3390/educsci15070843 - 2 Jul 2025
Viewed by 393
Abstract
In response to challenges around student engagement and teacher technological proficiency, this paper looks at the impact of gamification on students’ mathematical resilience whilst monitoring their mathematical anxiety plus investigating teachers’ experiences, willingness, and professional development ambitions to utilise gamified instructional tools in [...] Read more.
In response to challenges around student engagement and teacher technological proficiency, this paper looks at the impact of gamification on students’ mathematical resilience whilst monitoring their mathematical anxiety plus investigating teachers’ experiences, willingness, and professional development ambitions to utilise gamified instructional tools in the mathematics classroom. Drawing on strategies to motivate students, the aim of this paper is to unbundle gamification in enacting curriculum change and the role of teacher professional development in using the pedagogical approach in mathematics in Ireland. Ireland is currently experiencing second-level curriculum reforms that are placing particular emphasis on digital competence and technological fluency from both teachers and students. With teachers highlighting the gap in educators’ pedagogical skills for the smooth roll out of recent curriculum reform due to the lack of knowledge and competency in technological teaching strategies, this study is both relevant and timely. Games have been used in multiple industries aiming to motivate participants and increase engagement on a particular matter. However, the term “gamification” has been coined by Pelling as the use of games in a non-gaming context. Current students are very technologically savvy due to the exposure of software applications from a young age and the integration of technological appliances in all walks of life. Traditional teaching and learning strategies are potentially seen as monotonous and somewhat boring to today’s students. Utilising game-based design such as leaderboards, points, and badges encourages motivation and enhances engagement of students. With this in mind, and the rate of change in mathematics curricula globally in recent years, there is a significant emphasis on the necessity of professional development initiatives to adapt at the same rate. Full article
Back to TopTop