A Method for Evaluating the Performance of Main Bearings of TBM Based on Entropy Weight–Grey Correlation Degree
Abstract
1. Introduction
2. Main Bearing Test
2.1. Test Bench Introduction
2.2. Testing Program
3. Data Analysis
3.1. Characteristic Parameters
3.2. Analysis of Vibration Signal Results
4. Performance Evaluation Method Based on Entropy Weight
4.1. Calculation of Grey Relational Coefficient
4.2. Main Bearing Performance Evaluation
5. Performance Evaluation of the Main Bearing
5.1. Comprehensive Bearing Performance Evaluation Under Different Loading Conditions
5.2. Bearing Performance Evaluation Under Cyclic Working Conditions
6. Conclusions
- (1)
- During the shield machine main bearing test, the vibration signal amplitude was low, with significant attenuation caused by large structural components. This resulted in vibration amplitudes several orders of magnitude lower than the 10 g amplitude observed in scale tests of the main bearing.
- (2)
- To effectively utilize the selected evaluation indicators, the entropy weight method was employed to assign their weights. Furthermore, a comprehensive analysis combining the entropy weight and grey relational methods was developed, resulting in a unified evaluation method that determines the comprehensive evaluation coefficient.
- (3)
- Using the first working condition as a reference, the bearing performance closer to this condition corresponded to a comprehensive evaluation coefficient nearer to the theoretical value of one. As the bearing load increased, the comprehensive evaluation coefficient decreased, indicating a decline in bearing performance.
- (4)
- A multistage comprehensive evaluation method was applied to assess the performance and condition of the main bearing under multiple working conditions. Over time, with the increase of the test duration, the bearing performance gradually degraded.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, W.; Zhu, Y.; Huo, J.-Z.; Chen, X.-H. Multiple cracks failure rule for TBM cutterhead based on three-dimensional crack propagation calculation. Eng. Fail. Anal. 2018, 93, 224–240. [Google Scholar] [CrossRef]
- Huo, J.; Zhang, Z.; Meng, Z.; Li, J.; Wu, H.; Jia, L. Dynamic analysis and experimental study of a Tunnel boring Machine testbed under multiple conditions. Eng. Fail. Anal. 2021, 127, 105557. [Google Scholar] [CrossRef]
- Fu, J.; Zeng, G.; Zhang, H.; Zhang, L.; Yin, X.; Xia, Y. Experimental investigation on wear behaviors of TBM disc cutter ring with different cooling methods. Eng. Fail. Anal. 2022, 134, 106076. [Google Scholar] [CrossRef]
- Zhang, H.; Qu, C. Research on Tunnel-Boring Machine Main Bearing Fatigue Damage and Vibration Response. Metals 2023, 13, 4. [Google Scholar] [CrossRef]
- Zheng, J.-Y.; Hu, S.; Ji, J.-C.; Zhang, X.-Y.; Tong, V.-C.; Yin, S.; Feng, K.; Dong, H.-J.; Xu, L.-Y. A review of fatigue failure and structural design of main bearings in tunnel boring machines based on engineering practical examples. Eng. Fail. Anal. 2024, 163, 108611. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Meng, Z.; Huo, J.; Chen, J. Tunnel boring machine cutterhead crack propagation life prediction with time integration method. Adv. Mech. Eng. 2019, 11, 168781401985345. [Google Scholar] [CrossRef]
- Chen, S.-H.; Zhao, J.; Liu, S.-H.; Ling, J.-X.; Zang, R.-C. Fatigue Reliability Prediction of TBM Main Bearings Based on Non-dimensional Interference Model. Recent Pat. Eng. 2025, e18722121356578. [Google Scholar] [CrossRef]
- Zhong, T.; Qin, C.; Shi, G.; Zhang, Z.; Tao, J.; Liu, C. A residual denoising and multiscale attention-based weighted domain adaptation network for tunnel boring machine main bearing fault diagnosis. Sci. China Technol. Sci. 2024, 67, 2594–2618. [Google Scholar] [CrossRef]
- Wang, H.; He, P.; Pang, B.; Gao, X. A new computational model of large three-row roller slewing bearings using nonlinear springs. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2017, 231, 3831–3839. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Chi, H.; Yuan, B.; Sun, Q.; Sun, W.; Cui, Y. Uncertainty design optimization of the main bearing in tunnel boring machine based on the Kriging model with partial least squares. Tunn. Undergr. Space Technol. 2025, 162, 106648. [Google Scholar] [CrossRef]
- Xiong, Z.; Chen, N. Research on the lubrication flow field characteristics of the main bearing of a tunnel boring machine. Int. Commun. Heat. Mass. Transf. 2025, 164, 108861. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Sun, Y.; Wen, B.; Jiang, L. Reliability model of TBM main bearing based on nonlinear strength degradation theory. Int. J. Perform. Eng. 2018, 14, 3054–3065. [Google Scholar] [CrossRef]
- Fu, X.; Jiao, K.; Tao, J.; Liu, C. Multi-stream domain adversarial prototype network for integrated smart roller TBM main bearing fault diagnosis across various low rotating speeds. Reliab. Eng. Syst. Saf. 2024, 250, 110284. [Google Scholar] [CrossRef]
- Fu, X.; Tao, J.; Jiao, K.; Liu, C. A novel semi-supervised prototype network with two-stream wavelet scattering convolutional encoder for TBM main bearing few-shot fault diagnosis. Knowl.-Based Syst. 2024, 286, 111408. [Google Scholar] [CrossRef]
- Wang, X.; Sun, W.; Wang, L.; Liang, S.; Mu, X. Structural Optimization of the Main Bearing in a Tunnel Boring Machine Considering Clearance. J. Tribol. 2024, 146, 14. [Google Scholar] [CrossRef]
- Luo, G.; Zhang, H.; Liu, D.; Li, W.; Li, M.; Li, Z.; Sun, L.; Yang, P.; Maeda, R.; Zhao, L. Determination of Main Bearing Dynamic Clearance in a Shield Tunneling Machine Through a Broadband PMUT Array with a Decreased Blind Area and High Accuracy. Sensors 2025, 25, 4182. [Google Scholar] [CrossRef] [PubMed]
- Cao, A.; Gao, H.; Fan, S.; Liu, Y. Study on vibration characteristics and mechanism of tbm main bearing under uneven load. In Proceedings of the 2nd International Conference on Mechanical System Dynamics, Beijing, China, 1 September 2023; pp. 463–475. [Google Scholar] [CrossRef]
- Fu, X.; Tao, J.; Qin, C.; Wei, Q.; Liu, C. A roller state-based fault diagnosis method for tunnel boring machine main bearing using two-stream CNN with multichannel detrending inputs. IEEE Trans. Instrum. Meas. 2022, 71, 1–12. [Google Scholar] [CrossRef]
- Zhou, P.; Yu, L.; Wang, Z.; He, E. Study on the load distribution of main bearing of full-face rock tunnel boring machine under composite rock layer. In Proceedings of the Second International Conference on Advanced Manufacturing Technology and Manufacturing Systems (ICAMTMS 2023), Nanjing, China, 26–28 May 2023; Volume 12744, pp. 559–566. [Google Scholar]
- Wang, X.; Sun, W.; Wang, L.; Liang, S.; Chi, H.; Yuan, B. Rolling contact fatigue analysis of the soft zone for the main bearing in a tunnel boring machine. Eng. Fail. Anal. 2024, 162, 108363. [Google Scholar] [CrossRef]
- He, P.; Wang, Y.; Liu, H.; Guo, E.; Wang, H. Optimization design of structural parameters of single-row four-point contact ball slewing bearing. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 1–12. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, S.; Dou, Y.; Fan, H.; Wang, Y. Mechanical model and contact properties of double row slewing ball bearing for wind turbine. Rev. Adv. Mater. Sci. 2021, 60, 112–126. [Google Scholar] [CrossRef]
- Han, H.; Li, J.; Liu, H. FEA analysis of the shield machine main bearing under radial force. In Proceedings of the International Conference on Advanced Technology of Design and Manufacture (ATDM 2010), Beijing, China, 23–25 November 2010; pp. 236–239. [Google Scholar]
- Zong, H.; Wang, H.; Hong, R. Dynamic research on single-row slewing bearing with local spalling of inner ring. Adv. Mech. Eng. 2016, 8, 1687814016632488. [Google Scholar] [CrossRef]
- Cao, A.; Gao, H.; Fan, S.; Guo, L.; You, Z.; Lei, Y.; Sun, Y.; He, J. Study on vibration mechanism and dynamic characteristics for TBM main bearing defects. Mech. Syst. Signal Process 2025, 222, 111807. [Google Scholar] [CrossRef]
- Zhang, R.; Guo, L.; Zong, Z.; Gao, H.; Qian, M.; Chen, Z. Dynamic modeling and analysis of rolling bearings with rolling element defect considering time-varying impact force. J. Sound Vib. 2023, 562, 117820. [Google Scholar] [CrossRef]
- Chen, Z.; Tian, S.; Shi, X.; Lu, H. Multiscale shared learning for fault diagnosis of rotating machinery in transportation infrastructures. IEEE Trans. Ind. Inform. 2022, 19, 447–458. [Google Scholar] [CrossRef]
- An, W.; Gu, Y.; Chen, C.; Zheng, H.; Tian, M. Investigation on the influence of temperature-variation clearance on the frequency of rolling bearing defects. Meas. Sci. Technol. 2024, 35, 66126. [Google Scholar] [CrossRef]
- Liu, D.; Cui, L.; Cheng, W. Fault diagnosis of wind turbines under nonstationary conditions based on a novel tacho-less generalized demodulation. Renew. Energy 2023, 206, 645–657. [Google Scholar] [CrossRef]
- Dong, F.; Liu, C. A new framework based on supervised joint distribution adaptation for bearing fault diagnosis across diverse working conditions. Shock Vib. 2024, 2024, 24. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, B.; Zhao, Z. Differential out-of-distribution error guidance for unknown bearing fault diagnosis with conditional diffusion model. Eng. Appl. Artif. Intell. 2025, 158, 111350. [Google Scholar] [CrossRef]
- Kumar, R.; Anand, R.S. Bearing fault diagnosis using multiple feature selection algorithms with SVM. Prog. Artif. Intell. 2024, 13, 119–133. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Pan, H.; Cheng, J.; Cheng, J. A novel deep stacking least squares support vector machine for rolling bearing fault diagnosis. Comput. Ind. 2019, 110, 36–47. [Google Scholar] [CrossRef]
- Bastami, A.R.; Vahid, S. A comprehensive evaluation of the effect of defect size in rolling element bearings on the statistical features of the vibration signal. Mech. Syst. Signal Process. 2021, 151, 107334. [Google Scholar] [CrossRef]
- Minhas, A.S.; Kankar, P.K.; Kumar, N.; Singh, S. Bearing fault detection and recognition methodology based on weighted multiscale entropy approach. Mech. Syst. Signal Process. 2021, 147, 107073. [Google Scholar] [CrossRef]
- Pancaldi, F.; Rubini, R.; Cocconcelli, M. Time-varying metrics of cyclostationarity for bearing diagnostic. Mech. Syst. Signal Process. 2021, 151, 107329. [Google Scholar] [CrossRef]
- Ma, J.; Li, S.; Wang, X. Condition monitoring of rolling bearing based on multi-order FRFT and SSA-DBN. Symmetry 2022, 14, 320. [Google Scholar] [CrossRef]
- Zareapoor, M.; Shamsolmoali, P.; Yang, J. Oversampling adversarial network for class-imbalanced fault diagnosis. Mech. Syst. Signal Process. 2021, 149, 107175. [Google Scholar] [CrossRef]
- Zhao, K.-C.; Xiao, J.-Q.; Li, C.; Xu, Z.-F.; Yue, M.-N. Fault diagnosis of rolling bearing using CNN and PCA fractal based feature extraction. Measurement 2023, 223, 113754. [Google Scholar] [CrossRef]
- Chen, Z.-Y.; Wu, J.; Deng, C.; Wang, C.; Wang, Y.-H. Residual deep subdomain adaptation network: A new method for intelligent fault diagnosis of bearings across multiple domains. Mech. Mach. Theory 2022, 169, 104635. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, J.; Cheng, Y.; Wu, Y.; Sun, W. Load characterization of the main bearing of a large tunnel boring machine based on dynamic characteristic parameters. Adv. Mech. Eng. 2023, 15, 16878132231164232. [Google Scholar] [CrossRef]
- Wang, J.-W.; Cheng, C.-L.; Liu, J.-L.; Dong, B.-W.; Wu, Y.-K.; Sun, Z.-H. Load spectrum compilation for main bearing of shield under complex operating conditions. Tunn. Constr. 2023, 43, 106. [Google Scholar]
- Wu, F.; Gong, Q.; Li, Z.; Qiu, H.; Yin, L. Development and application of cutterhead vibration monitoring system for TBM tunnelling. Int. J. Rock. Mech. Min. Sci. 2021, 146, 104887. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Y.; Sun, L.; Li, Y.; Zheng, B.; Zhai, W. Effect of physical properties of Cu-Ni-graphite composites on tribological characteristics by grey correlation analysis. Results Phys. 2017, 7, 263–271. [Google Scholar] [CrossRef]
- Xia, X.-T.; Meng, F.-N. Grey relational analysis of measure for uncertainty of rolling bearing friction torque as time series. J. Grey Syst. 2011, 23, 2. [Google Scholar] [CrossRef]
- Yuan, H.-W.; Zheng, Y.-C.; Guo, L.-N.; Wang, J.-L.; Liu, X. Correlation degree analysis of sliding bearing oil monitor data based on grey theory. Vibroengineering Procedia 2025, 58, 192. [Google Scholar] [CrossRef]
- Li, C.; Ma, W.-S.; Gao, Z.-B. Rolling bearing degradation trend prediction based on composite multiscale grey entropy and dynamic particle filter. Meas. Sci. Technol. 2024, 35, 066119. [Google Scholar] [CrossRef]
- Babak, V.; Zaporozhets, A.; Kuts, Y.; Fryz, M.; Scherbak, L. Identification of Vibration Noise Signals of Electric Power Facilities BT—Noise Signals: Modelling and Analyses; Babak, V., Zaporozhets, A., Kuts, Y., Fryz, M., Scherbak, L., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 143–170. [Google Scholar] [CrossRef]
- Babak, V.; Babak, S.; Zaporozhets, A. Experimental Studies of Statistical Diagnostics Information and Measuring Systems BT—Statistical Diagnostics of Electric Power Equipment; Babak, V., Babak, S., Zaporozhets, A., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 279–344. [Google Scholar] [CrossRef]
- Babak, V.; Babak, S.; Zaporozhets, A. Stochastic Models of Diagnostic Signals Arising During the Operation of Electrical Equipment BT—Statistical Diagnostics of Electric Power Equipment; Babak, V., Babak, S., Zaporozhets, A., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 75–122. [Google Scholar] [CrossRef]
Working Condition | Fa/kN | Fr/kN | Mr/kN·m | Percentage | Frequency | Cumulative Proportion | Cumulative Frequencies |
---|---|---|---|---|---|---|---|
1 | 13,845.978 | 6953.7756 | 5352.6227 | 0.275 | 275,000 | 0.275 | 275,000 |
2 | 15,473.515 | 7026.2071 | 6826.2635 | 0.15 | 150,000 | 0.425 | 425,000 |
3 | 16,361.415 | 7065.7219 | 7630.2052 | 0.15 | 150,000 | 0.575 | 575,000 |
4 | 17,249.315 | 7105.2367 | 8434.1469 | 0.15 | 150,000 | 0.725 | 725,000 |
5 | 18,199.745 | 7147.5343 | 9294.7057 | 0.125 | 125,000 | 0.85 | 850,000 |
6 | 19,314.514 | 7197.1457 | 10,304.065 | 0.1 | 100,000 | 0.95 | 950,000 |
7 | 20,877.751 | 7266.7155 | 11,719.485 | 0.049998 | 49,998 | 0.999998 | 999,998 |
8 | 27,314.803 | 7553.1881 | 17,547.862 | 2.00 × 10−6 | 2 | 1 | 1,000,000 |
Conditions | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|---|
Performance Index | |||||||||
Bearing A | RMS | 0.006 | 0.006 | 0.006 | 0.007 | 0.005 | 0.005 | 0.006 | 0.005 |
Kurtosis | 2.920 | 2.916 | 2.958 | 2.908 | 2.965 | 2.924 | 2.930 | 2.945 | |
Peak value | 3.962 | 4.030 | 4.099 | 4.302 | 4.181 | 4.237 | 4.404 | 4.340 | |
Margin | 5.846 | 5.925 | 6.060 | 6.324 | 6.174 | 6.231 | 6.485 | 6.406 | |
Oil temperature | 13.038 | 13.038 | 10.711 | 10.711 | 10.767 | 10.923 | 10.978 | 11.112 | |
Kinematic viscosity | 183.945 | 183.945 | 159.960 | 159.960 | 160.277 | 161.968 | 161.992 | 163.203 | |
Bearing B | RMS | 0.011 | 0.011 | 0.009 | 0.011 | 0.007 | 0.007 | 0.007 | 0.007 |
Kurtosis | 2.460 | 2.392 | 2.601 | 2.561 | 2.757 | 2.791 | 2.803 | 2.808 | |
Peak value | 3.420 | 3.379 | 3.406 | 3.536 | 3.585 | 3.608 | 3.737 | 3.775 | |
Margin | 4.785 | 4.699 | 4.838 | 5.017 | 5.218 | 5.273 | 5.464 | 5.501 | |
Oil temperature | 14.566 | 14.566 | 15.413 | 15.413 | 15.436 | 15.625 | 15.625 | 15.672 | |
Kinematic viscosity | 202.976 | 202.976 | 212.60 | 212.704 | 212.704 | 215.030 | 215.509 | 215.509 |
Condition | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|---|
Performance Index | |||||||||
Bearing A | RMS | 1.000 | 0.731 | 0.237 | 0.158 | 0.000 | 0.038 | 0.166 | 0.082 |
Kurtosis | 1.000 | 0.914 | 0.156 | 0.733 | 0.000 | 0.913 | 0.779 | 0.451 | |
Peak value | 1.000 | 0.847 | 0.691 | 0.232 | 0.505 | 0.379 | 0.000 | 0.145 | |
Margin | 1.000 | 0.877 | 0.665 | 0.253 | 0.488 | 0.399 | 0.000 | 0.124 | |
Oil temperature | 1.000 | 1.000 | 0.000 | 0.000 | 0.024 | 0.091 | 0.115 | 0.172 | |
Kinematic viscosity | 1.000 | 1.000 | 0.000 | 0.000 | 0.013 | 0.084 | 0.085 | 0.135 | |
Bearing B | RMS | 1.000 | 0.970 | 0.440 | 0.969 | 0.017 | 0.061 | 0.000 | 0.026 |
Kurtosis | 1.000 | 0.804 | 0.596 | 0.709 | 0.147 | 0.049 | 0.014 | 0.000 | |
Peak value | 1.000 | 0.884 | 0.958 | 0.675 | 0.536 | 0.471 | 0.109 | 0.000 | |
Margin | 1.000 | 0.880 | 0.926 | 0.676 | 0.395 | 0.318 | 0.052 | 0.000 | |
Oil temperature | 1.000 | 1.000 | 0.234 | 0.234 | 0.213 | 0.042 | 0.042 | 0.000 | |
Kinematic viscosity | 1.000 | 1.000 | 0.231 | 0.224 | 0.224 | 0.038 | 0.000 | 0.000 |
Conditions | First | Second | Third | Fourth | Fifth | |
---|---|---|---|---|---|---|
Performance Index | ||||||
Bearing A | RMS | 0.054 | 0.055 | 0.057 | 0.060 | 0.061 |
Kurtosis | 2.662 | 2.589 | 2.615 | 2.554 | 2.568 | |
Peak value | 3.619 | 3.634 | 3.543 | 3.630 | 3.594 | |
Margin | 5.184 | 5.162 | 5.035 | 5.149 | 5.109 | |
Oil temperature | 19.103 | 20.745 | 20.156 | 19.824 | 20.144 | |
Kinematic viscosity | 260.994 | 262.636 | 262.047 | 261.715 | 262.035 | |
Bearing A | RMS | 0.0010 | 0.0010 | 0.001033 | 0.001038 | 0.0010 |
Kurtosis | 3.956 | 4.075 | 3.940 | 4.117 | 5.454 | |
Peak value | 4.68 | 4.66 | 4.99 | 5.27 | 8.56 | |
Margin | 6.986 | 7.086 | 7.314 | 7.821 | 12.695 | |
Oil temperature | 26.259 | 27.901 | 27.312 | 26.980 | 27.300 | |
Kinematic viscosity | 306.927 | 308.569 | 307.980 | 307.648 | 307.968 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Wu, Y.; Xiao, H.; Hu, P.; Weng, Z.; Xu, S.; Sun, W. A Method for Evaluating the Performance of Main Bearings of TBM Based on Entropy Weight–Grey Correlation Degree. Sensors 2025, 25, 4715. https://doi.org/10.3390/s25154715
Sun Z, Wu Y, Xiao H, Hu P, Weng Z, Xu S, Sun W. A Method for Evaluating the Performance of Main Bearings of TBM Based on Entropy Weight–Grey Correlation Degree. Sensors. 2025; 25(15):4715. https://doi.org/10.3390/s25154715
Chicago/Turabian StyleSun, Zhihong, Yuanke Wu, Hao Xiao, Panpan Hu, Zhenyong Weng, Shunhai Xu, and Wei Sun. 2025. "A Method for Evaluating the Performance of Main Bearings of TBM Based on Entropy Weight–Grey Correlation Degree" Sensors 25, no. 15: 4715. https://doi.org/10.3390/s25154715
APA StyleSun, Z., Wu, Y., Xiao, H., Hu, P., Weng, Z., Xu, S., & Sun, W. (2025). A Method for Evaluating the Performance of Main Bearings of TBM Based on Entropy Weight–Grey Correlation Degree. Sensors, 25(15), 4715. https://doi.org/10.3390/s25154715