IoT Monitoring and Evaluating System for the Construction Quality of Foundation Pile
Abstract
1. Introduction
2. IoT Monitoring Platforms for the Pile Construction Process
2.1. Monitoring System and Information Platform
2.2. IoT Monitoring System for Cement–Soil Mixing Pile Construction
2.2.1. Quality Control Parameters for Cement–Soil Mixing Pile Construction
2.2.2. Sensors for Cement–Soil Mixing Pile Construction
2.3. IoT Monitoring System for the Construction of Bored Pile
2.3.1. Quality Control Parameters for Forward/Reverse Circulation Bored Pile Construction
2.3.2. Sensors for the Construction of Bored Pile
3. Evaluation of Foundation Pile
3.1. Evaluation Indicators
3.2. Evaluation Thresholds
3.3. Calculation of Indicator Weight
3.4. Evaluation of the Construction Process
- (1)
- Determine the Factor Set: Based on the established evaluation indicator system and the evaluation standard thresholds for construction process quality indicators, the relevance of the monitoring values of each evaluation indicator to their respective normative values is represented as: U = (u1, u2, …, ui).
- (2)
- Determine the Scheme Set: The quality of the construction process indicators is categorized as excellent, qualified, or unqualified.
- (3)
- Establish Membership Functions: The relationship between the factor set and the scheme set is expressed through membership functions. In this paper, trapezoidal distribution membership functions are selected. The distribution curve of the membership function is shown in Figure 8.outstandingUp to standardBelow standarda, b, c, and d represent the boundary values for the distribution of the membership function, and these boundary values may vary for different indicators and are determined by the standard values. The fuzzy evaluation matrix for r indicators can be represented as:
- (4)
- Calculate the comprehensive evaluation vector
4. Field Test
4.1. Field Test of Cement–Soil Mixing Pile
4.1.1. Test Result of Cement–Soil Mixing Pile
4.1.2. Construction Quality Evaluation of Cement–Soil Mixing Pile
4.2. Field Test of Bored Piles
4.2.1. Test Result of Bored Piles
4.2.2. Construction Quality Evaluation
5. Economic Analysis
5.1. Direct Economic Benefits
5.2. Indirect Economic Benefits
5.3. Cost Composition Analysis
6. Conclusions
- (1)
- The key control parameters for cement-mixing pile construction include pile position deviation, grout volume, water–cement ratio, drilling and lifting speed, verticality, and pile length.
- (2)
- The key control parameters for bored pile construction include verticality, pile length, pile position deviation, mud density, and mud viscosity.
- (3)
- The structure of the IoT monitoring system for pile construction includes three main components: on-site data acquisition, data transmission, and monitoring modules. Field tests demonstrated that the system operates stably, data collection is reliable, data transmission is stable, and the cloud platform effectively receives, displays, and processes data on time.
- (4)
- Based on the field test results of cement-mixing piles, the construction process quality of cement-mixing piles is all rated as excellent, and the order is Z0062 > Z0130 > Z0102.
- (5)
- Based on the field test results of bored piles, pile Z0012 has a qualified construction process quality, while piles Z0103 and Z0232 have excellent construction process quality. The order of the three piles was Z0232 > sZ0103 > Z0012.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Frank, R.; Stavros, A.S.; Jens, R. Web-based Data and Monitoring Platform for Complex Geotechnical Engineering Projects. Geotech. Geol. Eng. 2013, 31, 927–939. [Google Scholar]
- Wan, Y.; Song, L.; Zhu, Z.; Peng, Y. Research on Construction Quality Monitoring and Evaluating Technology of Soil-Cement Mixing Piles. Soil Mech. Found. Eng. 2021, 58, 85–91. [Google Scholar] [CrossRef]
- Wan, Y.; Zhu, Z.; Song, L.; Xu, X.; Liu, J. Research on Intelligent Control and Evaluation Technology for Soil-Cement Mixing Pile Construction; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Kuang, Y.D. Research on application of bored pile in bridge engineering construction. Theor. Res. Urban Constr. 2013, 9, 1–7. [Google Scholar]
- Ong, D.E.L.; Chong, E.E.M. Soil–Structure Interactions in a Capped CBP Wall System Triggered by Localized Hydrogeological Drawdown in a Complex Geological Setting. Geosciences 2023, 13, 304. [Google Scholar] [CrossRef]
- Umit, O.; Abdulkadir, K.; Ulku, K.S.; Meric, C.O.; Zeynep, S.; Mustafa, K.G.; İbrahim, S.; Cevdet, B.Z. An analytical and applied blasting approach to facilitate rock-socketed bored pile excavation. Arab. J. Geosci. 2020, 13, 497. [Google Scholar] [CrossRef]
- Shao, Y.; Macari, E.J.; Cai, W. Compound deep soil mixing columns for retaining structures in excavations. J. Geotech. Geoenvironmental Eng. 2005, 131, 1370–1377. [Google Scholar] [CrossRef]
- Bao, Z. Study of Construction Technology of Large Diameter and Ultradeep Cement Mixing Pile in Road Engineering. J. Highw. Transp. Res. Dev. (Engl. Ed.) 2022, 16, 10–15. [Google Scholar] [CrossRef]
- Zheng, W.F.; Cheng, J.; Zhao, Z. Study on design and construction parameters of mixing piles (wet) and rotary jetting piles. Constr. Technol. 2016, 45, 172–174. [Google Scholar]
- Jung, D.; Park, J.; Kim, S.; Kim, G.; Kim, K.; Kim, J. Development of 4D CAD-based real time progress management system. In Proceedings of the 2011 6th International Conference on Computer Sciences and Convergence Information Technology (ICCIT), Seogwipo, Republic of Korea, 29 November–1 December 2011. [Google Scholar]
- Sardroud, J.M. Influence of RFID technology on automated management of construction materials and components. Sci. Iran. 2012, 19, 381–392. [Google Scholar] [CrossRef]
- Kang, L.; Moon, H.; Kim, H.; Choi, G.; Park, N.; Kom, C. Visualizing Work Progress Information of Construction Project by Web and VR Application. In Proceedings of the 2011 Fifth Asia Modelling Symposium, Manila, Philippines, 24–26 May 2011. [Google Scholar]
- Wan, Y.; Zhu, Z.; Xu, X.; Song, L. An intelligent soil-cement mixing column driver. Autom. Constr. 2022, 142, 104474. [Google Scholar] [CrossRef]
- Al-Darraji, F.; Sadique, M.; Čebašek, T.M.; Ganguli, A.; Yu, Z.; Hashim, K. A Systematic Review of the Geotechnical and Structural Behaviors of Fiber-Reinforced Polymer Composite Piles. Geosciences 2023, 13, 78. [Google Scholar] [CrossRef]
- Mitelman, A.; Yang, B.; Urlainis, A.; Elmo, D. Coupling Geotechnical Numerical Analysis with Machine Learning for Observational Method Projects. Geosciences 2023, 13, 196. [Google Scholar] [CrossRef]
- Shen, H.; Li, X.; Duan, R.; Zhao, Y.; Zhao, J.; Che, H.; Liu, G.; Xue, Z.; Yan, C.; Liu, J.; et al. Quality evaluation of ground improvement by deep cement mixing piles via ground-penetrating radar. Nat. Commun. 2023, 14, 3448. [Google Scholar] [CrossRef]
- Liu, H.; Liu, W.; Sui, S.; Xu, H.; Wang, J. Dynamic monitoring technique of bored pile pouring process based on multi-frequency ultrasound. J. Civ. Struct. Health Monit. 2022, 12, 411–425. [Google Scholar] [CrossRef]
- Nguyen, H.; Adachi, Y.; Kizuki, T.; Maeba, H.; Inazumi, S. Intergration of Information and Communication Technology (ICT) Into Cement Deep Mixing Method. Int. J. Geomate 2020, 19, 194–200. [Google Scholar] [CrossRef]
- Qian, X.; Zhang, P.; Wang, S.; Guo, S.; Hou, X. Grouting Additives and Information-Based Construction of Jet Grouting in the Water-Rich Sand Stratum. Appl. Sci. 2022, 12, 12586. [Google Scholar] [CrossRef]
- Muduli, P.K.; Das, S.K.; Das, M.R. Prediction of lateral load capacity of piles using extreme learning machine. Int. J. Geotech. Eng. 2013, 4, 388–394. [Google Scholar] [CrossRef]
- Wu, R.; Jiang, Y.; Zhao, S.; Chen, M.; Shang, S.; Lang, X. Application and comparative analysis of Intelligent Monitoring Technology for Grouted Pile Construction based on abaqus. Sci. Rep. 2025, 14, 9253. [Google Scholar] [CrossRef]
- Rawat, P.S.; Barthwal, A. LANDSLIDE MONITOR: A real-time landslide monitoring system. Environ. Earth Sci. 2024, 83, 226. [Google Scholar] [CrossRef]
- Moghanaki, A.A.; Gavarti, A.B.; Javid, A.A.S.; Malaekeh, S. Innovative IoT-Integrated Sensors for Real-Time Monitoring of Chloride Penetration in Concrete Structures. J. Nondestruct. Eval. 2025, 44, 33. [Google Scholar] [CrossRef]
- Qaffas, A.A. AI-driven distributed IoT communication architecture for smart city traffic optimization. J. Supercomput. 2025, 81, 916. [Google Scholar] [CrossRef]
- Ding, G.; Wang, J.; Wu, Q.; Yao, Y.; Li, R.; Zhang, H.; Zou, Y. On The Limits of Predictability in Real-World Radio Spectrum State Dynamics: From Entropy Theory To 5G Spectrum Sharing. IEEE Commun. Mag. 2020, 53, 178–183. [Google Scholar] [CrossRef]
- Kanniga Devi, R.; Gurusamy, M.; Vijayakumar, P. An Efficient Cloud Data Center Allocation to the Source of Requests. J. Organ. End User Comput. 2020, 2, 23–36. [Google Scholar] [CrossRef]
- Laghate, M.; Cabric, D. Learning Wireless Networks’ Topologies Using Asymmetric Granger Causality. IEEE J. Sel. Top. Signal Process. 2018, 12, 233–247. [Google Scholar] [CrossRef]
- Baziar, M.H.; Azizkandi, A.S.; Kashkooli, A. Prediction of pile settlement based on cone penetration test results: An ANN approach. KSCE J. Civ. Eng. 2015, 19, 98–106. [Google Scholar] [CrossRef]
- Momeni, E.; Nazir, R.; Jahed Armaghani, D.; Maizir, H. Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN. Measurement 2014, 57, 122–131. [Google Scholar] [CrossRef]
- Mohanty, R.; Suman, S.; Das, S.K. Prediction of vertical pile capacity of driven pile in cohesionless soil using artificial intelligence techniques. Int. J. Geotech. Eng. 2018, 2, 209–216. [Google Scholar] [CrossRef]
- Jiang, Z.; Yang, C.; Yue, H. Multi-Objective Optimization of Steel Pipe Pile Cofferdam Construction Based on Improved Sparrow Search Algorithm. Appl. Sci. 2024, 14, 10407. [Google Scholar] [CrossRef]
- Yin, Q.; Li, J.; Zhou, L.; Liu, X.; Zhang, Y.; Song, S.; Li, H. Classification and recognition method of rice situation based on gray correlation degree. J. Stored Prod. Res. 2024, 109, 102448. [Google Scholar] [CrossRef]
- Abowitz, D.A.; Toole, T.M. Mixed method research: Fundamental issues of design, validity, and reliability in construction research. J. Constr. Eng. Manag. 2010, 136, 108–116. [Google Scholar] [CrossRef]
- Das, S.K.; Basudhar, P.K. Undrained lateral load capacity of piles in clay using artificial neural network. Comput. Geotech. 2006, 33, 454–459. [Google Scholar] [CrossRef]
- Tarawneh, B. Pipe pile setup: Database and prediction model using artificial neural network. Soils Found. 2013, 53, 607–615. [Google Scholar] [CrossRef]
- Samui, P. Application of relevance vector machine for prediction of ultimate capacity of driven piles in cohesionless soils. Geotech. Geol. Eng. 2012, 30, 1261–1270. [Google Scholar] [CrossRef]
- Samui, P. Determination of ultimate capacity of driven piles in cohesionless soil: A Multivariate Adaptive Regression Spline approach. Int. J. Numer. Anal. Methods Geomech. 2012, 36, 1434–1439. [Google Scholar] [CrossRef]
- Samui, P.; Das, S.; Kim, D. Uplift capacity of suction caisson in clay using multivariate adaptive regression spline. Ocean. Eng. 2011, 38, 2123–2127. [Google Scholar] [CrossRef]
- Suman, S.; Das, S.K.; Mohanty, R. Prediction of friction capacity of driven piles in clay using artificial intelligence techniques. Int. J. Geotech. Eng. 2016, 10, 469–475. [Google Scholar] [CrossRef]
- Kurttila, M.; Pesonen, M.; Kangas, J.; Kajanus, M. Utilizing the analytic hierarchy process (AHP) in SWOT analysis—A hybrid method and its application to a forest-certification case. For. Policy Econ. 2000, 1, 41–52. [Google Scholar] [CrossRef]
- Asadoullahtabar, S.R.; Asgari, A.; Tabari, M.M.R. Assessment, identifying, and presenting a plan for the stabilization of loessic soils exposed to scouring in the path of gas pipelines, case study: Maraveh-Tappeh city. Eng. Geol. 2024, 342, 107747. [Google Scholar] [CrossRef]
Serial Number | Key Parameter | Standard Value | Alarm Value |
---|---|---|---|
1 | Pile deviation | 50 mm | >50 mm |
2 | Spray volume | Design values ±1% | ≠Design values ±1% |
3 | Water–cement ratio | Design values ±0.05 g/cm3 | ≠Design values ±0.05 g/cm3 |
4 | Trip and lift speed | Design values ±0.05 m/min | ≠Design values ±0.05 m/min |
5 | Borehole depth | Not less than the design value | <Design values |
6 | Verticality | 1% | >1% |
Serial Number | Key Parameter | Method | Sensor |
---|---|---|---|
1 | Pile deviation | GNSS | GNSS receiver |
2 | Spray volume | Monitoring slurry flow | Electromagnetic flowmeter |
3 | Water–cement ratio | Mud-induced vibration | Plug in tuning fork |
4 | Trip and lift speed | Depth meter velocity measurement | Depth sensor |
5 | Borehole depth | Depth gauge | Depth sensor |
6 | Verticality | Inclination sensor | Dual-axis angle sensor |
Serial Number | Index | Standard Value | Alarm Value |
---|---|---|---|
1 | Pile deviation | 100 + 0.01 H | >100 + 0.01 H |
2 | Borehole depth | 100% Design value | <80% Design value |
3 | Verticality | 1% | ≥1% |
4 | Mud weight | 1.15–1.20 | <1.15 or >1.20 |
5 | Mud viscosity | 16~21 s | <16 s or >21 s |
Serial Number | Key Parameter | Method | Sensor |
---|---|---|---|
1 | Pile deviation | GNSS | GNSS receiver |
2 | Borehole depth | Pile extension times | Electromagnetic flowmeter |
3 | Verticality | Inclination sensor | Dual-axis angle sensor |
4 | Mud weight | Mud-induced vibration | Plug in tuning fork |
5 | Mud viscosity | Rotating torque principle | Online rotary viscometer |
Pile Position | Degree of Relevance | Borehole Depth | Perpendicularity | Pile Deviation | Water-Cement Ratio | Cement Slurry Flow | Drill Down Speed |
---|---|---|---|---|---|---|---|
Z0102 | 0.037 | 7.289 | 0.162 | 0.346 | 1.432 | 0.576 | |
0.964 | 0.121 | 0.861 | 0.743 | 0.411 | 0.635 | ||
Z0130 | 0.350 | 8.534 | 0.104 | 0.418 | 1.381 | 0.420 | |
0.741 | 0.105 | 0.906 | 0.705 | 0.420 | 0.704 | ||
Z0062 | 0.089 | 7.911 | 0.097 | 0.219 | 1.680 | 0.331 | |
0.918 | 0.112 | 0.912 | 0.820 | 0.373 | 0.751 |
Borehole Depth | Perpendicularity | Pile Deviation | Water-Cement Ratio | Cement Slurry Flow | Drill Down Speed | |
---|---|---|---|---|---|---|
Subjective weights | 0.254 | 0.153 | 0.102 | 0.136 | 0.136 | 0.220 |
Objective weighting | 0.221 | 0.143 | 0.143 | 0.146 | 0.146 | 0.200 |
Combined weights | 0.238 | 0.148 | 0.122 | 0.141 | 0.141 | 0.210 |
Pile Position | Degree of Relevance | Borehole Depth | Verticality | Pile Deviation | Specific Gravity of Mud | Mud Viscosity |
---|---|---|---|---|---|---|
Z0012 | 0.570 | 8.225 | 0.061 | 1.786 | 24.843 | |
0.021 | 0.108 | 0.942 | 0.359 | 0.039 | ||
Z0103 | 0.040 | 8.024 | 0.145 | 1.167 | 37.003 | |
0.001 | 0.111 | 0.873 | 0.462 | 0.026 | ||
Z0232 | 0.470 | 7.190 | 0.157 | 0.958 | 31.539 | |
0.017 | 0.122 | 0.864 | 0.511 | 0.031 |
B1 | Borehole Depth C2 | Verticality C3 | Weight |
---|---|---|---|
Borehole depth C2 | 1.00 | 2.00 | 0.67 |
Verticality C3 | 0.50 | 1.00 | 0.33 |
B2 | Pile Deviation C3 | Weight |
---|---|---|
Borehole depth C2 | 1.00 | 1.00 |
B3 | Mud Viscosity C6 | Specific Gravity of Mud C7 | Weight |
---|---|---|---|
Mud viscosity C6 | 1.00 | 1.00 | 0.50 |
Specific gravity of mud C7 | 1.00 | 1.00 | 0.50 |
Project Layer | Weight | Metrics Layer | Weight | Primary Weights |
---|---|---|---|---|
B1 | 0.50 | depth C1 | 0.67 | 0.33 |
Verticality C2 | 0.33 | 0.17 | ||
B2 | 0.25 | Pile position C3 | 1.00 | 0.25 |
B3 | 0.25 | Specific gravity C4 | 0.50 | 0.13 |
Viscosity C5 | 0.50 | 0.13 |
Borehole Depth | Verticality | Pile Deviation | Specific Gravity of Mud | Mud Viscosity | |
---|---|---|---|---|---|
si | 0.51 | 0.68 | 0.68 | 0.68 | 0.67 |
Objective weighting | 0.276 | 0.179 | 0.179 | 0.182 | 0.183 |
Weight | Borehole Depth | Perpe Ndicularity | Pile Deviation | Specific Gravity of Mud | Mud Viscosity |
---|---|---|---|---|---|
Subjective weights | 0.330 | 0.170 | 0.250 | 0.125 | 0.125 |
Objective weighting | 0.276 | 0.179 | 0.179 | 0.182 | 0.183 |
Combined weights | 0.303 | 0.175 | 0.215 | 0.154 | 0.154 |
Bounds Value | Borehole Depth | Perpendicularity | Pile Deviation | Specific Gravity of Mud | Mud Viscosity |
---|---|---|---|---|---|
d | 0.9 | 0.105 | 0.48 | 0.086 | 0.05 |
c | 0.68 | 0.085 | 0.4 | 0.063 | 0.03 |
b | 0.49 | 0.065 | 0.32 | 0.041 | 0 |
a | 0.33 | 0.045 | 0.24 | 0.019 | −0.05 |
Cost Item | Traditional Construction/RMB | IoT Monitoring Construction/RMB |
---|---|---|
Labor | 350 | 200 |
Materials | 1000 | 850 |
Equipment | 650 | 750 |
Total Cost | 1900 | 1800 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, K.; Zhang, P.; Yuan, J.; Qian, X.; Qi, R. IoT Monitoring and Evaluating System for the Construction Quality of Foundation Pile. Buildings 2025, 15, 2660. https://doi.org/10.3390/buildings15152660
Wu K, Zhang P, Yuan J, Qian X, Qi R. IoT Monitoring and Evaluating System for the Construction Quality of Foundation Pile. Buildings. 2025; 15(15):2660. https://doi.org/10.3390/buildings15152660
Chicago/Turabian StyleWu, Kai, Peng Zhang, Jiejun Yuan, Xiaqing Qian, and Runen Qi. 2025. "IoT Monitoring and Evaluating System for the Construction Quality of Foundation Pile" Buildings 15, no. 15: 2660. https://doi.org/10.3390/buildings15152660
APA StyleWu, K., Zhang, P., Yuan, J., Qian, X., & Qi, R. (2025). IoT Monitoring and Evaluating System for the Construction Quality of Foundation Pile. Buildings, 15(15), 2660. https://doi.org/10.3390/buildings15152660