Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (295)

Search Parameters:
Keywords = bleach production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1301 KB  
Article
The Impact of Bleaching and Brushing with a Novel Purple Versus Charcoal Whitening Toothpaste on the Color of a Discolored Single-Shade Polymeric Resin-Based Restorative Material
by Hanin E. Yeslam, Wasayef H. Mohammed, Yasir M. Alnemari, Reem Ajaj, Hani M. Nassar and Fatin A. Hasanain
Appl. Sci. 2025, 15(16), 8940; https://doi.org/10.3390/app15168940 - 13 Aug 2025
Viewed by 402
Abstract
Background: The aesthetic performance of single-shade polymer-based restorative materials (SPRs) can be compromised by extrinsic stains. Understanding the effects of novel whitening interventions on SPRs is crucial. Objective: This in vitro study aimed to evaluate the effects of different whitening interventions, including [...] Read more.
Background: The aesthetic performance of single-shade polymer-based restorative materials (SPRs) can be compromised by extrinsic stains. Understanding the effects of novel whitening interventions on SPRs is crucial. Objective: This in vitro study aimed to evaluate the effects of different whitening interventions, including a novel purple tooth serum and charcoal-based whitening toothpaste with and without in-office bleaching, on the color of a new coffee-stained SPR. Materials and Methods: Seventy disc-shaped SPR specimens were prepared, stained, and then divided into seven groups (n = 10). Three groups were subjected directly to 2500 cycles of brushing simulation with regular toothpaste (control), charcoal toothpaste, or purple tooth serum. The rest were divided into bleaching groups, and the four groups underwent a simulation of bleaching and then brushing with the three products. The color parameters were recorded at the stained baseline, after brushing, after bleaching, and after post-bleaching brushing. The color change (ΔE00) was calculated, and the data were analyzed statistically using the Kruskal–Wallis test and Dunn–Bonferroni pairwise comparisons (p < 0.05). Results: In-office bleaching without brushing had a statistically significantly higher ΔE00 value than all other groups (p < 0.001). Post hoc tests indicated that the ΔE00 values of the brushed specimens were not significantly different from each other when assessed with and without bleaching (p > 0.05). When using the charcoal toothpaste, the post-bleaching brushed specimens had a noticeable color change above the PT. Conclusions: Bleaching improved the stained SPR color initially, but other treatments may offer longer-lasting aesthetics. The charcoal toothpaste showed promising results when combined with bleaching. The purple serum showed limited effectiveness. Full article
(This article belongs to the Special Issue State-of-the-Art Operative Dentistry)
Show Figures

Figure 1

20 pages, 2007 KB  
Article
Value-Added Recycling of Pre-Consumer Textile Waste: Performance Evaluation of Cotton Blend Knitted T-Shirts
by Muhammad Babar Ramzan, Sajida Ikram, Sheheryar Mohsin Qureshi, Muhammad Waqas Iqbal and Muhammad Qamar Khan
Recycling 2025, 10(4), 160; https://doi.org/10.3390/recycling10040160 - 8 Aug 2025
Viewed by 347
Abstract
This study investigates the effects of waste for value addition in form of use of textile waste to comfortable and durable garments based on blending recycled cotton fibers extracted from spinning, weaving, and cutting waste with virgin cotton in different ratios of 70:30, [...] Read more.
This study investigates the effects of waste for value addition in form of use of textile waste to comfortable and durable garments based on blending recycled cotton fibers extracted from spinning, weaving, and cutting waste with virgin cotton in different ratios of 70:30, 80:20, and 90:10 to produce yarns of 22/1 count, which are used to develop single jersey knitted T-Shirt, examining key properties such as mechanical and thermos-physiological properties. Grey fabric (unprocessed fabric) with a higher virgin cotton content and from spinning waste exhibited superior bursting strength, overall moisture management capacity, and thermal conductivity. In contrast, air permeability and water vapor permeability were highest in fabric made with weaving waste. After scouring and bleaching, the finished fabric (processed fabric) was compared with the grey fabrics. The results demonstrate that the finished fabric has slightly reduced bursting strength, water vapor permeability, and moisture management capacity while significantly enhancing air permeability and maintaining thermal conductivity. T-shirt properties were evaluated across various blend ratios and waste types over multiple washing cycles. Overall, the study demonstrates that recycled cotton fibers, particularly those from spinning waste, can be successfully produced into high-performance knitted t-shirts, offering a sustainable alternative to fully virgin cotton products without compromising performance significantly. Full article
Show Figures

Figure 1

20 pages, 1448 KB  
Article
In Vitro Evaluation of Chemical and Microhardness Alterations in Human Enamel Induced by Three Commercial In-Office Bleaching Agents
by Berivan Laura Rebeca Buzatu, Atena Galuscan, Ramona Dumitrescu, Roxana Buzatu, Magda Mihaela Luca, Octavia Balean, Gabriela Vlase, Titus Vlase, Iasmina-Mădălina Anghel, Carmen Opris, Bianca Ioana Todor, Mihaela Adina Dumitrache and Daniela Jumanca
Dent. J. 2025, 13(8), 357; https://doi.org/10.3390/dj13080357 - 6 Aug 2025
Viewed by 382
Abstract
Background/Objectives: In-office bleaching commonly employs high concentrations of hydrogen peroxide (HP) or carbamide peroxide (CP), which may compromise enamel integrity. This in vitro paired-design study aimed to compare the chemical and mechanical effects of three commercial bleaching agents—Opalescence Boost (40% HP), Opalescence [...] Read more.
Background/Objectives: In-office bleaching commonly employs high concentrations of hydrogen peroxide (HP) or carbamide peroxide (CP), which may compromise enamel integrity. This in vitro paired-design study aimed to compare the chemical and mechanical effects of three commercial bleaching agents—Opalescence Boost (40% HP), Opalescence Quick (45% CP), and BlancOne Ultra+ (35% HP)—on human enamel. The null hypothesis assumed no significant differences between the control and treated samples. Given the ongoing debate over pH, active ingredients, and enamel impact, comparing whitening systems remains clinically important. Methods: Forty-two extracted teeth were assigned to three experimental groups (n = 14) with matched controls. Each underwent a single bleaching session per manufacturer protocol: Opalescence Boost (≤60 min), Opalescence Quick (15–30 min), and BlancOne Ultra+ (three light-activated cycles of 8–10 min). Enamel chemical changes were analyzed by Fourier transform infrared (FTIR) spectroscopy (phosphate and carbonate bands), and surface hardness by Vickers microhardness testing. Paired t-tests (α = 0.05) assessed statistical significance. Results: FTIR analysis revealed alterations in phosphate and carbonate bands for all agents, most notably for Opalescence Boost and BlancOne Ultra+. Microhardness testing showed significant reductions in enamel hardness for Opalescence Boost (control: 37.21 ± 1.74 Hv; treated: 34.63 ± 1.70 Hv; p = 0.00) and Opalescence Quick (control: 45.82 ± 1.71 Hv; treated: 39.34 ± 1.94 Hv; p < 0.0001), whereas BlancOne Ultra+ showed no significant difference (control: 51.64 ± 1.59 HV; treated: 51.60 ± 2.34 Hv; p = 0.95). Conclusions: HP-based agents, particularly at higher concentrations, caused greater enamel alterations than CP-based products. While clinically relevant, the results should be interpreted cautiously due to in vitro limitations and natural enamel variability. Full article
(This article belongs to the Special Issue Advances in Esthetic Dentistry)
Show Figures

Graphical abstract

16 pages, 776 KB  
Article
Phytochemical Profile and Functional Properties of the Husk of Argania spinosa (L.) Skeel
by Antonietta Cerulli, Natale Badalamenti, Francesco Sottile, Maurizio Bruno, Sonia Piacente, Vincenzo Ilardi, Rosa Tundis, Roberta Pino and Monica Rosa Loizzo
Plants 2025, 14(15), 2288; https://doi.org/10.3390/plants14152288 - 24 Jul 2025
Viewed by 367
Abstract
Due to the limited scientific exploration of Argania spinosa (L.) skeel husk, this study presents the first investigation of the metabolite profile of methanol and acetone extracts analyzed by liquid chromatography coupled with electrospray ionization and high-resolution multistage mass spectrometry (LC-ESI/HRMSMS). A total [...] Read more.
Due to the limited scientific exploration of Argania spinosa (L.) skeel husk, this study presents the first investigation of the metabolite profile of methanol and acetone extracts analyzed by liquid chromatography coupled with electrospray ionization and high-resolution multistage mass spectrometry (LC-ESI/HRMSMS). A total of 43 compounds, including hydroxycinnamic acid and flavonoid derivatives, saponins, and triterpenic acids, were identified, some of which have not been previously reported in this species. The total phenols (TPC) and flavonoids (TFC) content were spectrophotometrically determined. A multi-target approach was applied to investigate the antioxidant potential using 1,1-Diphenyl-2-picrylhydrazyl (DPPH), 2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), β-carotene bleaching, and Ferric Reducing Ability Power (FRAP) tests. Carbohydrate hydrolyzing enzymes and lipase inhibitory activities were also assessed. The acetone extract exhibited the highest TPC and TFC values, resulting in being the most active in β-carotene bleaching test with IC50 values of 26.68 and 13.82 µg/mL, after 30 and 60 min of incubation, respectively. Moreover, it was the most active against both α-glucosidase and α-amylase enzymes with IC50 values of 12.37 and 18.93 µg/mL, respectively. These results pointed out that this by-product is a rich source of bioactive phytochemicals potentially useful for prevention of type 2 diabetes and obesity. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

18 pages, 6596 KB  
Article
Food-Grade Polar Extracts from Sea Fennel (Crithmum maritimum L.) By-Products: Unlocking Potential for the Food Industry
by Aizhan Ashim, Lama Ismaiel, Benedetta Fanesi, Ancuta Nartea, Antonietta Maoloni, Oghenetega Lois Orhotohwo, Helen Stephanie Ofei Darko, Paolo Lucci, Lucia Aquilanti, Deborah Pacetti, Roberta Pino, Rosa Tundis and Monica Rosa Loizzo
Foods 2025, 14(13), 2304; https://doi.org/10.3390/foods14132304 - 28 Jun 2025
Viewed by 543
Abstract
Crithmum maritimum L. is a halophyte with antioxidant and antimicrobial potential for the food industry. Pruning generates a by-product composed of woody stems, old leaves, and flowers. To valorize this underutilized and largely unexplored biomass, food-grade polar extraction (hydroethanolic vs. aqueous) was applied. [...] Read more.
Crithmum maritimum L. is a halophyte with antioxidant and antimicrobial potential for the food industry. Pruning generates a by-product composed of woody stems, old leaves, and flowers. To valorize this underutilized and largely unexplored biomass, food-grade polar extraction (hydroethanolic vs. aqueous) was applied. The extracts were characterized for their bioactive compounds (polyphenols, tocopherols, carotenoids, total phenols (TPC) and total flavonoids (TFC)). Further, the extracts were assessed for their in vitro antioxidant activity (ABTS, DPPH, FRAP, and β-carotene bleaching) and antimicrobial activity against eight target strains ascribed to Escherichia coli, Staphylococcus aureus, and Listeria innocua. The hydroethanolic extract exhibited higher concentration of bioactives compared to the water extract and raw by-product. The β-carotene bleaching test revealed that both extracts are potent inhibitors of lipid peroxidation. The aqueous extract showed no antimicrobial activity, while the ethanolic extract exhibited strain-dependent behavior against S. aureus and L. innocua but not E. coli. The minimum inhibitory concentration and the minimum bactericidal concentration of the ethanolic extract against S. aureus were 2.5 MIC and 10.0 MBC mg/mL, respectively. Ethanolic extracts could potentially be used in food formulations to enhance lipid peroxidation resistance and antimicrobial capacity as food-grade natural preservatives. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Figure 1

13 pages, 12190 KB  
Article
Mapping the Mineralogical Footprints of Petroleum Microseepage Systems in Redbeds of the Qom Region (Iran) Using EnMAP Hyperspectral Data
by Yasmin Elhaei and Saeid Asadzadeh
Remote Sens. 2025, 17(12), 2088; https://doi.org/10.3390/rs17122088 - 18 Jun 2025
Viewed by 444
Abstract
This study utilizes EnMAP hyperspectral satellite data to map the mineralogical footprints of hydrocarbon microseepage systems induced in the Upper-Red Formation (URF), a clastic Upper Miocene sedimentary sequence in the Qom region (Iran) affected by petroleum leakage from the underlying Alborz reservoir. The [...] Read more.
This study utilizes EnMAP hyperspectral satellite data to map the mineralogical footprints of hydrocarbon microseepage systems induced in the Upper-Red Formation (URF), a clastic Upper Miocene sedimentary sequence in the Qom region (Iran) affected by petroleum leakage from the underlying Alborz reservoir. The Level 2A surface reflectance product of EnMAP was processed using spectral matching and polynomial fitting techniques to characterize diagnostic absorption features associated with microseepage-induced alteration minerals. The identified mineralogical changes include partial to complete bleaching of hematite from redbeds, the formation of secondary goethite, and the development of montmorillonite, calcite, and Fe2+-bearing chlorite across the affected zones. Compared to previous studies conducted using ASTER and Sentinel-2 multispectral data, EnMAP demonstrated superior performance in identifying mineralogy and delineating petroleum-affected zones, with results aligning closely with field observations and laboratory spectroscopy. This study highlights the advantages of EnMAP hyperspectral data for mapping diagenetic mineralogical alterations induced in sedimentary strata, facilitating remote sensing-based detection of microseepage, and advancing petroleum exploration in exposed terrains. Full article
Show Figures

Figure 1

21 pages, 54207 KB  
Article
Spatial Variation in Coral Diversity and Reef Complexity in the Galápagos: Insights from Underwater Photogrammetry and New Data Extraction Methods
by Matan Yuval, Franklin Terán, Wilson Iñiguez, William Bensted-Smith and Inti Keith
Remote Sens. 2025, 17(11), 1831; https://doi.org/10.3390/rs17111831 - 23 May 2025
Viewed by 924
Abstract
Corals in the Galápagos present diverse reef configurations from biogenic coral reefs to coral communities growing on rocks and sand. These corals have experienced decades of disturbances including recurring El Niño and mass bleaching events. However, traditional methods in ecology have limited capacity [...] Read more.
Corals in the Galápagos present diverse reef configurations from biogenic coral reefs to coral communities growing on rocks and sand. These corals have experienced decades of disturbances including recurring El Niño and mass bleaching events. However, traditional methods in ecology have limited capacity in describing coral demographic trends across large spatial scales. Photogrammetry—a form of 3D imaging, has emerged over the past decade as a popular method for benthic surveys. However, the majority of protocols in the field utilize the 2D products of photogrammetry, ignoring overhangs and leaving significant information unexploited. We surveyed seven reef sites across the archipelago using underwater photogrammetry and developed new methods for 3D annotation and fractal dimension calculation. Our findings reveal variation in coral cover, diversity, and structural complexity across the archipelago. Our results align with previous studies in the region and add important information on reef structural complexity which was not measured here before. We release a unique dataset: Galápagos_3D, including seven 3D models and over 17,000 annotated images. This study establishes an important baseline for long-term monitoring, research, and conservation in the Galápagos, potentially informing evidence-based policies and advancing our understanding of coral resilience and recovery. Full article
Show Figures

Figure 1

20 pages, 1174 KB  
Article
From Waste to Resource: Nutritional and Functional Potential of Borlotto Bean Pods (Phaseolus vulgaris L.)
by Antonella Smeriglio, Martina Imbesi, Mariarosaria Ingegneri, Rossana Rando, Manuela Mandrone, Ilaria Chiocchio, Ferruccio Poli and Domenico Trombetta
Antioxidants 2025, 14(6), 625; https://doi.org/10.3390/antiox14060625 - 23 May 2025
Cited by 1 | Viewed by 580
Abstract
Borlotto bean pods, a by-product of Phaseolus vulgaris processing, represent a promising yet underexplored source of bioactive compounds. This study aimed to characterize the nutritional composition, phytochemical profile, and biological properties of a food-grade extract obtained from borlotto bean pods (BPE). Nutritional parameters [...] Read more.
Borlotto bean pods, a by-product of Phaseolus vulgaris processing, represent a promising yet underexplored source of bioactive compounds. This study aimed to characterize the nutritional composition, phytochemical profile, and biological properties of a food-grade extract obtained from borlotto bean pods (BPE). Nutritional parameters were assessed using standard AOAC methods, while primary and secondary metabolites were identified and semi-quantified via 1H-NMR and LC-DAD-ESI-MS/MS. Antioxidant activity was evaluated through six complementary assays: DPPH, TEAC, FRAP, ORAC, ferrous ion-chelating activity, and β-carotene bleaching inhibition. Anti-inflammatory potential was assessed in vitro by evaluating the inhibition of bovine serum albumin (BSA) denaturation and protease activity. BPE showed significant antioxidant capacity across all assays, indicating both hydrogen atom transfer and electron transfer mechanisms, along with metal chelation and lipid peroxidation inhibition. Additionally, BPE inhibited protein denaturation and protease activity in a concentration-dependent manner. These results highlight the potential of borlotto bean pods as a sustainable source of nutritionally and functionally relevant compounds. Future studies should focus on the bioavailability of active constituents, formulation into delivery systems, and in vivo validation to support potential nutraceutical applications. Full article
(This article belongs to the Special Issue Antioxidants from Sustainable Food Sources)
Show Figures

Graphical abstract

14 pages, 6307 KB  
Article
The Clear Choice: Developing Transparent Cork for Next-Generation Sustainable Materials
by Pedro Gil, Pedro L. Almeida, Maria H. Godinho and Ana P. C. Almeida
Macromol 2025, 5(2), 17; https://doi.org/10.3390/macromol5020017 - 8 Apr 2025
Viewed by 1271
Abstract
Many modern technologies rely on materials that harm the environment. Glass manufacturing, for instance, is both expensive and environmentally damaging. In response, scientists have developed a technique to replace glass with transparent wood, an innovative, versatile, and sustainable alternative. Wood naturally retains heat, [...] Read more.
Many modern technologies rely on materials that harm the environment. Glass manufacturing, for instance, is both expensive and environmentally damaging. In response, scientists have developed a technique to replace glass with transparent wood, an innovative, versatile, and sustainable alternative. Wood naturally retains heat, is durable, and remains cost-effective, making it promising substitute for glass and plastic in window production. This innovation highlights the urgent need for eco-friendly technologies to replace or improve existing materials. This work explores cork as a sustainable alternative for producing transparent materials, potentially replacing transparent wood. Unlike wood, cork can be harvested from the same tree for up to 300 years. The process followed a method like transparent wood production, involving delignification, bleaching, and forced polymer impregnation. The choice of bleaching agent significantly impacted results—samples treated with sodium hypochlorite solution appeared whiter but became extremely fragile, whereas hydrogen peroxide preserved mechanical properties better. The resin-to-hardener ratio was crucial, with higher resin content improving polymer infiltration and transparency. While fully transparent cork was not achieved, the resulting translucent material lays the groundwork for future research in this field. Full article
Show Figures

Graphical abstract

12 pages, 1818 KB  
Article
Skin Cell Phototoxicity and Photoprotection Study of Agro-Derived Lignin and Nanocellulose
by Juliana Varella Cruz, Adriana Solange Maddaleno, Julia Salles Gava, Washington Luiz Esteves Magalhães, Danielle Palma de Oliveira, Daniela Morais Leme, Montserrat Mitjans and Maria Pilar Vinardell
Cosmetics 2025, 12(2), 61; https://doi.org/10.3390/cosmetics12020061 - 28 Mar 2025
Viewed by 846
Abstract
Lignin, a significant industrial byproduct from paper manufacturing processes, exhibits ultraviolet (UV) radiation absorption properties. Cellulose nanofibers (CNFs) demonstrate universal ligand characteristics and represent an innovative approach for converting industrial waste into value-added products. Given their potential applications in cosmetic formulations, their efficacy [...] Read more.
Lignin, a significant industrial byproduct from paper manufacturing processes, exhibits ultraviolet (UV) radiation absorption properties. Cellulose nanofibers (CNFs) demonstrate universal ligand characteristics and represent an innovative approach for converting industrial waste into value-added products. Given their potential applications in cosmetic formulations, their efficacy and safety parameters, such as their photoprotection mechanisms and phototoxicity, need to be investigated. Therefore, two kraft lignin fractions, LE and R1, along with a kraft-bleached pulp CNF, were evaluated for their phototoxicity and photoprotection mechanisms, both using the HaCaT cell line (immortalized human keratinocytes) as the in vitro model. Phototoxicity assessment involved exposing cells to UVA radiation (4 J/cm2), with the subsequent comparison of cell viability between irradiated and non-irradiated samples. ROS quantification was performed using a 2′,7′-dichlorofluorescein diacetate (DCF-DA) probe, with fluorescence intensity measurements, and was then used to evaluate the photoprotection effect. The results demonstrated that both LE and R1 exhibited concentration-dependent increases in phototoxicity, whereas CNF showed no phototoxic effects under the conditions tested. For photoprotection, LE, R1, and CNF reduced UV-induced ROS production, a result which could be associated with antioxidant properties in the case of the lignin fractions. These findings suggest that both lignin fractions and CNF hold promise for use in renewable and sustainable cosmetic formulations. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

20 pages, 3618 KB  
Article
Evaluation of the Anti-Aging Properties of Ethanolic Extracts from Selected Plant Species and Propolis by Enzyme Inhibition Assays and 2D/3D Cell Culture Methods
by F. Sezer Senol Deniz, Ilkay Erdogan Orhan, Przemyslaw Andrzej Filipek, Abdulselam Ertas, Ronald Gstir, Thomas Jakschitz and Günther Karl Bonn
Pharmaceuticals 2025, 18(3), 439; https://doi.org/10.3390/ph18030439 - 20 Mar 2025
Cited by 3 | Viewed by 840
Abstract
Background: Skin aging is a complex biological process affected by internal and external factors that disrupt the skin structure, especially in sun-exposed areas. Elastin and collagen in the dermis layer, responsible for the skin’s resistance and elasticity, have been the main subject [...] Read more.
Background: Skin aging is a complex biological process affected by internal and external factors that disrupt the skin structure, especially in sun-exposed areas. Elastin and collagen in the dermis layer, responsible for the skin’s resistance and elasticity, have been the main subject of research. Since tyrosinase (TYR) is an enzyme found in different organisms and plays an essential role in melanogenesis, inhibitors of this enzyme have been the target mechanism for skin-bleaching product research. Methods: We selected the plant species Cotinus coggygria Scop., Garcinia mangostana L., Pistacia vera L., Vitis vinifera L., and propolis, which exhibited activity against a minimum of three target enzymes—elastase, collagenase, and TYR—in our previous screening study to find the suitable raw material for a cosmetic product. In the current research, the extracts from these samples were tested through a cell-free enzyme assay using validated elastase, collagenase, and TYR inhibition kits. We also performed the safety and efficacy tests of the selected extracts with 2D/3D cell culture methods. Results: Our data revealed the propolis extract among the tested ones displayed remarkable anti-inflammatory activity in the 2D (NF-κB induction: 10.81%) and 3D assays. Cotinus coggygria leaf and Garcinia mangostana shell extracts exhibited anti-inflammatory activity in the 2D luciferase reporter assay via TNFα addition. C. coggygria leaf, V. vinifera (grape) seed, and propolis extracts were selected for testing in 3D cell culture methods based on the 2D cytotoxicity results with cell viability values of 54.75%, 93.19%, and 98.64% at 34.25 µg/mL, respectively. The general phytochemical profiles of these three extracts were examined in terms of 53 phenolic compounds with LC-MS/MS, revealing that quinic acid, epicatechin, and acacetin were the dominant phenolics among the tested ones. Conclusions: It is the first study conducted to evaluate the use of the extracts indicated above in cosmetics by employing procedures involving 3D cell culture. Full article
Show Figures

Graphical abstract

16 pages, 4756 KB  
Article
Carbon Composite Derived from Spent Bleaching Earth for Rubbery Wastewater Treatment
by Nur Fatihah Binti Tamin, Yin Fong Yeong, Joni Agustian, Lilis Hermida and Lih Xuan Liew
J. Compos. Sci. 2025, 9(3), 126; https://doi.org/10.3390/jcs9030126 - 10 Mar 2025
Viewed by 1363
Abstract
The industrial production of palm oil generates substantial amounts of Spent Bleaching Earth (SBE), a waste byproduct from the bleaching process. In Malaysia and Indonesia, SBE is typically landfilled, causing environmental risks such as greenhouse gas emissions and contamination. Wastewater from the rubber [...] Read more.
The industrial production of palm oil generates substantial amounts of Spent Bleaching Earth (SBE), a waste byproduct from the bleaching process. In Malaysia and Indonesia, SBE is typically landfilled, causing environmental risks such as greenhouse gas emissions and contamination. Wastewater from the rubber industry also contains harmful pollutants that require effective treatment. This study proposes a sustainable solution by converting SBE into carbon composites (CCs) for treating rubber industry wastewater. Characterization of CCs using XRD, BET, FESEM, and FTIR revealed its porous structure, high surface area, and functional groups, contributing to excellent adsorption properties. Response Surface Methodology (RSM) optimized treatment conditions, determining 90.56 min of contact time and 0.75 g of adsorbent weight as optimal for maximum chemical oxygen demand (COD) and turbidity removal. Quadratic models showed R2 values of 0.8828 for COD removal and 0.8336 for turbidity reduction, with numerical optimization achieving 90.30% COD reduction and 49.02% turbidity removal. Verification experiments confirmed model reliability with minimal deviation (0.37%). These findings demonstrate the potential of SBE-derived CCs as an eco-friendly solution for environmental challenges in the palm oil and rubber industries. Full article
(This article belongs to the Section Carbon Composites)
Show Figures

Figure 1

13 pages, 570 KB  
Article
Anti-Obesity and Weight Management-Related Antioxidant Potential Properties of Calabrian Pine Extracts: Pinus nigra Subsp. laricio (Poir.) Maire
by Mary Fucile, Carmine Lupia, Martina Armentano, Mariangela Marrelli, Ludovica Zicarelli, Claudia-Crina Toma, Giancarlo Statti and Filomena Conforti
Plants 2025, 14(6), 851; https://doi.org/10.3390/plants14060851 - 8 Mar 2025
Viewed by 1165
Abstract
Natural extracts derived from plants have gained attention as potential therapeutic agents for obesity management. Some natural extracts were demonstrated to inhibit pancreatic lipase and alpha amylase, potentially influencing nutrient absorption and contributing to weight management. Pinus nigra subsp. laricio (Poir.) Maire, commonly [...] Read more.
Natural extracts derived from plants have gained attention as potential therapeutic agents for obesity management. Some natural extracts were demonstrated to inhibit pancreatic lipase and alpha amylase, potentially influencing nutrient absorption and contributing to weight management. Pinus nigra subsp. laricio (Poir.) Maire, commonly known as the Calabrian pine or larch pine, is a subspecies of the black pine native to the mountains of southern Italy and Corsica. This study investigated the phytochemical content and antioxidant (DPPH and β-carotene bleaching assays) and enzymatic (lipase and amylase inhibition) activities of ethanolic extracts from apical shoots and branches, fractionated into n-hexane, dichloromethane, and ethyl acetate. All the extracts were also subjected to a preliminary evaluation of their anti-inflammatory potential by measuring the ability to inhibit nitric oxide (NO) production in RAW 264.7 macrophages. The ethyl acetate branch fraction exhibited the strongest antioxidant activity (DPPH IC50 15.67 ± 0.16 μg/mL), while the total branch extract best inhibited pancreatic lipase (IC50 0.62 mg/mL). Amylase inhibition was strongest in the ethyl acetate apical shoot fraction (IC50 22.05 ± 0.29 µg/mL). The branches’ hexane and dichloromethane fractions showed the greatest anti-inflammatory potential, inhibiting NO production in RAW 264.7 cells with IC50 values comparable to the positive control. Full article
Show Figures

Figure 1

20 pages, 1762 KB  
Article
Bleaching of Idesia polycarpa Maxim. Oil Using a Metal-Organic Framework-Based Adsorbent: Kinetics and Adsorption Isotherms
by Yiyang Dong, Chengming Wang, Yu Gao, Jing Xu, Hongzheng Ping, Fangrong Liu and Aifeng Niu
Foods 2025, 14(5), 787; https://doi.org/10.3390/foods14050787 - 25 Feb 2025
Viewed by 985
Abstract
Idesia polycarpa Maxim. is a woody oil crop with great potential for edible oil production. While crude oil is rich in pigments, traditional bleaching methods have limited effectiveness in improving its color. In this study, a metal-organic framework (MOF) material, MIL-88B(Fe), was synthesized [...] Read more.
Idesia polycarpa Maxim. is a woody oil crop with great potential for edible oil production. While crude oil is rich in pigments, traditional bleaching methods have limited effectiveness in improving its color. In this study, a metal-organic framework (MOF) material, MIL-88B(Fe), was synthesized and used for the bleaching of Idesia polycarpa Maxim. oil. The adsorption selectivity of MIL-88B(Fe) and the adsorption process of carotenoids and chlorophyll were investigated. The results demonstrated that the synthesized MIL-88B(Fe) exhibited excellent bleaching capability, achieving a bleaching rate of 97.67% in 65 min. It showed a strong adsorption effect on pigments, particularly carotenoids. The content of lutein decreased from 118.27 mg/kg to 0.01 mg/kg after 65 min of bleaching. The squalene and phytosterol contents in the oil were minimally affected by the bleaching process, while the free fatty acid content slightly increased due to the high reaction temperature and the adsorbent properties. The adsorption process of MIL-88B(Fe) was best described by a pseudo-first-order kinetic model, indicating that the adsorption was a spontaneous and endothermic chemical process. Moreover, MIL-88B(Fe) demonstrated good safety and reusability, making it a promising novel adsorbent for the bleaching of Idesia polycarpa Maxim. oil and other oils with a high pigment content for the vegetable oil industry. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

17 pages, 11439 KB  
Article
Low-Alpha-Cellulose-Based Membranes
by Igor Makarov, Gulbarshin Shambilova, Aigul Bukanova, Fazilat Kairliyeva, Saule Bukanova, Zhanar Kadasheva, Radmir Gainutdinov, Alexander Koksharov, Ivan Komarov, Junlong Song, Sergey Legkov and Alexandra Nebesskaya
Polymers 2025, 17(5), 598; https://doi.org/10.3390/polym17050598 - 24 Feb 2025
Viewed by 871
Abstract
Depending on the method of cellulose production, the proportion of alpha fraction in it can vary significantly. Paper pulp, unlike dissolving cellulose, has an alpha proportion of less than 90%. The presence of cellulose satellites in the system does not impede the formation [...] Read more.
Depending on the method of cellulose production, the proportion of alpha fraction in it can vary significantly. Paper pulp, unlike dissolving cellulose, has an alpha proportion of less than 90%. The presence of cellulose satellites in the system does not impede the formation of concentrated solutions of N-methylmorpholine-N-oxide (NMMO). In the current study, spinning solutions based on cellulose with a low alpha fraction (up to 90%) (pulp cellulose) are investigated. The morphological features and rheological behavior of such solutions are examined. It is suggested to roll the obtained solutions in order to obtain cellulose membranes. X-ray diffraction, IR spectroscopy, AFM and SEM were used to investigate the resulting structure and morphology of the obtained membranes. It is shown that the degree of crystallinity for the membranes varies based on the impurity content in the sample. The morphology of the films is characterized by a dense texture and the absence of vacuoles. The highest strength and elastic modulus were found for membranes made of bleached hardwood sulfate cellulose, 5.7 MPa and 6.4 GPa, respectively. The maximum values of the contact angle (48°) were found for films with a higher proportion of lignin. The presence of lignin in the membranes leads to an increase in rejection for the anionic dyes Orange II and Remazol Brilliant Blue R. Full article
(This article belongs to the Special Issue New Advances in Cellulose and Wood Fibers)
Show Figures

Figure 1

Back to TopTop