Antioxidants from Sustainable Food Sources

A special issue of Antioxidants (ISSN 2076-3921).

Deadline for manuscript submissions: 30 September 2025 | Viewed by 6433

Special Issue Editors


E-Mail Website
Guest Editor
Department of Food Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
Interests: sensory science; consumer science; data science; applied machine learning; food science
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Food Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
Interests: sensory processes; perception and performance; food chemistry and food sensory science; food technology; food sciences
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Antioxidants are vital compounds that combat free radicals and play a crucial role in our metabolism. While chemically derived antioxidants have seen significant use recently, there is a notable shift in consumer demand towards sustainably sourced antioxidants from natural origins. In our food systems, sustainability is a critical consideration in the production, processing, and consumption of raw materials. Embracing sustainable practises can reduce environmental impact and foster economic prosperity. Initiatives like circularity efforts, such as waste utilisation, can fortify the resilience of our food system.

The potential and challenges associated with antioxidants derived from sustainable and natural sources are substantial. Natural products may exhibit varying levels of antioxidants due to biological diversity, underscoring the importance of standardised extraction methods. In this aspect, antioxidants derived from sustainable sources using green technologies and fermentation hold promise. These innovative approaches can extract and enhance antioxidants from natural sources in a sustainable and efficient manner, contributing to both the quality and sustainability of the final food products.

This Special Issue aims to showcase a collection of studies focusing on antioxidants sourced sustainably and naturally, including those derived through innovative food processing methods. Developing antioxidants from natural and sustainable sources is instrumental in transforming the food system into one that is not only environmentally friendly but also focused on delivering healthier and more resilient food options for the benefit of both people and the planet.

Dr. Kevin Kantono
Prof. Dr. Nazimah Hamid
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antioxidants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • natural products
  • food processing
  • green technology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

25 pages, 6284 KiB  
Article
Encapsulation of Polyphenolic Preparation in Gelatin Fruit Jellies Slows the Digestive Release of Cholinesterase Inhibitors In Vitro
by Dominik Szwajgier, Ewa Baranowska-Wójcik, Wirginia Kukula-Koch and Katarzyna Krzos
Antioxidants 2025, 14(5), 535; https://doi.org/10.3390/antiox14050535 - 29 Apr 2025
Viewed by 157
Abstract
Peach, apricot, chokeberry, blueberry, cranberry, raspberry, and wild strawberry fruits were used to create a polyphenolic preparation (PP) after enzyme-assisted extraction, ultrafiltration, and concentration. The composition of PP was determined using LC-MS. Gelatin jellies produced with PP, as well as liquid PP, were [...] Read more.
Peach, apricot, chokeberry, blueberry, cranberry, raspberry, and wild strawberry fruits were used to create a polyphenolic preparation (PP) after enzyme-assisted extraction, ultrafiltration, and concentration. The composition of PP was determined using LC-MS. Gelatin jellies produced with PP, as well as liquid PP, were “digested” in an in vitro model. The entrapment of PP in the gelatin matrix delayed the release of total polyphenolics, flavonoids, flavanols, condensed tannins, and anthocyanins (predominantly during the “small intestinal” phase). PP entrapped in the jelly more effectively (p < 0.05) decreased the activity of acetylcholinesterase, butyrylcholinesterase, cyclooxygenase-2 and catalase (during the “small intestinal” phase). However, no significant (p < 0.05) effects on superoxide dismutase, glutathione peroxidase, and glutathione reductase activities were observed. FRAP, CUPRAC, HORAC, oxidation of linoleic acid, and ABTS-reducing activities were higher during the “intestinal” phase; however, the DPPH test and β-carotene bleaching tests did not confirm these results. The presented findings may be useful for designing nutraceuticals with programmed release of bioactive compounds during digestion. Full article
(This article belongs to the Special Issue Antioxidants from Sustainable Food Sources)
Show Figures

Figure 1

24 pages, 11921 KiB  
Article
Optimized Fermentation Conditions of Pulses Increase Scavenging Capacity and Markers of Anti-Diabetic Properties
by Andrea Jimena Valdés-Alvarado, Erick Damián Castañeda-Reyes and Elvira Gonzalez de Mejia
Antioxidants 2025, 14(5), 523; https://doi.org/10.3390/antiox14050523 - 27 Apr 2025
Viewed by 199
Abstract
Fermented pulses offer health benefits due to their antioxidant and antidiabetic properties. The objective was to optimize the fermentation conditions of black bean (BB), black eyed pea (BEP), green split pea (GSP), red lentil (RL), and pinto bean (PB), using Lactiplantibacillus plantarum 299v [...] Read more.
Fermented pulses offer health benefits due to their antioxidant and antidiabetic properties. The objective was to optimize the fermentation conditions of black bean (BB), black eyed pea (BEP), green split pea (GSP), red lentil (RL), and pinto bean (PB), using Lactiplantibacillus plantarum 299v (Lp299v), based on the antioxidant-scavenging capacity and the ability to modulate type-2 diabetes markers. Pulses were grounded, dispersed in water, hydrolyzed with α-amylase, and pasteurized and inoculated with Lp299v. Optimization was performed by using the Box–Behnken response surface methodology, with the fermentation time, bacterial concentration, and flour concentration as variables. The values of antioxidant capacity measured as 2,2-diphenyl-1-picrylhydrazyl (DPPH)-radical scavenging of RL, BEP, PB, BB, and GSP were 57%, 68%, 71%, 72%, and 83%, respectively, under optimal conditions (8–9 h, 0.76–3.5 × 109 a colony-forming unit (CFU)/mL, and 5.5–15 g flour/100 mL). These models demonstrated strong predictive power (p < 0.01) and a non-significant lack of fit (p ≥ 0.05). Additionally, fermentation increased the soluble protein content (3–10 mg/mL) and significantly inhibited dipeptidyl peptidase-IV and α-glucosidase activities by 40–70% and 30–60%, respectively. These results suggest that fermentation with Lp299v enhances the nutritional and functional quality of pulses, producing bioactive ingredients with antioxidant and antidiabetic potential. These functional ingredients may be used in the development of dietary interventions or as part of health-promoting foods, especially those targeted at the management of type-2 diabetes. Full article
(This article belongs to the Special Issue Antioxidants from Sustainable Food Sources)
Show Figures

Figure 1

24 pages, 2248 KiB  
Article
Antibacterial Properties, Arabinogalactan Proteins, and Bioactivities of New Zealand Honey
by Emey M. George, Swapna Gannabathula, Rushan Lakshitha, Ye Liu, Kevin Kantono and Nazimah Hamid
Antioxidants 2025, 14(4), 375; https://doi.org/10.3390/antiox14040375 - 21 Mar 2025
Viewed by 538
Abstract
Honey has been used for centuries for its antibacterial and healing properties. The aim of this study was to investigate the antibacterial properties, arabinogalactan proteins (AGPs), antioxidant activities, and polyphenolic content of eight different types of New Zealand honey (clover, mānuka, beech honeydew, [...] Read more.
Honey has been used for centuries for its antibacterial and healing properties. The aim of this study was to investigate the antibacterial properties, arabinogalactan proteins (AGPs), antioxidant activities, and polyphenolic content of eight different types of New Zealand honey (clover, mānuka, beech honeydew, pōhutukawa, kānuka, rewarewa, kāmahi and thyme honey). The results showed varying antibacterial activities across the honey types, with mānuka, pōhutukawa, and kāmahi honey exhibiting significant inhibitory effects. Interestingly, all honey samples demonstrated inhibitory effects on bacterial growth at 25% concentration. Furthermore, AGPs were found in all eight honey samples, with higher amounts in kānuka, kāmahi, pōhutukawa, mānuka, and rewarewa honey. Thyme had the highest antioxidant values in terms of CUPRAC, FRAP and DPPH, while kāmahi honey had the lowest antioxidant value. Beech honeydew honey had the highest Total Flavonoid Content (TFC) values, while thyme and clover honey had the lowest TFC values. Similarly, thyme honey exhibited the highest Total Phenolic Content (TPC) value, with kāmahi and clover honey having the lowest TPC values. Furthermore, only thyme and beech honeydew New Zealand honeys contained vitamin C. The different honeys contained varying concentrations of polyphenols, with mānuka, kānuka, and pōhutukawa honeys having high amounts of quercetin, luteolin, and gallic acid, respectively. In contrast, clover honey had notable levels of chrysin, pinocembrin, caffeic acid, and pinobanksin. Overall, this study provides valuable insights into the antibacterial properties and bioactivities of native New Zealand honeys, contributing to our understanding of the potential health benefits associated with these honeys and their potential use as natural alternatives to improve human health. Full article
(This article belongs to the Special Issue Antioxidants from Sustainable Food Sources)
Show Figures

Figure 1

29 pages, 8189 KiB  
Article
Hydroxytyrosol-Infused Extra Virgin Olive Oil: A Key to Minimizing Oxidation, Boosting Antioxidant Potential, and Enhancing Physicochemical Stability During Frying
by Taha Mehany, José M. González-Sáiz and Consuelo Pizarro
Antioxidants 2025, 14(3), 368; https://doi.org/10.3390/antiox14030368 - 20 Mar 2025
Viewed by 643
Abstract
The current research aims to monitor the physicochemical changes in various varieties of extra virgin olive oils (EVOOs) supplemented with exogenous polyphenolic extract from olive fruit, enriched with hydroxytyrosol (HTyr) and its derivatives, compared to numerous refined olive oils, sunflower oil, and high [...] Read more.
The current research aims to monitor the physicochemical changes in various varieties of extra virgin olive oils (EVOOs) supplemented with exogenous polyphenolic extract from olive fruit, enriched with hydroxytyrosol (HTyr) and its derivatives, compared to numerous refined olive oils, sunflower oil, and high oleic sunflower oil under different deep-frying conditions (170–210 °C for 3 to 6 h, with/without added HTyr. Acidity, K232, K270, ∆K, peroxide value (PV), anisidine value (AnV), TOTOX, refractive index (RI), carotenoids, chlorophyll, and antioxidant capacity using DPPH (2,2-diphenyl-1-picrylhydrazyl) approach were evaluated. The results show that EVOO varieties generally exhibit lower acidity and thermal degradation compared to refined olive oils, particularly when deep-fried at 170 °C for 3 h with exogenous HTyr (the best treatment). Royuela, Koroneiki, Empeltre, Manzanilla, and Arbosana EVOO varieties demonstrated lower K232 values (1.36, 1.67, 1.79, 1.82, and 1.81, respectively). Under optimal deep-frying conditions, all EVOO varieties fell within the standard K232 limit for EVOO (≤2.5), except for Cornicabra. Regarding K270, only Royuela (0.11) and Manzanilla (0.22) were below the standard limit of ≤0.22. These two varieties also exhibited the lowest ΔK values (0.00). The findings further revealed that Royuela, Koroneiki, and Manzanilla had the lowest TOTOX values, with 20.76, 23.38, and 23.85, respectively. Moreover, Koroneiki and Arbosana had the highest carotenoid ratios, with values of 17.5 mg/kg and 13.7 mg/kg, respectively. Koroneiki, Arbosana, and olive oil 1° also displayed the highest chlorophyll concentrations, with values of 50.2, 53.7, and 47.5 mg/kg, respectively. Furthermore, the findings from the best deep-frying treatment indicated that all olive oil categories exhibited high scavenging radical activity toward DPPH, even in refined olive oil categories and low-quality original olive oil due to the addition of HTyr. In conclusion, deep-fried EVOOs enriched with HTyr at 170 °C/3 h are thermally stable, exhibiting low hydrolysis, low oxidation, higher antioxidant potential, and stable chlorophyll and carotenoid levels. The addition of HTyr to deep-frying oils not only enhances the health benefits of EVOO, supporting EFSA health claims but also acts as a promising stabilizer for the olive oil industry, particularly under high-temperature processing conditions over prolonged periods. This highlights its potential for industrial use as a natural alternative to synthetic antioxidants, not only for olive oil but also for other edible oils, with practical applications in the food industry to improve the quality and stability of frying oils. Full article
(This article belongs to the Special Issue Antioxidants from Sustainable Food Sources)
Show Figures

Graphical abstract

13 pages, 2284 KiB  
Article
A Comparative Study of Traditional Sun Drying and Hybrid Solar Drying on Quality, Safety, and Bioactive Compounds in “Pingo de Mel” Fig
by Bárbara R. Henriques, Cláudia M. B. Neves, Marwa Moumni, Gianfranco Romanazzi, Carine Le Bourvellec, Susana M. Cardoso and Dulcineia F. Wessel
Antioxidants 2025, 14(3), 362; https://doi.org/10.3390/antiox14030362 - 19 Mar 2025
Viewed by 1239
Abstract
Figs are highly perishable, with significant losses due to overripening or failure to meet market standards. Drying is essential to extending their shelf life and reducing food waste. This study evaluated the impact of traditional sun drying and hybrid solar drying on the [...] Read more.
Figs are highly perishable, with significant losses due to overripening or failure to meet market standards. Drying is essential to extending their shelf life and reducing food waste. This study evaluated the impact of traditional sun drying and hybrid solar drying on the quality of dried “Pingo de Mel” figs. Sun drying required 5–7 days, while the hybrid solar drying completed the process in 3 days. Both methods resulted in a similar final moisture content (29.43% and 28.14%, respectively), water activity (0.68 and 0.63, respectively), and hardness (2.36 and 2.61 N, respectively). Hybrid solar-dried figs exhibited slightly lower L* values and higher b* values, reflecting a darker appearance with a more pronounced yellow hue. Fresh and sun-dried figs developed fungal growth (Alternaria spp., Aspergillus niger, Cladosporium spp., and Fusarium spp.) within four weeks, while hybrid solar-dried figs remained contamination-free, improving microbial safety. Moreover, hybrid drying preserved higher levels of phenolic compounds, particularly rutin and 5-O-caffeoylquinic acid, along with greater antioxidant activity. Overall, hybrid solar drying offers significant advantages over traditional sun drying by reducing the drying time, enhancing microbial safety, and preserving bioactive compounds, making it a more effective method for fig preservation. Full article
(This article belongs to the Special Issue Antioxidants from Sustainable Food Sources)
Show Figures

Figure 1

29 pages, 899 KiB  
Article
Antioxidant, Antithrombotic and Anti-Inflammatory Properties of Amphiphilic Bioactives from Water Kefir Grains and Its Apple Pomace-Based Fermented Beverage
by Dimitra Papadopoulou, Vasiliki Chrysikopoulou, Aikaterini Rampaouni, Christos Plakidis, Anna Ofrydopoulou, Katie Shiels, Sushanta Kumar Saha and Alexandros Tsoupras
Antioxidants 2025, 14(2), 164; https://doi.org/10.3390/antiox14020164 - 29 Jan 2025
Cited by 1 | Viewed by 1110
Abstract
Kefir-based fermentation products exhibit antioxidant and anti-inflammatory effects against oxidative stress, inflammation, platelet activation and aggregation, and other related manifestations, thereby preventing the onset and development of several chronic diseases. Specifically, water kefir, a symbiotic culture of various microorganisms used for the production [...] Read more.
Kefir-based fermentation products exhibit antioxidant and anti-inflammatory effects against oxidative stress, inflammation, platelet activation and aggregation, and other related manifestations, thereby preventing the onset and development of several chronic diseases. Specifically, water kefir, a symbiotic culture of various microorganisms used for the production of several bio-functional fermented products, has been proposed for its health-promoting properties. Thus, water kefir grains and its apple pomace-based fermentation beverage were studied for bioactive amphiphilic and lipophilic lipid compounds with antioxidant, antithrombotic, and anti-inflammatory properties. Total lipids (TL) were extracted and further separated into their total amphiphilic (TAC) and total lipophilic content (TLC), in which the total phenolic and carotenoid contents (TPC and TCC, respectively) and the fatty acid content of the polar lipids (PL) were quantified, while the antioxidant activity of both TAC and TLC were assessed in vitro, by the ABTS, DPPH, and FRAP bioassays, along with the anti-inflammatory and antithrombotic activity of TAC against human platelet aggregation induced by the thrombo-inflammatory mediator, platelet-activating factor (PAF) or standard platelet agonists like ADP.ATR-FTIR spectra facilitated the detection of specific structural, functional groups of phenolic, flavonoid, and carotenoid antioxidants, while LC−MS analysis revealed the presence of specific anti-inflammatory and antithrombotic PL bioactives bearing unsaturated fatty acids in their structures, with favorable omega-6 (n-6)/omega-3 (n-3)polyunsaturated fatty acids (PUFA), which further support the findings that the most potent antioxidant, anti-inflammatory and antithrombotic bioactivities were observed in the TAC extracts, in both water kefir grains and beverage cases. The detection of such bioactive components in both the uncultured water kefir grains and in the cultured beverage further supports the contribution of water kefir microorganisms to the bioactivity and the bio-functionality of the final fermented product. Nevertheless, the extracts of the beverage showed much stronger antioxidant, anti-inflammatory, and antithrombotic activities, which further suggests that during the culture process for producing this beverage, not only was the presence of bioactive compounds produced by kefir microflora present, but biochemical alterations during fermentation of bioactive components derived from apple pomace also seemed to have taken place, contributing to the higher bio-functionality observed in the apple pomace—water kefir-based beverage, even when compared to the unfermented apple pomace. The overall findings support further studies on the use of water kefir and/or apple pomace as viable sources of antioxidant, anti-inflammatory, and antithrombotic amphiphilic bioactive compounds for the production of novel health-promoting bio-functional fermented products. Full article
(This article belongs to the Special Issue Antioxidants from Sustainable Food Sources)
Show Figures

Figure 1

19 pages, 2076 KiB  
Article
Effect of Block Freeze Concentration on Bioactive Compound Content and Antioxidant Capacity When Applied to Peppermint (Mentha Piperita L.) Infusion
by Indira Pérez-Bermúdez, Alison Castillo-Suero, Constanza Jara-Leiva, Axel Cortés-Valdivia, Karol Rojas-Rojas, Vivian García-Rojas, Mauricio Opazo-Navarrete, María Guerra-Valle, Guillermo Petzold and Patricio Orellana-Palma
Antioxidants 2025, 14(2), 129; https://doi.org/10.3390/antiox14020129 - 23 Jan 2025
Cited by 2 | Viewed by 955
Abstract
This research aimed to evaluate block freeze concentration (BFC) under different centrifugation conditions using response surface methodology to separate an extract from the ice fraction at three centrifugal-BFC (CBFC) cycles, obtaining in the final cycle a phenolic-rich extract. A Box–Behnken design was applied [...] Read more.
This research aimed to evaluate block freeze concentration (BFC) under different centrifugation conditions using response surface methodology to separate an extract from the ice fraction at three centrifugal-BFC (CBFC) cycles, obtaining in the final cycle a phenolic-rich extract. A Box–Behnken design was applied to optimize centrifugation variables, with efficiency of separation (η) selected as the response variable. The extracts were characterized in terms of physicochemical analysis, total and individual bioactive components, and antioxidant capacity. Optimal conditions (3600 rpm, 16 °C, and 14 min) resulted in η of 82%. Thus, from infusion to final cycle, the solids, total polyphenol and flavonoid contents, and antioxidant capacity exhibited from 1.81 to 6.5% (w/w) and 2.5 to 8.7 (°Brix), 0.72 to 12.2 mg gallic acid equivalents/mL, 0.83 to 13.7 mg catequin equivalents /mL, 2.8 to 31.2 μmol trolox equivalents/mL and 4.8 to 122.2 μmol trolox equivalents/mL, identifying by high-performance liquid chromatography that kaempferol, p-hydroxybenzoic, and transferulic acid presented the highest concentrations. The CBFC process has the potential as a non-thermal concentration process to preserve many bioactive compounds, facilitating the production of concentrated fractions with high biological value, where the extracts obtained by BFC are a novel solution for medicinal, pharmaceutical, and food applications. Full article
(This article belongs to the Special Issue Antioxidants from Sustainable Food Sources)
Show Figures

Graphical abstract

22 pages, 4096 KiB  
Article
Valorization of Legume By-Products Based on Polyphenols and Protein Contents for Potential Nutraceutical Applications
by Cristina Terenzi, Gabriela Bermudez, Francesca Medri, Serena Montanari, Franz Bucar and Vincenza Andrisano
Antioxidants 2024, 13(12), 1531; https://doi.org/10.3390/antiox13121531 - 14 Dec 2024
Viewed by 910
Abstract
A significant amount of agri-food by-products is generated by large food industry production lines. Aligned with the principles of a circular economy, this project aims to recycle and valorize legumes, such as beans, green beans and soy by-products characterized by different heat treatments, [...] Read more.
A significant amount of agri-food by-products is generated by large food industry production lines. Aligned with the principles of a circular economy, this project aims to recycle and valorize legumes, such as beans, green beans and soy by-products characterized by different heat treatments, maturation stages and cultivation methods. The valorization of food waste involved the development of an Ultrasound-Assisted Extraction (UAE) method to isolate polyphenols. Analytical techniques, including UHPLC-DAD-ESI-MSn, were used to identify polyphenols in legume, green bean and soy extracts obtained through UAE. Additionally, UV-Vis spectrophotometric assays measured the Total Phenolic Content (TPC) and Total Antioxidant Status (TAS), while the Kjeldahl method was employed to assess the protein content in each UAE extract. The analyses revealed a variety of valuable polyphenols in legume, green bean and soy by-products. For instance, bean by-products contain feruloyl glucaric acid derivatives, green beans by-products have different types of flavonols such as quercetin-3-O-glucuronide, and soy by-products are rich in isoflavones. These findings demonstrate the potential for formulating nutraceuticals from these by-products’ extracts. Full article
(This article belongs to the Special Issue Antioxidants from Sustainable Food Sources)
Show Figures

Figure 1

Back to TopTop