Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,056)

Search Parameters:
Keywords = blade surface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4352 KiB  
Article
Research on Startup Characteristics of Parallel Axial-Flow Pump Systems
by Chao Yang, Chao Li, Lingling Deng and You Fu
Water 2025, 17(15), 2285; https://doi.org/10.3390/w17152285 - 31 Jul 2025
Abstract
This study takes four parallel axial-flow pumps (three in operation + one on standby) as the research object. Using a 1D–3D coupling method, it explores the flow characteristics of axial-flow pumps under different startup strategies during multi-pump parallel operation. Through comparative analysis, the [...] Read more.
This study takes four parallel axial-flow pumps (three in operation + one on standby) as the research object. Using a 1D–3D coupling method, it explores the flow characteristics of axial-flow pumps under different startup strategies during multi-pump parallel operation. Through comparative analysis, the following conclusions are drawn: when all three pumps start simultaneously, the internal pressure exceeds the rated head by 23.43%, and the reverse flow reaches 10.57% of the rated flow. When starting the pumps sequentially with 5 s intervals, the pressure can be reduced to 11.41% above the rated head, but the reverse flow increases to 13.87%. Further extending the startup interval to 15 s results in only minimal improvements compared to 5 s intervals: the maximum internal pressure and maximum reverse flow decrease by just 0.97% and 0.05%, respectively. When valve coordination is added to the 5 s sequential startup strategy (pre-opening the valve to 60% before pump startup), the pressure exceeds the rated head by 10.49%, and the reverse flow exceeds the rated flow by 6.04%. In this scenario, the high-pressure areas and high-turbulence zones on the blade back surfaces are significantly reduced, achieving optimal flow stability. Therefore, the parallel system startup should adopt a coordinated strategy combining moderate time intervals with 60% valve pre-opening. This approach can both avoid excessive pressure impact and effectively control reverse flow phenomena, providing an important basis for optimizing the startup of multi-pump parallel systems. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

27 pages, 16278 KiB  
Article
Optimization of the Archimedean Spiral Hydrokinetic Turbine Design Using Response Surface Methodology
by Juan Rengifo, Laura Velásquez, Edwin Chica and Ainhoa Rubio-Clemente
Sci 2025, 7(3), 100; https://doi.org/10.3390/sci7030100 - 21 Jul 2025
Viewed by 280
Abstract
This research investigates enhancing the performance of an Archimedes screw-type hydrokinetic turbine (ASHT). A 3D transient computational model employing the six degrees of freedom (6-DOF) methodology within the ANSYS Fluent software 2022 R1, was selected for this purpose. A central composite design (CCD) [...] Read more.
This research investigates enhancing the performance of an Archimedes screw-type hydrokinetic turbine (ASHT). A 3D transient computational model employing the six degrees of freedom (6-DOF) methodology within the ANSYS Fluent software 2022 R1, was selected for this purpose. A central composite design (CCD) methodology was applied within the response surface methodology (RSM) to enhance the turbine’s power coefficient (Cp). Key independent factors, including blade length (L), blade inclination angle (γ), and external diameter (De), were systematically varied to determine their optimal values. The optimization process yielded a maximum Cp of 0.337 for L, γ, and De values of 168.921 mm, 51.341°, and 245.645 mm, respectively. Experimental validation was conducted in a hydraulic channel, yielding results that demonstrated a strong correlation with the numerical predictions. This research underscores the importance of geometric design optimization in improving the energy capture efficiency of the ASHT, contributing to its potential viability as a competitive renewable energy solution in the pre-commercial phase of development. Full article
Show Figures

Figure 1

24 pages, 4669 KiB  
Article
Optimizing the Design of Soil-Mixing Blade Structure Parameters Based on the Discrete Element Method
by Huiling Ding, Qiaofeng Wang, Mengyang Wang, Chao Zhang, Han Lin, Xin Jin, Haizhou Hong and Fengkui Dang
Agriculture 2025, 15(14), 1558; https://doi.org/10.3390/agriculture15141558 - 21 Jul 2025
Viewed by 202
Abstract
A multi-parameter optimization-based design method for soil-mixing blades was proposed to address the issue of excessive straw residue in the seeding layer after maize straw incorporation. A discrete element model simulating the interaction between the soil-mixing blades, soil, and corn straw was established. [...] Read more.
A multi-parameter optimization-based design method for soil-mixing blades was proposed to address the issue of excessive straw residue in the seeding layer after maize straw incorporation. A discrete element model simulating the interaction between the soil-mixing blades, soil, and corn straw was established. The key structural parameters included the bending line angle (α), bending angle (β), side angle (δ), tangential edge height (h), and bending radius (r); the straw burial rate (Y1) and straw percentage in the seeding layer (Y2) were selected as evaluation indicators. Single-factor experiments determined the significance level (p < 0.05) and the parameter range. A Box–Behnken response surface design, combined with analysis of variance (ANOVA), was employed to elucidate the influence patterns of the structural parameters and their interactions regarding straw burial performance. Multi-objective optimization yielded an optimal parameter combination: α = 55°, β = 100.01°, δ = 130°, h = 40.05 mm, and r = 28.67 mm. The simulation results demonstrated that this configuration achieved a Y1 of 96.04% and reduced Y2 to 35.25%. Field validation tests recorded Y1 and Y2 values of 96.54% and 34.13%, respectively. This study quantitatively elucidated the relationship between soil-mixing blade parameters and straw spatial distribution, providing a theoretical foundation for optimizing straw incorporation equipment. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

21 pages, 8976 KiB  
Article
Design and Parameter Optimization of Drum Pick-Up Machine Based on Archimedean Curve
by Caichao Liu, Feng Wu, Fengwei Gu, Man Gu, Jingzhan Ni, Weiweng Luo, Jiayong Pei, Mingzhu Cao and Bing Wang
Agriculture 2025, 15(14), 1551; https://doi.org/10.3390/agriculture15141551 - 19 Jul 2025
Viewed by 234
Abstract
Stones in farmland soil affect the efficiency of agricultural mechanization and the efficient growth of crops. In order to solve the problems of traditional stone pickers, such as large soil disturbance, high soil content and low picking rate, this paper introduces the Archimedean [...] Read more.
Stones in farmland soil affect the efficiency of agricultural mechanization and the efficient growth of crops. In order to solve the problems of traditional stone pickers, such as large soil disturbance, high soil content and low picking rate, this paper introduces the Archimedean curve with constant radial expansion characteristics into the design of the core working parts of the drum picker and designs a new type of drum stone picker. The key components such as spiral blades, rollers, and scrapers were theoretically analyzed, the structural parameters of the main components were determined, and the reliability of the spiral blades was checked using ANSYS Workbench software. Through the preliminary stone-picking performance test, the forward speed of the stone picker, the rotation speed of the drum, and the starting sliding angle of the spiral blade were determined as the test influencing factors. The picking rate and soil content of the stone picker were determined as the test indicators. The response surface test was carried out in the Design-Expert13.0 software. The results show that, when the forward speed of the stone picker is 0.726 m/s, the drum speed is 30 rpm, and the initial sliding angle of the spiral blade is 26.214°, the picking rate is 91.458% and the soil content is 3.513%. Field tests were carried out with the same parameters, and the picking rate was 91.42% and the soil content was 3.567%, with errors of 0.038% and 0.054% compared with the predicted values, indicating that the stone picker meets the field operation requirements. These research results can provide new ideas and technical paths for improving the performance of pickers and are of great value in promoting the development of advanced harvesting equipment and the efficient use of agricultural resources. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

17 pages, 6781 KiB  
Article
Fish Scale-Inspired Flow Control for Corner Vortex Suppression in Compressor Cascades
by Jin-Long Shen, Ho-Chun Yang and Szu-I Yeh
Biomimetics 2025, 10(7), 473; https://doi.org/10.3390/biomimetics10070473 - 18 Jul 2025
Viewed by 290
Abstract
Corner separation at the junction of blade surfaces and end walls remains a significant challenge in compressor cascade performance. This study proposes a passive flow control strategy inspired by the geometric arrangement of biological fish scales to address this issue. A fish scale-like [...] Read more.
Corner separation at the junction of blade surfaces and end walls remains a significant challenge in compressor cascade performance. This study proposes a passive flow control strategy inspired by the geometric arrangement of biological fish scales to address this issue. A fish scale-like surface structure was applied to the suction side of a cascade blade to reduce viscous drag and modulate secondary flow behavior. Wind tunnel experiments and numerical simulations were conducted to evaluate its aerodynamic effects. The results show that the fish scale-inspired configuration induced climbing vortices that energized low-momentum fluid near the end wall, effectively suppressing both passage and corner vortices. This led to a reduction in spanwise flow penetration and a decrease in total pressure loss of up to 5.69%. The enhanced control of secondary flows also contributed to improved flow uniformity in the end-wall region. These findings highlight the potential of biologically inspired surface designs for corner vortex suppression and aerodynamic efficiency improvement in turbomachinery systems. Full article
(This article belongs to the Special Issue Bio-Inspired Propulsion and Fluid Mechanics)
Show Figures

Figure 1

17 pages, 4176 KiB  
Article
Drag Reduction and Efficiency Enhancement in Wide-Range Electric Submersible Centrifugal Pumps via Bio-Inspired Non-Smooth Surfaces: A Combined Numerical and Experimental Study
by Tao Fu, Songbo Wei, Yang Gao and Bairu Shi
Appl. Sci. 2025, 15(14), 7989; https://doi.org/10.3390/app15147989 - 17 Jul 2025
Viewed by 230
Abstract
Wide-range electric submersible centrifugal pumps (ESPs) are critical for offshore oilfields but suffer from narrow high-efficiency ranges and frictional losses under dynamic reservoir conditions. This study introduces bio-inspired dimple-type non-smooth surfaces on impeller blades to enhance hydraulic performance. A combined numerical-experimental approach was [...] Read more.
Wide-range electric submersible centrifugal pumps (ESPs) are critical for offshore oilfields but suffer from narrow high-efficiency ranges and frictional losses under dynamic reservoir conditions. This study introduces bio-inspired dimple-type non-smooth surfaces on impeller blades to enhance hydraulic performance. A combined numerical-experimental approach was employed: a 3D CFD model with the k-ω turbulence model analyzed oil–water flow (1:9 ratio) to identify optimal dimple placement, while parametric studies tested diameters (0.6–1.2 mm). Experimental validation used 3D-printed prototypes. Results revealed that dimples on the pressure surface trailing edge reduced boundary layer separation, achieving a 12.98% head gain and 8.55% efficiency improvement at 150 m3/d in simulations, with experimental tests showing an 11.5% head increase and 4.6% efficiency gain at 130 m3/d. The optimal dimple diameter (0.9 mm, 2% of blade chord) balanced performance and manufacturability, demonstrating that bio-inspired surfaces improve ESP efficiency. This work provides practical guidelines for deploying drag reduction technologies in petroleum engineering, with a future focus on wear resistance in abrasive flows. Full article
Show Figures

Figure 1

22 pages, 5702 KiB  
Article
Calibration and Experimental Validation of Discrete Element Parameters of Fritillariae Thunbergii Bulbus
by Hang Zheng, Zhaowei Hu, Xianglei Xue, Yunxiang Ye, Tian Liu, Ning Ren, Fanyi Liu and Guohong Yu
Appl. Sci. 2025, 15(14), 7951; https://doi.org/10.3390/app15147951 - 17 Jul 2025
Viewed by 232
Abstract
The development of slicing equipment for Fritillariae Thunbergii Bulbus (FTB) has been constrained by the absence of precise and reliable simulation model parameters, which has hindered the optimization of structural design through simulation techniques. Taking FTB as the research object, this study aims [...] Read more.
The development of slicing equipment for Fritillariae Thunbergii Bulbus (FTB) has been constrained by the absence of precise and reliable simulation model parameters, which has hindered the optimization of structural design through simulation techniques. Taking FTB as the research object, this study aims to resolve this issue by conducting the calibration and experimental validation of the discrete element parameters for FTB. Both intrinsic and contact parameters were obtained through physical experiments, on the basis of which a discrete element model for FTB was established by using the Hertz–Mindlin with bonding model. To validate the calibrated bonding parameters of this model, the maximum shear force was selected as the evaluation index. Significant influencing factors were identified and analyzed through a single-factor test, a two-level factorial test, and the steepest ascent method. Response surface methodology was then applied for experimental design and parameter optimization. Finally, shear and compression tests were conducted to verify the accuracy of calibrated parameters. The results show that the mechanical properties of FTB are significantly affected by the normal stiffness per unit area, the tangential stiffness per unit area, and the bonding radius, with optimal values of 1.438 × 108 N·m−3, 0.447 × 108 N·m−3, and 1.362 mm, respectively. The relative errors in the shear and compression tests were all within 5.18%. The maximum error between the simulated and measured maximum shear force under three different types of blades was less than 5.11%. The percentages of the average shear force of the oblique blade were reduced by 52.23% and 29.55% compared with the flat and arc blades, respectively, while the force variation trends for FTB remained consistent. These findings confirm the reliability of the simulation parameters and establish a theoretical basis for optimizing the structural design of slicing equipment for FTB. Full article
Show Figures

Figure 1

21 pages, 3937 KiB  
Article
Wind Turbine Blade Defect Recognition Method Based on Large-Vision-Model Transfer Learning
by Xin Li, Jinghe Tian, Xinfu Pang, Li Shen, Haibo Li and Zedong Zheng
Sensors 2025, 25(14), 4414; https://doi.org/10.3390/s25144414 - 15 Jul 2025
Viewed by 333
Abstract
Timely and accurate detection of wind turbine blade surface defects is crucial for ensuring operational safety and improving maintenance efficiency with respect to large-scale wind farms. However, existing methods often suffer from poor generalization, background interference, and inadequate real-time performance. To overcome these [...] Read more.
Timely and accurate detection of wind turbine blade surface defects is crucial for ensuring operational safety and improving maintenance efficiency with respect to large-scale wind farms. However, existing methods often suffer from poor generalization, background interference, and inadequate real-time performance. To overcome these limitations, we developed an end-to-end defect recognition framework, structured as a three-stage process: blade localization using YOLOv5, robust feature extraction via the large vision model DINOv2, and defect classification using a Stochastic Configuration Network (SCN). Unlike conventional CNN-based approaches, the use of DINOv2 significantly improves the capability for representation under complex textures. The experimental results reveal that the proposed method achieved a classification accuracy of 97.8% and an average inference time of 19.65 ms per image, satisfying real-time requirements. Compared to traditional methods, this framework provides a more scalable, accurate, and efficient solution for the intelligent inspection and maintenance of wind turbine blades. Full article
(This article belongs to the Special Issue Deep Learning for Perception and Recognition: Method and Applications)
Show Figures

Figure 1

27 pages, 8289 KiB  
Article
A High-Efficient Modeling Method for Aerodynamic Loads of an Airfoil with Active Leading Edge Based on RFA and CFD
by Shengyong Fang, Sheng Zhang, Jinlong Zhou and Weidong Yang
Aerospace 2025, 12(7), 632; https://doi.org/10.3390/aerospace12070632 - 15 Jul 2025
Viewed by 285
Abstract
For the airfoil in freestream, the pressure difference between the upper and lower surfaces and the variations in pressure gradients are significant at its leading edge area. Under reasonable deflections, the active leading edge can effectively change airfoil aerodynamic loads, which helps to [...] Read more.
For the airfoil in freestream, the pressure difference between the upper and lower surfaces and the variations in pressure gradients are significant at its leading edge area. Under reasonable deflections, the active leading edge can effectively change airfoil aerodynamic loads, which helps to improve the rotor aerodynamic performance. In this paper, a modeling method for an airfoil with an active leading edge was developed to calculate its aerodynamic loads. The pitch motion of the rotor blade and the leading edge deflections were taken into account. Firstly, simulations of steady and unsteady flow for the airfoil with an active leading edge were conducted under different boundary conditions and with different leading edge deflection movement. Secondly, the rational function approximation (RFA) was employed to establish the relationship between aerodynamic loads and airfoil/active leading edge deflections. Then, coefficient matrices of the RFA approach were identified based on a limited number of high-fidelity computational fluid dynamics (CFD) results. Finally, an aerodynamic model of the airfoil with an active leading edge was developed, and its accuracy was validated by comparing it to the high-fidelity CFD results. Comparative results reveal that the developed model can calculate the aerodynamic loads of an airfoil with an active leading edge accurately and efficiently when applied appropriately. The modeling method can be used in aerodynamic load calculations and the aeroelastic coupling analysis of a rotor with active control devices. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

19 pages, 31306 KiB  
Article
Cavitation Performance Analysis in the Runner Region of a Bulb Turbine
by Feng Zhou, Qifei Li, Lu Xin, Xiangyu Chen, Shiang Zhang and Yuqian Qiao
Processes 2025, 13(7), 2231; https://doi.org/10.3390/pr13072231 - 12 Jul 2025
Viewed by 272
Abstract
As a core component in renewable energy systems for grid regulation, hydropower units are increasingly exposed to flow conditions that elevate the risk of cavitation and erosion, posing significant challenges to the safe operation of flow-passage components. In this study, model testing and [...] Read more.
As a core component in renewable energy systems for grid regulation, hydropower units are increasingly exposed to flow conditions that elevate the risk of cavitation and erosion, posing significant challenges to the safe operation of flow-passage components. In this study, model testing and computational fluid dynamics (CFD) simulations are employed to investigate the hydraulic performance and cavitation behavior of a bulb turbine operating under rated head conditions and varying cavitation numbers. The analysis focuses on how changes in cavitation intensity affect flow characteristics and efficiency within the runner region. The results show that as the cavitation number approaches its critical value, the generation, growth, and collapse of vapor cavities increasingly disturb the main flow, causing a marked drop in blade hydraulic performance and overall turbine efficiency. Cavitation predominantly occurs on the blade’s suction side near the trailing edge rim and in the clearance zone near the hub, with bubble coverage expanding as the cavitation number decreases. A periodic inverse correlation between surface pressure and the cavitation area is observed, reflecting the strongly unsteady nature of cavitating flows. Furthermore, lower cavitation numbers lead to intensified pressure pulsations, aggravating flow unsteadiness and raising the risk of vibration. Full article
Show Figures

Figure 1

19 pages, 3564 KiB  
Article
Surface Ice Detection Using Hyperspectral Imaging and Machine Learning
by Steve Vanlanduit, Arnaud De Vooght and Thomas De Kerf
Sensors 2025, 25(14), 4322; https://doi.org/10.3390/s25144322 - 10 Jul 2025
Viewed by 301
Abstract
Ice formation on critical infrastructure such as wind turbine blades can lead to severe performance degradation and safety hazards. This study investigates the use of hyperspectral imaging (HSI) combined with machine learning to detect and classify ice on various coated and uncoated surfaces. [...] Read more.
Ice formation on critical infrastructure such as wind turbine blades can lead to severe performance degradation and safety hazards. This study investigates the use of hyperspectral imaging (HSI) combined with machine learning to detect and classify ice on various coated and uncoated surfaces. Hyperspectral reflectance data were acquired using a push-broom HSI system under controlled laboratory conditions, with ice and rime ice generated using a thermoelectric cooling setup. Support Vector Machine (SVM) and Random Forest (RF) classifiers were trained on uncoated aluminum samples and evaluated on surfaces with different coatings to assess model generalization. Both models achieved high classification accuracy, though performance declined on black-coated surfaces due to increased absorbance by the coating. The study further examined the impact of spectral band reduction to simulate different sensor types (e.g., NIR vs. SWIR), revealing that model performance is sensitive to wavelength range, with SVM performing optimally in a reduced band set and RF benefiting from the full spectral range. A multiclass classification approach using RF successfully distinguished between glaze and rime ice, offering insights into more targeted mitigation strategies. The results confirm the potential of HSI and machine learning as robust tools for surface ice monitoring in safety-critical environments. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

14 pages, 1805 KiB  
Proceeding Paper
Helicopter Rotor Aerodynamic Characteristics in Ground Effect: Numerical Study
by Gabriel Georgiev
Eng. Proc. 2025, 100(1), 13; https://doi.org/10.3390/engproc2025100013 - 4 Jul 2025
Viewed by 226
Abstract
This article represents a full estimation of helicopter rotor aerodynamic characteristics in ground effect conditions through the application of a coupled empirical blade element–momentum theory algorithm. The main focus of this research includes the evaluation of the required weighted power coefficients [...] Read more.
This article represents a full estimation of helicopter rotor aerodynamic characteristics in ground effect conditions through the application of a coupled empirical blade element–momentum theory algorithm. The main focus of this research includes the evaluation of the required weighted power coefficients CPσ for a hovering state in close proximity to obstacles and their relation to the weighted thrust force coefficients’ values CTσ, varying the relative distance from the helicopter rotational plane to the ground surface HR and the rotor’s collective pitch angle (θ). The represented numerical and experimental results show that an increase in the collective pitch angles (θ) leads to a rise in the generated weighted thrust force coefficients CTσ and in the weighted power coefficients CPσ for every individual fixed normalized distance from the ground surface HR. Moreover, a decline in the relative distance from the ground HR requires less power to keep the rotation going in hover. The dependencies indicate that the ground effect zone covers a distance of up to 2R from the rotational plane to the ground surface. Full article
Show Figures

Figure 1

14 pages, 5234 KiB  
Article
Study of the Influence of Air Plasma Spraying Parameters on the Structure, Corrosion Resistance, and Tribological Characteristics of Fe–Al–Cr Intermetallic Coatings
by Bauyrzhan Rakhadilov, Lyaila Bayatanova, Aidar Kengesbekov, Nurtoleu Magazov, Zhanerke Toleukhanova and Didar Yeskermessov
Coatings 2025, 15(7), 790; https://doi.org/10.3390/coatings15070790 - 4 Jul 2025
Viewed by 566
Abstract
The development of power engineering requires the introduction of new materials and technologies to improve the quality and durability of products. One promising direction is the creation of heat-protective coatings for the protection of working surfaces of turbine blades of gas turbine engines [...] Read more.
The development of power engineering requires the introduction of new materials and technologies to improve the quality and durability of products. One promising direction is the creation of heat-protective coatings for the protection of working surfaces of turbine blades of gas turbine engines operating at temperatures up to 1000–1200 °C. Intermetallic coatings based on iron aluminides (Fe3Al, FeAl) have high resistance to oxidation due to the formation of an oxide layer: Al2O3. However, their application is limited by brittleness due to the so-called third element effect, which can be reduced through alloying with chromium. In this study the processes of formation of Fe–Al–Cr intermetallic coatings produced by air plasma spraying and the mechanisms affecting their stability at high temperatures were investigated. Experimental studies included the analysis of the microhardness, wear resistance, and corrosion resistance of coatings, as well as their phase composition and microstructure. The results showed that the optimization of sputtering parameters, especially in the FrCrAl (30_33) mode, promotes the formation of a coating with improved tribological and anticorrosion characteristics, which is associated with its dense and uniform structure. These data have an important practical significance for the creation of wear-resistant and corrosion-resistant coatings applicable in power engineering. Full article
Show Figures

Figure 1

15 pages, 5152 KiB  
Article
Hydraulic Performance and Flow Characteristics of a High-Speed Centrifugal Pump Based on Multi-Objective Optimization
by Yifu Hou and Rong Xue
Fluids 2025, 10(7), 174; https://doi.org/10.3390/fluids10070174 - 2 Jul 2025
Viewed by 278
Abstract
Pump-driven liquid cooling systems are widely utilized in unmanned aerial vehicle (UAV) electronic thermal management. As a critical power component, the miniaturization and lightweight design of the pump are essential. Increasing the operating speed of the pump allows for a reduction in impeller [...] Read more.
Pump-driven liquid cooling systems are widely utilized in unmanned aerial vehicle (UAV) electronic thermal management. As a critical power component, the miniaturization and lightweight design of the pump are essential. Increasing the operating speed of the pump allows for a reduction in impeller size while maintaining hydraulic performance, thereby significantly decreasing the overall volume and mass. However, high-speed operation introduces considerable internal flow losses, placing stricter demands on the geometric design and flow-field compatibility of the impeller. In this study, a miniature high-speed centrifugal pump (MHCP) was investigated, and a multi-objective optimization of the impeller was carried out using response surface methodology (RSM) to improve internal flow characteristics and overall hydraulic performance. Numerical simulations demonstrated strong predictive capability, and experimental results validated the model’s accuracy. At the design condition (10,000 rpm, 4.8 m3/h), the pump achieved a head of 46.1 m and an efficiency of 49.7%, corresponding to its best efficiency point (BEP). Sensitivity analysis revealed that impeller outlet diameter and blade outlet angle were the most influential parameters affecting pump performance. Following the optimization, the pump head increased by 3.7 m, and the hydraulic efficiency improved by 4.8%. In addition, the pressure distribution and streamlines within the impeller exhibited better uniformity, while the turbulent kinetic energy near the blade suction surface and at the impeller outlet was markedly decreased. This work provides theoretical support and design guidance for the efficient application of MHCPs in UAV thermal management systems. Full article
Show Figures

Figure 1

31 pages, 17228 KiB  
Article
The Hydrodynamic Performance of a Vertical-Axis Hydro Turbine with an Airfoil Designed Based on the Outline of a Sailfish
by Aiping Wu, Shiming Wang and Chenglin Ding
J. Mar. Sci. Eng. 2025, 13(7), 1266; https://doi.org/10.3390/jmse13071266 - 29 Jun 2025
Viewed by 340
Abstract
This study investigates an aerodynamic optimization framework inspired by marine biological morphology, utilizing the sailfish profile as a basis for airfoil configuration. Through Latin hypercube experimental design combined with optimization algorithms, four key geometric variables governing the airfoil’s hydrodynamic characteristics were systematically analyzed. [...] Read more.
This study investigates an aerodynamic optimization framework inspired by marine biological morphology, utilizing the sailfish profile as a basis for airfoil configuration. Through Latin hypercube experimental design combined with optimization algorithms, four key geometric variables governing the airfoil’s hydrodynamic characteristics were systematically analyzed. Parametric studies revealed that pivotal factors including installation angle significantly influenced the fluid dynamic performance metrics of lift generation and pressure drag. Response surface methodology was employed to establish predictive models for these critical performance indicators, effectively reducing computational resource consumption and experimental validation costs. The refined bio-inspired configuration demonstrated multi-objective performance improvements compared to the baseline configuration, validating the computational framework’s effectiveness for hydrodynamic profile optimization studies. Furthermore, a coaxial dual-rotor vertical axis turbine configuration was developed, integrating centrifugal and axial-flow energy conversion mechanisms through a shared drivetrain system. The centrifugal rotor component harnessed tidal current kinetic energy while the axial-flow rotor module captured wave-induced potential energy. Transient numerical simulations employing dynamic mesh techniques and user-defined functions within the Fluent environment were conducted to analyze rotor interactions. Results indicated the centrifugal subsystem demonstrated peak hydrodynamic efficiency at a 25° installation angle, whereas the axial-flow module achieves optimal performance at 35° blade orientation. Parametric optimization revealed maximum energy extraction efficiency for the centrifugal rotor occurs at λ = 1.25 tip-speed ratio under Re = 1.3 × 105 flow conditions, while the axial-flow counterpart attained optimal performance at λ = 1.5 with Re = 5.5 × 104. This synergistic configuration demonstrated complementary operational characteristics under marine energy conversion scenarios. Full article
Show Figures

Figure 1

Back to TopTop