Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,595)

Search Parameters:
Keywords = biological degradation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2801 KiB  
Article
The Influence of Substrate Preparation on the Performance of Two Alkyd Coatings After 7 Years of Exposure in Outdoor Conditions
by Emanuela Carmen Beldean, Maria Cristina Timar and Emilia-Adela Salca Manea
Coatings 2025, 15(8), 918; https://doi.org/10.3390/coatings15080918 (registering DOI) - 6 Aug 2025
Abstract
Alkyd resins are among the most common coatings used for exterior wood joinery. In Romania, solvent-borne alkyd coatings are widely used to finish wood. The study aims to compare the performance after 7 years of outdoor exposure of two types of alkyd coatings, [...] Read more.
Alkyd resins are among the most common coatings used for exterior wood joinery. In Romania, solvent-borne alkyd coatings are widely used to finish wood. The study aims to compare the performance after 7 years of outdoor exposure of two types of alkyd coatings, a semi-transparent brown stain with micronized pigments (Alk1) and an opaque white enamel (Alk2), applied directly on wood or wood pre-treated with three types of resins: acryl-polyurethane (R1), epoxy (R2), and alkyd-polyurethane (R3). Fir (Abies alba) wood served as the substrate. Cracking, coating adhesion, and biological degradation were periodically assessed through visual inspection and microscopy. Additionally, a cross-cut test was performed, and the loss of coating on the directly exposed upper faces was measured using ImageJ. The results indicated that resin pretreatments somewhat reduced cracking but negatively affected coating adhesion after long-term exposure. All samples pretreated with resins and coated with Alk1 lost more than 50% (up to 78%) of the original finishing film by the end of the test. In comparison, coated control samples lost less than 50%. The Alk2 coating exhibited a film loss between 2% and 12%, compared to an average loss of 9% for the coated control. Overall, samples pretreated with alkyd-polyurethane resin (R3) and coated with alkyd enamel (Alk2) demonstrated the best performance in terms of cracking, adhesion, and discoloration. Full article
(This article belongs to the Collection Wood: Modifications, Coatings, Surfaces, and Interfaces)
Show Figures

Figure 1

32 pages, 5531 KiB  
Review
Polyethylenimine Carriers for Drug and Gene Delivery
by Ahmed Ismail and Shih-Feng Chou
Polymers 2025, 17(15), 2150; https://doi.org/10.3390/polym17152150 - 6 Aug 2025
Abstract
Polyethylenimine (PEI) is a cationic polymer with a high density of amine groups suitable for strong electrostatic interactions with biological molecules to preserve their bioactivities during encapsulation and after delivery for biomedical applications. This review provides a comprehensive overview of PEI as a [...] Read more.
Polyethylenimine (PEI) is a cationic polymer with a high density of amine groups suitable for strong electrostatic interactions with biological molecules to preserve their bioactivities during encapsulation and after delivery for biomedical applications. This review provides a comprehensive overview of PEI as a drug and gene carrier, describing its polymerization methods in both linear and branched forms while highlighting the processing methods to manufacture PEIs into drug carriers, such as nanoparticles, coatings, nanofibers, hydrogels, and films. These various PEI carriers enable applications in non-viral gene and small molecule drug deliveries. The structure–property relationships of PEI carriers are discussed with emphasis on how molecular weights, branching degrees, and surface modifications of PEI carriers impact biocompatibility, transfection efficiency, and cellular interactions. While PEI offers remarkable potential for drug and gene delivery, its clinical translation remains limited by challenges, including cytotoxicity, non-degradability, and serum instability. Our aim is to provide an understanding of PEI and the structure–property relationships of its carrier forms to inform future research directions that may enable safe and effective clinical use of PEI carriers for drug and gene delivery. Full article
(This article belongs to the Special Issue Biocompatible and Biodegradable Polymer Materials)
Show Figures

Figure 1

14 pages, 2957 KiB  
Article
Histochemical Study of Enzyme Activity in the Digestive Tract of the Small-Spotted Catshark (Scyliorhinus canicula) and the Smooth-Hound (Mustelus mustelus)
by Lucija Devčić, Ivan Vlahek, Magdalena Palić, Valerija Benko, Siniša Faraguna, Marin Lovrić, Damir Valić and Snježana Kužir
Fishes 2025, 10(8), 386; https://doi.org/10.3390/fishes10080386 - 6 Aug 2025
Abstract
The small-spotted catshark and the smooth-hound are cartilaginous, carnivorous fish with similar depth ranges in their habitats. These two species are among the most abundant elasmobranchs in the Adriatic Sea and are frequently caught by local fishermen using longline fishing. Despite their ecological [...] Read more.
The small-spotted catshark and the smooth-hound are cartilaginous, carnivorous fish with similar depth ranges in their habitats. These two species are among the most abundant elasmobranchs in the Adriatic Sea and are frequently caught by local fishermen using longline fishing. Despite their ecological similarities, little is known about the physiological differences in their digestive processes. The study of enzymatic digestion in these ecologically relevant species helps to fill the knowledge gap in the understanding of nutrient processing in cartilaginous fish. Therefore, the aim of this study was to determine, measure and compare the enzymatic activity of alkaline phosphatase, acid phosphatase, non-specific esterase and aminopeptidase. Fish were caught in the central part of the Adriatic Sea between 2021 and 2023. A total of 60 adult individuals were analyzed, with samples taken from six parts of the digestive tract. Histochemical analysis of 1440 slides revealed clear differences in enzyme activity between the two species. In the small-spotted catshark, cellular protein degradation was most pronounced in esophagus, posterior stomach and rectum, whereas in the smooth-hound, it was concentrated in posterior stomach and spiral intestine. Cellular digestion of lipids in the small-spotted catshark appears to occur primarily in the stomach. The results of this study provide new insights into the distribution of cellular digestive enzymes in cartilaginous fish and emphasize the importance of studying the entire digestive tract as an integrated system rather than focusing on individual parts. This study fills an important knowledge gap and contributes to a deeper understanding of digestive physiology, which in turn has implications for species conservation and biological variability. Full article
(This article belongs to the Section Physiology and Biochemistry)
Show Figures

Figure 1

23 pages, 2081 KiB  
Article
Rapid Soil Tests for Assessing Soil Health
by Jan Adriaan Reijneveld and Oene Oenema
Appl. Sci. 2025, 15(15), 8669; https://doi.org/10.3390/app15158669 (registering DOI) - 5 Aug 2025
Abstract
Soil testing has long been used to optimize fertilization and crop production. More recently, soil health testing has emerged to reflect the growing interest in soil multifunctionality and ecosystem services. Soil health encompasses physical, chemical, and biological properties that support ecosystem functions and [...] Read more.
Soil testing has long been used to optimize fertilization and crop production. More recently, soil health testing has emerged to reflect the growing interest in soil multifunctionality and ecosystem services. Soil health encompasses physical, chemical, and biological properties that support ecosystem functions and sustainable agriculture. Despite its relevance to several United Nations Sustainable Development Goals (SDGs 1, 2, 3, 6, 12, 13, and 15), comprehensive soil health testing is not widely practiced due to complexity and cost. The aim of the study presented here was to contribute to the further development, implementation, and testing of an integrated procedure for soil health assessment in practice. We developed and tested a rapid, standardized soil health assessment tool that combines near-infrared spectroscopy (NIRS) and multi-nutrient 0.01 M CaCl2 extraction with Inductive Coupled Plasma Mass Spectroscopy analysis. The tool evaluates a wide range of soil characteristics with high accuracy (R2 ≥ 0.88 for most parameters) and has been evaluated across more than 15 countries, including those in Europe, China, New Zealand, and Vietnam. The results are compiled into a soil health indicator report with tailored management advice and a five-level ABCDE score. In a Dutch test set, 6% of soils scored A (optimal), while 2% scored E (degraded). This scalable tool supports land users, agrifood industries, and policymakers in advancing sustainable soil management and evidence-based environmental policy. Full article
(This article belongs to the Special Issue Soil Analysis in Different Ecosystems)
Show Figures

Figure 1

22 pages, 2192 KiB  
Article
Visible-Light-Driven Degradation of Biological Contaminants on the Surface of Textile Fabric Modified with TiO2-N Photocatalyst
by Maria Solovyeva, Evgenii Zhuravlev, Yuliya Kozlova, Alevtina Bardasheva, Vera Morozova, Grigory Stepanov, Denis Kozlov, Mikhail Lyulyukin and Dmitry Selishchev
Int. J. Mol. Sci. 2025, 26(15), 7550; https://doi.org/10.3390/ijms26157550 - 5 Aug 2025
Abstract
The problem of spreading harmful infections through contaminated surfaces has become more acute during the recent coronavirus pandemic. The design of self-cleaning materials, which can continuously decompose biological contaminants, is an urgent task for environmental protection and human health care. In this study, [...] Read more.
The problem of spreading harmful infections through contaminated surfaces has become more acute during the recent coronavirus pandemic. The design of self-cleaning materials, which can continuously decompose biological contaminants, is an urgent task for environmental protection and human health care. In this study, the surface of blended cotton/polyester fabric was functionalized with N-doped TiO2 (TiO2-N) nanoparticles using titanium(IV) isopropoxide as a binder to form durable photoactive coating and additionally decorated with Cu species to promote its self-cleaning properties. The photocatalytic ability of the material with photoactive coating was investigated in oxidation of acetone vapor, degradation of deoxyribonucleic acid (DNA) fragments of various lengths, and inactivation of PA136 bacteriophage virus and Candida albicans fungi under visible light and ultraviolet A (UVA) radiation. The kinetic aspects of inactivation and degradation processes were studied using the methods of infrared (IR) spectroscopy, polymerase chain reaction (PCR), double-layer plaque assay, and ten-fold dilution. The results of experiments showed that the textile fabric modified with TiO2-N photocatalyst exhibited photoinduced self-cleaning properties and provided efficient degradation of all studied contaminants under exposure to both UVA and visible light. Additional modification of the material with Cu species substantially improved its self-cleaning properties, even in the absence of light. Full article
(This article belongs to the Special Issue Fabrication and Application of Photocatalytically Active Materials)
Show Figures

Figure 1

28 pages, 2414 KiB  
Review
Breaking Down Osteoarthritis: Exploring Inflammatory and Mechanical Signaling Pathways
by Wafa Ali Batarfi, Mohd Heikal Mohd Yunus, Adila A. Hamid, Manira Maarof and Rizal Abdul Rani
Life 2025, 15(8), 1238; https://doi.org/10.3390/life15081238 - 4 Aug 2025
Abstract
Osteoarthritis (OA) is a chronic progressive joint disease characterized by cartilage degradation, subchondral bone remodeling, and synovial inflammation. This complex disorder arises from the interplay between mechanical stress and inflammatory processes, which is mediated by interconnected molecular signaling pathways. This review explores the [...] Read more.
Osteoarthritis (OA) is a chronic progressive joint disease characterized by cartilage degradation, subchondral bone remodeling, and synovial inflammation. This complex disorder arises from the interplay between mechanical stress and inflammatory processes, which is mediated by interconnected molecular signaling pathways. This review explores the dual roles of inflammatory and mechanical signaling in OA pathogenesis, focusing on crucial pathways such as NF-kB, JAK/STAT, and MAPK in inflammation, as well as Wnt/β-catenin, Integrin-FAK, and Hippo-YAP/TAZ in mechanotransduction. The interplay between these pathways highlights a vicious cycle wherein mechanical stress exacerbates inflammation, and inflammation weakens cartilage, increasing its vulnerability to mechanical damage. Additionally, we discuss emerging therapeutic strategies targeting these pathways, including inhibitors of cartilage-degrading enzymes, anti-inflammatory biologics, cell-based regenerative approaches, and non-pharmacological mechanical interventions. By dissecting the molecular mechanisms underlying OA, this review aims to provide insights into novel interventions that address both inflammatory and mechanical components of the disease, paving the way for precision medicine in OA management. Full article
(This article belongs to the Special Issue Current Views on Knee Osteoarthritis: 3rd Edition)
Show Figures

Figure 1

19 pages, 1447 KiB  
Article
Soil Quality Indicators for Different Land Uses in the Ecuadorian Amazon Rainforest
by Thony Huera-Lucero, Antonio Lopez-Piñeiro and Carlos Bravo-Medina
Forests 2025, 16(8), 1275; https://doi.org/10.3390/f16081275 - 4 Aug 2025
Abstract
Deforestation and land-use changes lead to significant soil degradation and erosion, particularly in Amazonian ecosystems, due to the region’s climate and geology. This study characterizes soil quality using physical, chemical, and biological parameters across different land uses. It uses a soil quality index [...] Read more.
Deforestation and land-use changes lead to significant soil degradation and erosion, particularly in Amazonian ecosystems, due to the region’s climate and geology. This study characterizes soil quality using physical, chemical, and biological parameters across different land uses. It uses a soil quality index (SQI) based on a minimum data set (MDS), from 19 evaluated parameters. The land uses evaluated were cacao monoculture (CMC), agroforestry systems associated with fruit and timber species (FAFS and TAFS, respectively), and a secondary forest. The SQI was composed of six variables, bulk density (BD), soil organic matter (SOM), urease activity (UR), pH, dehydrogenase activity (DH), and leaf litter, which are considered relevant indicators that allow for an adequate evaluation of soil quality. According to the SQI assessment, FAFS has a moderate-quality rating (0.40), followed by secondary forest (0.35), TAFS (0.33), and CMC (0.30), the last three categorized as low-quality. The methods used are replicable and efficient for evaluating changes in soil properties based on different land uses and management systems in landscapes similar to those of the Ecuadorian Amazon. Also worth mentioning is the potential of agroforestry as a sustainable land-use strategy that can enhance above- and below-ground biodiversity and nutrient cycling. Therefore, implementing agroforestry practices can contribute to long-term soil conservation and the resilience of tropical ecosystems. Full article
(This article belongs to the Special Issue Forest Soil Physical, Chemical, and Biological Properties)
Show Figures

Figure 1

23 pages, 5029 KiB  
Review
Synthesis and Biomedical Applications of PLA-HPG-Based Biodegradable Nanocarriers: A Review
by Yijun Shen, Xuehan He and Lei Chen
Biosensors 2025, 15(8), 502; https://doi.org/10.3390/bios15080502 - 3 Aug 2025
Viewed by 322
Abstract
The development of biodegradable nanocarriers has long been a priority for researchers and medical professionals in the realm of drug delivery. Because of their inherent benefits, which include superior biocompatibility, customizable degradability, easy surface functionalization, and stealth-like behavior, polylactic acid-hyperbranched polyglycerol (PLA-HPG) copolymers [...] Read more.
The development of biodegradable nanocarriers has long been a priority for researchers and medical professionals in the realm of drug delivery. Because of their inherent benefits, which include superior biocompatibility, customizable degradability, easy surface functionalization, and stealth-like behavior, polylactic acid-hyperbranched polyglycerol (PLA-HPG) copolymers have demonstrated a promising future in the field of biomedical research. The synthesis of PLA-HPG copolymers and the creation of their nanoparticles for biomedical uses have been the focus of current efforts. In this review, we summarize the synthetic strategies of PLA-HPG copolymers and corresponding nanoparticles, and highlight their physicochemical properties, biocompatibility, and degradation properties. Furthermore, we introduce a number of PLA-HPG nanoparticles that are utilized for surface skin delivery, wound dressing, and in vivo drug delivery biological applications. Finally, we conclude by offering our thoughts on how this nanoplatform might advance in the future. Full article
(This article belongs to the Special Issue State-of-the-Art Biosensors in China (2nd Edition))
Show Figures

Figure 1

23 pages, 6148 KiB  
Article
A Naturally Occurring Urinary Collagen Type I Alpha 1-Derived Peptide Inhibits Collagen Type I-Induced Endothelial Cell Migration at Physiological Concentrations
by Hanne Devos, Ioanna K. Mina, Foteini Paradeisi, Manousos Makridakis, Aggeliki Tserga, Marika Mokou, Jerome Zoidakis, Harald Mischak, Antonia Vlahou, Agnieszka Latosinska and Maria G. Roubelakis
Int. J. Mol. Sci. 2025, 26(15), 7480; https://doi.org/10.3390/ijms26157480 - 2 Aug 2025
Viewed by 137
Abstract
Collagen type I (COL(I)) is a key component of the extracellular matrix (ECM) and is involved in cell signaling and migration through cell receptors. Collagen degradation produces bioactive peptides (matrikines), which influence cellular processes. In this study, we investigated the biological effects of [...] Read more.
Collagen type I (COL(I)) is a key component of the extracellular matrix (ECM) and is involved in cell signaling and migration through cell receptors. Collagen degradation produces bioactive peptides (matrikines), which influence cellular processes. In this study, we investigated the biological effects of nine most abundant, naturally occurring urinary COL(I)-derived peptides on human endothelial cells at physiological concentrations, using cell migration assays, mass spectrometry-based proteomics, flow cytometry, and AlphaFold 3. While none of the peptides significantly altered endothelial migration by themselves at physiological concentrations, full-length COL(I) increased cell migration, which was inhibited by Peptide 1 (229NGDDGEAGKPGRPGERGPpGp249). This peptide uniquely contains the DGEA and GRPGER motifs, interacting with integrin α2β1. Flow cytometry confirmed the presence of integrin α2β1 on human endothelial cells, and AlphaFold 3 modeling predicted an interaction between Peptide 1 and integrin α2. Mass spectrometry-based proteomics investigating signaling pathways revealed that COL(I) triggered phosphorylation events linked to integrin α2β1 activation and cell migration, which were absent in COL(I) plus peptide 1-treated cells. These findings identify Peptide 1 as a biologically active COL(I)-derived peptide at a physiological concentration capable of modulating collagen-induced cell migration, and provide a foundation for further investigation into its mechanisms of action and role in urine excretion. Full article
Show Figures

Figure 1

26 pages, 956 KiB  
Review
Natural Flavonoids for the Prevention of Sarcopenia: Therapeutic Potential and Mechanisms
by Ye Eun Yoon, Seong Hun Ju, Yebean Kim and Sung-Joon Lee
Int. J. Mol. Sci. 2025, 26(15), 7458; https://doi.org/10.3390/ijms26157458 - 1 Aug 2025
Viewed by 144
Abstract
Sarcopenia, characterized by progressive skeletal muscle loss and functional decline, represents a major public heath challenge in aging populations. Despite increasing awareness, current management strategies—primarily resistance exercise and nutritional support—remain limited by accessibility, adherence, and inconsistent outcomes. This underscores the urgent need for [...] Read more.
Sarcopenia, characterized by progressive skeletal muscle loss and functional decline, represents a major public heath challenge in aging populations. Despite increasing awareness, current management strategies—primarily resistance exercise and nutritional support—remain limited by accessibility, adherence, and inconsistent outcomes. This underscores the urgent need for novel, effective, and scalable therapeutics. Flavonoids, a diverse class of plant-derived polyphenolic compounds, have attracted attention for their muti-targeted biological activities, including anti-inflammatory, antioxidant, metabolic, and myogenic effects. This review aims to evaluate the anti-sarcopenic potential of selected flavonoids—quercetin, rutin, kaempferol glycosides, baicalin, genkwanin, isoschaftoside, naringin, eriocitrin, and puerarin—based on recent preclinical findings and mechanistic insights. These compounds modulate key pathways involved in muscle homeostasis, such as NF-κB and Nrf2 signaling, AMPK and PI3K/Akt activation, mitochondrial biogenesis, proteosomal degradation, and satellite cell function. Importantly, since muscle wasting also features prominently in cancer cachexia—a distinct but overlapping syndrome—understanding flavonoid action may offer broader therapeutic relevance. By targeting shared molecular axes, flavonoids may provide a promising, biologically grounded approach to mitigating sarcopenia and the related muscle-wasting conditions. Further translational studies and clinical trials are warranted to assess their efficacy and safety in human populations. Full article
(This article belongs to the Special Issue Role of Natural Products in Human Health and Disease)
Show Figures

Figure 1

38 pages, 4443 KiB  
Review
The Role of Plant Growth-Promoting Bacteria in Soil Restoration: A Strategy to Promote Agricultural Sustainability
by Mario Maciel-Rodríguez, Francisco David Moreno-Valencia and Miguel Plascencia-Espinosa
Microorganisms 2025, 13(8), 1799; https://doi.org/10.3390/microorganisms13081799 - 1 Aug 2025
Viewed by 450
Abstract
Soil degradation resulting from intensive agricultural practices, the excessive use of agrochemicals, and climate-induced stresses has significantly impaired soil fertility, disrupted microbial diversity, and reduced crop productivity. Plant growth-promoting bacteria (PGPB) represent a sustainable biological approach to restoring degraded soils by modulating plant [...] Read more.
Soil degradation resulting from intensive agricultural practices, the excessive use of agrochemicals, and climate-induced stresses has significantly impaired soil fertility, disrupted microbial diversity, and reduced crop productivity. Plant growth-promoting bacteria (PGPB) represent a sustainable biological approach to restoring degraded soils by modulating plant physiology and soil function through diverse molecular mechanisms. PGPB synthesizes indole-3-acetic acid (IAA) to stimulate root development and nutrient uptake and produce ACC deaminase, which lowers ethylene accumulation under stress, mitigating growth inhibition. They also enhance nutrient availability by releasing phosphate-solubilizing enzymes and siderophores that improve iron acquisition. In parallel, PGPB activates jasmonate and salicylate pathways, priming a systemic resistance to biotic and abiotic stress. Through quorum sensing, biofilm formation, and biosynthetic gene clusters encoding antibiotics, lipopeptides, and VOCs, PGPB strengthen rhizosphere colonization and suppress pathogens. These interactions contribute to microbial community recovery, an improved soil structure, and enhanced nutrient cycling. This review synthesizes current evidence on the molecular and physiological mechanisms by which PGPB enhance soil restoration in degraded agroecosystems, highlighting their role beyond biofertilization as key agents in ecological rehabilitation. It examines advances in nutrient mobilization, stress mitigation, and signaling pathways, based on the literature retrieved from major scientific databases, focusing on studies published in the last decade. Full article
Show Figures

Figure 1

25 pages, 5899 KiB  
Review
Non-Invasive Medical Imaging in the Evaluation of Composite Scaffolds in Tissue Engineering: Methods, Challenges, and Future Directions
by Samira Farjaminejad, Rosana Farjaminejad, Pedram Sotoudehbagha and Mehdi Razavi
J. Compos. Sci. 2025, 9(8), 400; https://doi.org/10.3390/jcs9080400 - 1 Aug 2025
Viewed by 281
Abstract
Tissue-engineered scaffolds, particularly composite scaffolds composed of polymers combined with ceramics, bioactive glasses, or nanomaterials, play a vital role in regenerative medicine by providing structural and biological support for tissue repair. As scaffold designs grow increasingly complex, the need for non-invasive imaging modalities [...] Read more.
Tissue-engineered scaffolds, particularly composite scaffolds composed of polymers combined with ceramics, bioactive glasses, or nanomaterials, play a vital role in regenerative medicine by providing structural and biological support for tissue repair. As scaffold designs grow increasingly complex, the need for non-invasive imaging modalities capable of monitoring scaffold integration, degradation, and tissue regeneration in real-time has become critical. This review summarizes current non-invasive imaging techniques used to evaluate tissue-engineered constructs, including optical methods such as near-infrared fluorescence imaging (NIR), optical coherence tomography (OCT), and photoacoustic imaging (PAI); magnetic resonance imaging (MRI); X-ray-based approaches like computed tomography (CT); and ultrasound-based modalities. It discusses the unique advantages and limitations of each modality. Finally, the review identifies major challenges—including limited imaging depth, resolution trade-offs, and regulatory hurdles—and proposes future directions to enhance translational readiness and clinical adoption of imaging-guided tissue engineering (TE). Emerging prospects such as multimodal platforms and artificial intelligence (AI) assisted image analysis hold promise for improving precision, scalability, and clinical relevance in scaffold monitoring. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

13 pages, 1189 KiB  
Article
Positive Effects of Reduced Tillage Practices on Earthworm Population Detected in the Early Transition Period
by Irena Bertoncelj, Anže Rovanšek and Robert Leskovšek
Agriculture 2025, 15(15), 1658; https://doi.org/10.3390/agriculture15151658 - 1 Aug 2025
Viewed by 186
Abstract
Tillage is a major factor influencing soil biological communities, particularly earthworms, which play a key role in soil structure and nutrient cycling. To address soil degradation, less-intensive tillage practices are increasingly being adopted globally and have shown positive effects on earthworm populations when [...] Read more.
Tillage is a major factor influencing soil biological communities, particularly earthworms, which play a key role in soil structure and nutrient cycling. To address soil degradation, less-intensive tillage practices are increasingly being adopted globally and have shown positive effects on earthworm populations when applied consistently over extended periods. However, understanding of the earthworm population dynamics in the period following the implementation of changes in tillage practices remains limited. This three-year field study (2021–2023) investigates earthworm populations during the early transition phase (4–6 years) following the conversion from conventional ploughing to conservation (<8 cm depth, with residue retention) and no-tillage systems in a temperate arable system in central Slovenia. Earthworms were sampled annually in early October from three adjacent fields, each following the same three-year crop rotation (maize—winter cereal + cover crop—soybeans), using a combination of hand-sorting and allyl isothiocyanate (AITC) extraction. Results showed that reduced tillage practices significantly increased both earthworm biomass and abundance compared to conventional ploughing. However, a significant interaction between tillage and year was observed, with a sharp decline in earthworm abundance and mass in 2022, likely driven by a combination of 2022 summer tillage prior to cover crop sowing and extreme drought conditions. Juvenile earthworms were especially affected, with their proportion decreasing from 62% to 34% in ploughed plots and from 63% to 26% in conservation tillage plots. Despite interannual fluctuations, no-till showed the lowest variability in earthworm population. Long-term monitoring is essential to disentangle management and environmental effects and to inform resilient soil management strategies. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

14 pages, 1603 KiB  
Article
Characterization of the Enzymatic and Biosorption Processes Involved in the Decolorization of Remazol Brilliant Blue R Dye by Pleurotus ostreatus Pellets
by Guadalupe L. Daniel-González, Soley B. Nava-Galicia, Analilia Arroyo-Becerra, Miguel Angel Villalobos-López, Gerardo Díaz-Godínez and Martha D. Bibbins-Martínez
J. Fungi 2025, 11(8), 572; https://doi.org/10.3390/jof11080572 - 31 Jul 2025
Viewed by 212
Abstract
Synthetic dyes are highly recalcitrant and are discharged in large volumes in industrial wastewater, which represents a serious environmental pollution problem. Biological methods for dye degradation are a potentially effective option for these synthetic products. In this study, a strain of Pleurotus ostreatus [...] Read more.
Synthetic dyes are highly recalcitrant and are discharged in large volumes in industrial wastewater, which represents a serious environmental pollution problem. Biological methods for dye degradation are a potentially effective option for these synthetic products. In this study, a strain of Pleurotus ostreatus was used to evaluate the decolorization of the Remazol Brilliant Blue R (RBBR) dye added to the culture medium in the exponential growth phase of the fungus. The dye removal capacity of live and inactivated pellets by biosorption, as well as the enzymatic degradation of the dye using a cell-free culture broth considered an extracellular extract (EE), were also evaluated. The activity of laccase and dye-decolorizing peroxidase was determined in both the EE and the intrapellet extract (IPE); their values increased in the presence of dye in the culture medium. A decolorization of 98.5% and 98.0% was obtained in the culture broth and by the EE, respectively; biosorption of the dye by the inactivated pellets was 17 mg/g. The results suggest that the decolorization of the dye is primarily enzymatic, although there are also bioadsorption and bioaccumulation of the dye, which is then enzymatically degraded, and could be used as a carbon source. Full article
(This article belongs to the Special Issue Fungal Biotechnology and Bioprocesses)
Show Figures

Graphical abstract

24 pages, 7353 KiB  
Article
Characterization and Application of Synergistically Degraded Chitosan in Aquafeeds to Promote Immunity, Antioxidative Status, and Disease Resistance in Nile Tilapia (Oreochromis niloticus)
by Thitirat Rattanawongwiboon, Natthapong Paankhao, Wararut Buncharoen, Nantipa Pansawat, Benchawan Kumwan, Pakapon Meachasompop, Phunsin Kantha, Tanavan Pansiri, Theeranan Tangthong, Sakchai Laksee, Suwinai Paankhao, Kittipong Promsee, Mongkhon Jaroenkittaweewong, Pattra Lertsarawut, Prapansak Srisapoome, Kasinee Hemvichian and Anurak Uchuwittayakul
Polymers 2025, 17(15), 2101; https://doi.org/10.3390/polym17152101 - 31 Jul 2025
Viewed by 334
Abstract
This study investigated the immunonutritional potential of high-molecular-weight (Mw~85 kDa), non-degraded chitosan (NCS) and gamma-radiation-degraded, low-molecular-weight chitosan (RCS) incorporated into aquafeeds for Nile tilapia (Oreochromis niloticus). RCS was produced by γ-irradiation (10 kGy) in the presence of 0.25% (w/ [...] Read more.
This study investigated the immunonutritional potential of high-molecular-weight (Mw~85 kDa), non-degraded chitosan (NCS) and gamma-radiation-degraded, low-molecular-weight chitosan (RCS) incorporated into aquafeeds for Nile tilapia (Oreochromis niloticus). RCS was produced by γ-irradiation (10 kGy) in the presence of 0.25% (w/v) H2O2, yielding low-viscosity, colloidally stable nanoparticles with Mw ranging from 10 to 13 kDa. Five diets were formulated: a control, NCS at 0.50%, and RCS at 0.025%, 0.050%, and 0.075%. No adverse effects on growth were observed, confirming safety. Immune gene expression (e.g., ifng1, nfκb, tnf), antioxidant markers (e.g., reduced MDA, increased GSH and GR), and nonspecific humoral responses (lysozyme, IgM, and bactericidal activity) were significantly enhanced in the NCS-0.50, RCS-0.050, and RCS-0.075 groups. Notably, these benefits were achieved with RCS at 10-fold lower concentrations than NCS. Following challenge with Edwardsiella tarda, fish fed RCS-0.050 and RCS-0.075 diets exhibited the highest survival rates and relative percent survival, highlighting robust activation of innate and adaptive immunity alongside redox defense. These results support the use of low-Mw RCS as a biologically potent, cost-effective alternative to traditional high-Mw chitosan in functional aquafeeds. RCS-0.050 and RCS-0.075 show strong potential as immunonutritional agents to enhance fish health and disease resistance in aquaculture. Full article
(This article belongs to the Special Issue Polysaccharides: Synthesis, Properties and Applications)
Show Figures

Figure 1

Back to TopTop