Visible-Light-Driven Degradation of Biological Contaminants on the Surface of Textile Fabric Modified with TiO2-N Photocatalyst
Abstract
1. Introduction
2. Results and Discussion
2.1. Material Characteristics
2.2. Photocatalytic Oxidation
2.3. DNA Degradation
2.4. Antiviral Activity
2.5. Effect of Cu Species on DNA Degradation and Antiviral Activity
2.6. Antifungal Properties
3. Materials and Methods
3.1. Synthesis of Materials
3.2. TiO2-N Synthesis
3.3. Synthesis of Photoactive Fabric
3.4. Material Characterization
3.5. Photocatalytic Activity
3.6. Degradation of Biological Contaminants
3.6.1. DNA Degradation
3.6.2. Antiviral Activity
3.6.3. Antifungal Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CFU | Colony-forming unit |
DNA | Deoxyribonucleic acid |
DSB | Double-strand break |
NA | Nucleic acid |
PFU | Plaque-forming unit |
ROS | Reactive oxygen species |
RNA | Ribonucleic acid |
SSB | Single-strand break |
UVA | Ultraviolet A |
References
- Baker, R.E.; Mahmud, A.S.; Miller, I.F.; Rajeev, M.; Rasambainarivo, F.; Rice, B.L.; Takahashi, S.; Tatem, A.J.; Wagner, C.E.; Wang, L.-F.; et al. Infectious Disease in an Era of Global Change. Nat. Rev. Microbiol. 2022, 20, 193–205. [Google Scholar] [CrossRef]
- Ashokkumar, S.; Kaushik, N.K.; Han, I.; Uhm, H.S.; Park, J.S.; Cho, G.S.; Oh, Y.-J.; Shin, Y.O.; Choi, E.H. Persistence of Coronavirus on Surface Materials and Its Control Measures Using Nonthermal Plasma and Other Agents. Int. J. Mol. Sci. 2023, 24, 14106. [Google Scholar] [CrossRef]
- Querido, M.M.; Aguiar, L.; Neves, P.; Pereira, C.C.; Teixeira, J.P. Self-Disinfecting Surfaces and Infection Control. Colloids Surf. B Biointerfaces 2019, 178, 8–21. [Google Scholar] [CrossRef]
- Ganesh, V.A.; Raut, H.K.; Nair, A.S.; Ramakrishna, S. A Review on Self-Cleaning Coatings. J. Mater. Chem. 2011, 21, 16304. [Google Scholar] [CrossRef]
- Ragesh, P.; Anand Ganesh, V.; Nair, S.V.; Nair, A.S. A Review on ‘Self-Cleaning and Multifunctional Materials. J. Mater. Chem. A 2014, 2, 14773–14797. [Google Scholar] [CrossRef]
- Paolini, R.; Borroni, D.; Pedeferri, M.; Diamanti, M.V. Self-Cleaning Building Materials: The Multifaceted Effects of Titanium Dioxide. Constr. Build. Mater. 2018, 182, 126–133. [Google Scholar] [CrossRef]
- Zhang, M.; Feng, S.; Wang, L.; Zheng, Y. Lotus Effect in Wetting and Self-Cleaning. Biotribology 2016, 5, 31–43. [Google Scholar] [CrossRef]
- Foster, H.A.; Ditta, I.B.; Varghese, S.; Steele, A. Photocatalytic Disinfection Using Titanium Dioxide: Spectrum and Mechanism of Antimicrobial Activity. Appl. Microbiol. Biotechnol. 2011, 90, 1847–1868. [Google Scholar] [CrossRef]
- Koca, O.; Altoparlak, U.; Ayyildiz, A.; Kaynar, H. Persistence of Nosocomial Pathogens on Various Fabrics. Eurasian J. Med. 2012, 44, 28–31. [Google Scholar] [CrossRef]
- Xing, H.; Cheng, J.; Tan, X.; Zhou, C.; Fang, L.; Lin, J. Ag Nanoparticles-Coated Cotton Fabric for Durable Antibacterial Activity: Derived from Phytic Acid–Ag Complex. J. Text. Inst. 2020, 111, 855–861. [Google Scholar] [CrossRef]
- Xu, Q.; Ke, X.; Ge, N.; Shen, L.; Zhang, Y.; Fu, F.; Liu, X. Preparation of Copper Nanoparticles Coated Cotton Fabrics with Durable Antibacterial Properties. Fibers Polym. 2018, 19, 1004–1013. [Google Scholar] [CrossRef]
- Kangwansupamonkon, W.; Lauruengtana, V.; Surassmo, S.; Ruktanonchai, U. Antibacterial Effect of Apatite-Coated Titanium Dioxide for Textiles Applications. Nanomed. Nanotechnol. Biol. Med. 2009, 5, 240–249. [Google Scholar] [CrossRef]
- Rashid, M.M.; Simončič, B.; Tomšič, B. Recent Advances in TiO2-Functionalized Textile Surfaces. Surf. Interfaces 2021, 22, 100890. [Google Scholar] [CrossRef]
- Selishchev, D.S.; Karaseva, I.P.; Uvaev, V.V.; Kozlov, D.V.; Parmon, V.N. Effect of Preparation Method of Functionalized Textile Materials on Their Photocatalytic Activity and Stability under UV Irradiation. Chem. Eng. J. 2013, 224, 114–120. [Google Scholar] [CrossRef]
- Behzadnia, A.; Montazer, M.; Rashidi, A.; Rad, M.M. Sonosynthesis of Nano TiO2 on Wool Using Titanium Isopropoxide or Butoxide in Acidic Media Producing Multifunctional Fabric. Ultrason. Sonochemistry 2014, 21, 1815–1826. [Google Scholar] [CrossRef] [PubMed]
- Nakano, R.; Hara, M.; Ishiguro, H.; Yao, Y.; Ochiai, T.; Nakata, K.; Murakami, T.; Kajioka, J.; Sunada, K.; Hashimoto, K.; et al. Broad Spectrum Microbicidal Activity of Photocatalysis by TiO2. Catalysts 2013, 3, 310–323. [Google Scholar] [CrossRef]
- Truong, P.L.; Kidanemariam, A.; Park, J. A Critical Innovation of Photocatalytic Degradation for Toxic Chemicals and Pathogens in Air. J. Ind. Eng. Chem. 2021, 100, 19–39. [Google Scholar] [CrossRef]
- Du, Z.; Cheng, C.; Tan, L.; Lan, J.; Jiang, S.; Zhao, L.; Guo, R. Enhanced Photocatalytic Activity of Bi2WO6/TiO2 Composite Coated Polyester Fabric under Visible Light Irradiation. Appl. Surf. Sci. 2018, 435, 626–634. [Google Scholar] [CrossRef]
- Bogdan, J.; Zarzyńska, J.; Pławińska-Czarnak, J. Comparison of Infectious Agents Susceptibility to Photocatalytic Effects of Nanosized Titanium and Zinc Oxides: A Practical Approach. Nanoscale Res. Lett. 2015, 10, 309. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Li, Q.; Zhang, X.; Shang, J.K. Antifungal Activity and Mechanism of Palladium-Modified Nitrogen-Doped Titanium Oxide Photocatalyst on Agricultural Pathogenic Fungi Fusarium Graminearum. ACS Appl. Mater. Interfaces 2013, 5, 10953–10959. [Google Scholar] [CrossRef]
- Shakeel, N.; Piwoński, I.; Iqbal, P.; Kisielewska, A. Green Synthesis of Titanium Dioxide Nanoparticles: Physicochemical Characterization and Applications: A Review. Int. J. Mol. Sci. 2025, 26, 5454. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, B.; Zhang, L.; Yu, J. In Situ Irradiated XPS Investigation on S-Scheme TiO2@ZnIn2S4 Photocatalyst for Efficient Photocatalytic CO2 Reduction. Small 2021, 17, 2103447. [Google Scholar] [CrossRef] [PubMed]
- Markovskaya, D.V.; Cherepanova, S.V.; Gerasimov, E.Y.; Zhurenok, A.V.; Selivanova, A.V.; Selishchev, D.S.; Kozlova, E.A. The Influence of the Sacrificial Agent Nature on Transformations of the Zn(OH)2/Cd0.3Zn0.7S Photocatalyst during Hydrogen Production under Visible Light. RSC Adv. 2020, 10, 1341–1350. [Google Scholar] [CrossRef] [PubMed]
- Zulkiflee, A.; Khan, M.M.; Harunsani, M.H. Bismuth Oxyhalides: Recent Progress and Its Applications in Photocatalysis, Hydrogen Production, Antibacterial Studies, and Sensors. Mater. Sci. Semicond. Process. 2023, 163, 107547. [Google Scholar] [CrossRef]
- Qi, K.; Liu, S.; Zada, A. Graphitic Carbon Nitride, a Polymer Photocatalyst. J. Taiwan Inst. Chem. Eng. 2020, 109, 111–123. [Google Scholar] [CrossRef]
- Weon, S.; He, F.; Choi, W. Status and Challenges in Photocatalytic Nanotechnology for Cleaning Air Polluted with Volatile Organic Compounds: Visible Light Utilization and Catalyst Deactivation. Environ. Sci. Nano 2019, 6, 3185–3214. [Google Scholar] [CrossRef]
- Acharya, R.; Pani, P. Visible Light Susceptible Doped TiO2 Photocatalytic Systems: An Overview. Mater. Today Proc. 2022, 67, 1276–1282. [Google Scholar] [CrossRef]
- Lyulyukin, M.; Kovalevskiy, N.; Bukhtiyarov, A.; Kozlov, D.; Selishchev, D. Kinetic Aspects of Benzene Degradation over TiO2-N and Composite Fe/Bi2WO6/TiO2-N Photocatalysts under Irradiation with Visible Light. Int. J. Mol. Sci. 2023, 24, 5693. [Google Scholar] [CrossRef]
- Wu, D.; Long, M. Low-Temperature Synthesis of N-TiO2 Sol and Characterization of N-TiO2 Coating on Cotton Fabrics. Surf. Coat. Technol. 2012, 206, 3196–3200. [Google Scholar] [CrossRef]
- Katoueizadeh, E.; Zebarjad, S.M.; Janghorban, K. Investigation of Mechanical Characteristics of Functionalized Cotton Textiles by N-Doped TiO2 Nanoparticles. Mater. Chem. Phys. 2018, 218, 239–245. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Z.; Zhang, X.; Mao, N. Photocatalytic Effects of Wool Fibers Modified with Solely TiO2 Nanoparticles and N-Doped TiO2 Nanoparticles by Using Hydrothermal Method. Chem. Eng. J. 2014, 254, 106–114. [Google Scholar] [CrossRef]
- Wang, L.; Shen, Y.; Xu, L.; Cai, Z.; Zhang, H. Thermal Crystallization of Low-Temperature Prepared Anatase Nano-TiO2 and Multifunctional Finishing of Cotton Fabrics. J. Text. Inst. 2016, 107, 651–662. [Google Scholar] [CrossRef]
- Wu, D.; Long, M.; Cai, W.; Chen, C.; Wu, Y. Low Temperature Hydrothermal Synthesis of N-Doped TiO2 Photocatalyst with High Visible-Light Activity. J. Alloys Compd. 2010, 502, 289–294. [Google Scholar] [CrossRef]
- Natarajan, T.S.; Mozhiarasi, V.; Tayade, R.J. Nitrogen Doped Titanium Dioxide (N-TiO2): Synopsis of Synthesis Methodologies, Doping Mechanisms, Property Evaluation and Visible Light Photocatalytic Applications. Photochem 2021, 1, 371–410. [Google Scholar] [CrossRef]
- Wang, S.; Ding, H.; Zhao, Y.; Li, Y.; Wang, W. Fabrication of Protective Textile with N-Doped TiO2 Embedded Citral Microcapsule Coating and Its Air Purification Properties. Fibers Polym. 2020, 21, 334–342. [Google Scholar] [CrossRef]
- Stan, M.S.; Nica, I.C.; Dinischiotu, A.; Varzaru, E.; Iordache, O.G.; Dumitrescu, I.; Popa, M.; Chifiriuc, M.C.; Pircalabioru, G.G.; Lazar, V.; et al. Photocatalytic, Antimicrobial and Biocompatibility Features of Cotton Knit Coated with Fe-N-Doped Titanium Dioxide Nanoparticles. Materials 2016, 9, 789. [Google Scholar] [CrossRef]
- Stan, M.S.; Badea, M.A.; Pircalabioru, G.G.; Chifiriuc, M.C.; Diamandescu, L.; Dumitrescu, I.; Trica, B.; Lambert, C.; Dinischiotu, A. Designing Cotton Fibers Impregnated with Photocatalytic Graphene Oxide/Fe, N-Doped TiO2 Particles as Prospective Industrial Self-Cleaning and Biocompatible Textiles. Mater. Sci. Eng. C 2019, 94, 318–332. [Google Scholar] [CrossRef]
- Vero, N.; Hribernik, S.; Andreozzi, P.; Sfiligoj-Smole, M. Homogeneous Self-Cleaning Coatings on Cellulose Materials Derived from TIP/TiO2 P25. Fibers Polym. 2009, 10, 716–723. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, J.; Sun, L.; Wang, X. A Review on the Application of Photocatalytic Materials on Textiles. Text. Res. J. 2015, 85, 1104–1118. [Google Scholar] [CrossRef]
- Han, Z.; Chang, V.W.C.; Zhang, L.; Tse, M.S.; Tan, O.K.; Hildemann, L.M. Preparation of TiO2-Coated Polyester Fiber Filter by Spray-Coating and Its Photocatalytic Degradation of Gaseous Formaldehyde. Aerosol Air Qual. Res. 2012, 12, 1327–1335. [Google Scholar] [CrossRef]
- Dhineshbabu, N.; Arunmetha, S.; Manivasakan, P.; Karunakaran, G.; Rajendran, V. Enhanced Functional Properties of Cotton Fabrics Using TiO2/SiO2 Nanocomposites. J. Ind. Text. 2016, 45, 674–692. [Google Scholar] [CrossRef]
- Selishchev, D.; Stepanov, G.; Sergeeva, M.; Solovyeva, M.; Zhuravlev, E.; Komissarov, A.; Richter, V.; Kozlov, D. Inactivation and Degradation of Influenza A Virus on the Surface of Photoactive Self-Cleaning Cotton Fabric Functionalized with Nanocrystalline TiO2. Catalysts 2022, 12, 1298. [Google Scholar] [CrossRef]
- Montazer, M.; Hashemikia, S. Textile with Immobilised Nano Titanium Dioxide for Repeated Discoloration of CI Reactive Black 5 under UV-A. Color. Technol. 2012, 128, 403–409. [Google Scholar] [CrossRef]
- Yuranova, T.; Laub, D.; Kiwi, J. Synthesis, Activity and Characterization of Textiles Showing Self-Cleaning Activity under Daylight Irradiation. Catal. Today 2007, 122, 109–117. [Google Scholar] [CrossRef]
- Carlo, G.D.; Liotta, L.F.; Calogero, G.; Giuliani, C.; Ingo, G.M. Green Cleaning Procedures Based on Titania-Doped Cotton Textiles: Effect of Titania Textural Properties. J. Nanosci. Nanotechnol. 2017, 17, 3842–3847. [Google Scholar] [CrossRef]
- Meilert, K.T.; Laub, D.; Kiwi, J. Photocatalytic Self-Cleaning of Modified Cotton Textiles by TiO2 Clusters Attached by Chemical Spacers. J. Mol. Catal. A Chem. 2005, 237, 101–108. [Google Scholar] [CrossRef]
- Pakdel, E.; Daoud, W.A.; Wang, X. Self-Cleaning and Superhydrophilic Wool by TiO2/SiO2 Nanocomposite. Appl. Surf. Sci. 2013, 275, 397–402. [Google Scholar] [CrossRef]
- Pakdel, E.; Daoud, W.A.; Sun, L.; Wang, X. Visible and UV Functionality of TiO2 Ternary Nanocomposites on Cotton. Appl. Surf. Sci. 2014, 321, 447–456. [Google Scholar] [CrossRef]
- Solovyeva, M.; Selishchev, D.; Cherepanova, S.; Stepanov, G.; Zhuravlev, E.; Richter, V.; Kozlov, D. Self-Cleaning Photoactive Cotton Fabric Modified with Nanocrystalline TiO2 for Efficient Degradation of Volatile Organic Compounds and DNA Contaminants. Chem. Eng. J. 2020, 388, 124167. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, C.; Zhang, M.; Yang, J.; Zhang, Z. Enhanced Visible Light Photocatalytic Activity of N-Doped TiO2 in Relation to Single-Electron-Trapped Oxygen Vacancy and Doped-Nitrogen. Appl. Catal. B Environ. 2010, 100, 84–90. [Google Scholar] [CrossRef]
- Wojcieszak, D.; Mazur, M.; Kaczmarek, D.; Poniedziałek, A.; Osękowska, M. An Impact of the Copper Additive on Photocatalytic and Bactericidal Properties of TiO2 Thin Films. Mater. Sci.-Pol. 2017, 35, 421–426. [Google Scholar] [CrossRef]
- Gribov, E.; Koshevoy, E.; Fazliev, T.; Lyulyukin, M.; Kozlov, D.; Selishchev, D. Effect of Surface Fe- and Cu-Species on the Flat-Band Potential and Photoelectrocatalytic Properties of N-Doped TiO2. J. Photochem. Photobiol. A Chem. 2025, 464, 116342. [Google Scholar] [CrossRef]
- Sen, S.K.; Riga, J.; Verbist, J. 2s and 2p X-Ray Photoelectron Spectra of Ti4+ Ion in TiO2. Chem. Phys. Lett. 1976, 39, 560–564. [Google Scholar] [CrossRef]
- French, A.D. Idealized Powder Diffraction Patterns for Cellulose Polymorphs. Cellulose 2014, 21, 885–896. [Google Scholar] [CrossRef]
- Lionetto, F.; Corcione, C.E.; Rizzo, A.; Maffezzoli, A. Production and Characterization of Polyethylene Terephthalate Nanoparticles. Polymers 2021, 13, 3745. [Google Scholar] [CrossRef]
- Ma, Z.; Xu, R.; Wang, W.; Yu, D. A Wearable, Anti-Bacterial Strain Sensor Prepared by Silver Plated Cotton/Spandex Blended Fabric for Human Motion Monitoring. Colloids Surf. A Physicochem. Eng. Asp. 2019, 582, 123918. [Google Scholar] [CrossRef]
- Wang, P.; Dong, Y.; Li, B.; Li, Z.; Bian, L. A Sustainable and Cost Effective Surface Functionalization of Cotton Fabric Using TiO2 Hydrosol Produced in a Pilot Scale: Condition Optimization, Sunlight-Driven Photocatalytic Activity and Practical Applications. Ind. Crops Prod. 2018, 123, 197–207. [Google Scholar] [CrossRef]
- Kovalevskiy, N.; Svintsitskiy, D.; Cherepanova, S.; Yakushkin, S.; Martyanov, O.; Selishcheva, S.; Gribov, E.; Kozlov, D.; Selishchev, D. Visible-Light-Active N-Doped TiO2 Photocatalysts: Synthesis from TiOSO4, Characterization, and Enhancement of Stability Via Surface Modification. Nanomaterials 2022, 12, 4146. [Google Scholar] [CrossRef]
- Román, L.E.; Uribe, C.; Paraguay-Delgado, F.; Sutjianto, J.G.; Navarrete-López, A.M.; Gomez, E.D.; Solís, J.L.; Gómez, M.M. Physical and Surface Chemical Analysis of High-Quality Antimicrobial Cotton Fabrics Functionalized with CuOx Grown In Situ from Different Copper Salts: Experimental and Theoretical Approach. ACS Appl. Mater. Interfaces 2025, 17, 1869–1882. [Google Scholar] [CrossRef]
- Ren, Y.; Zhao, Z.; Jiang, W.; Zhang, G.; Tan, Y.; Guan, Y.; Zhou, L.; Cui, L.; Choi, S.W.; Li, M.-X. Preparation of Y2O3/TiO2-Loaded Polyester Fabric and Its Photocatalytic Properties under Visible Light Irradiation. Polymers 2022, 14, 2760. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, C.; Zhang, M.; Yang, J.; Zhang, Z. Visible Light Active N-Doped TiO2 Prepared from Different Precursors: Origin of the Visible Light Absorption and Photoactivity. Appl. Catal. B Environ. 2011, 104, 268–274. [Google Scholar] [CrossRef]
- Radetić, M.; Marković, D. Nano-Finishing of Cellulose Textile Materials with Copper and Copper Oxide Nanoparticles. Cellulose 2019, 26, 8971–8991. [Google Scholar] [CrossRef]
- Prabhakar, P.; Sen, R.K.; Patel, M.; Shruti; Dwivedi, N.; Singh, S.; Kumar, P.; Chouhan, M.; Yadav, A.K.; Mondal, D.P.; et al. Development of Copper Impregnated Bio-Inspired Hydrophobic Antibacterial Nanocoatings for Textiles. Colloids Surf. B Biointerfaces 2022, 220, 112913. [Google Scholar] [CrossRef] [PubMed]
- Zahid, M.; Papadopoulou, E.L.; Suarato, G.; Binas, V.D.; Kiriakidis, G.; Gounaki, I.; Moira, O.; Venieri, D.; Bayer, I.S.; Athanassiou, A. Fabrication of Visible Light-Induced Antibacterial and Self-Cleaning Cotton Fabrics Using Manganese Doped TiO2 Nanoparticles. ACS Appl. Bio Mater. 2018, 1, 1154–1164. [Google Scholar] [CrossRef] [PubMed]
- Champlot, S.; Berthelot, C.; Pruvost, M.; Bennett, E.A.; Grange, T.; Geigl, E.-M. An Efficient Multistrategy DNA Decontamination Procedure of PCR Reagents for Hypersensitive PCR Applications. PLoS ONE 2010, 5, e13042. [Google Scholar] [CrossRef]
- Karran, P.; Brem, R. Protein Oxidation, UVA and Human DNA Repair. DNA Repair 2016, 44, 178–185. [Google Scholar] [CrossRef]
- Solovyeva, M.; Stepanov, G.; Zhuravlev, E.; Kozlov, D.; Zharkov, D.; Dvornikova, A.; Selishchev, D. Mechanism of DNA and RNA Degradation over a Photoactive TiO2@SiO2-Coated Fabric. Int. J. Biol. Macromol. 2025, 318, 145089. [Google Scholar] [CrossRef]
- Hirakawa, K.; Mori, M.; Yoshida, M.; Oikawa, S.; Kawanishi, S. Photo-Irradiated Titanium Dioxide Catalyzes Site Specific DNA Damage via Generation of Hydrogen Peroxide. Free Radic. Res. 2004, 38, 439–447. [Google Scholar] [CrossRef]
- Ren, Y.; Guo, D.; Zhao, Z.; Chen, P.; Li, F.; Yao, J.; Jiang, H.; Liu, Y. Singlet Oxygen Mediated Photocatalytic Antimonite Decontamination in Water Using Nanoconfined TiO2. Chem. Eng. J. 2022, 435, 134832. [Google Scholar] [CrossRef]
- Selishchev, D.S.; Filippov, T.N.; Lyulyukin, M.N.; Kozlov, D.V. Uranyl-Modified TiO2 for Complete Photocatalytic Oxidation of Volatile Organic Compounds under UV and Visible Light. Chem. Eng. J. 2019, 370, 1440–1449. [Google Scholar] [CrossRef]
- Dworniczek, E.; Franiczek, R.; Kowal, K.; Buzalewicz, I.; Podbielska, H.; Tofail, S.A.M. Photocatalytic and Antimicrobial Activity of Titania Nanoparticles. In Electrically Active Materials for Medical Devices; Imperial College Press: London, UK, 2016; pp. 193–208. ISBN 978-1-78326-986-0. [Google Scholar]
- Pakdel, E.; Daoud, W.A.; Wang, X. Effect of the Photoreduction Process on the Self-Cleaning and Antibacterial Activity of Au-Doped TiO2 Colloids on Cotton Fabric. ACS Appl. Mater. Interfaces 2024, 16, 25221–25235. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Amparán, M.A.; Martínez-Cornejo, V.; Cedeño-Caero, L.; Hernandez-Hernandez, K.A.; Cadena-Nava, R.D.; Alonso-Núñez, G.; Moyado, S.F. Characterization and Photocatalytic Activity of TiO2 Nanoparticles on Cotton Fabrics, for Antibacterial Masks. Appl. Nanosci. 2022, 12, 4019–4032. [Google Scholar] [CrossRef] [PubMed]
- Souza, D.C.; Amorim, S.M.; Cadamuro, R.D.; Fongaro, G.; Peralta, R.A.; Peralta, R.M.; Puma, G.L.; Moreira, R.F. Hydrophobic Cellulose-Based and Non-Woven Fabrics Coated with Mesoporous TiO2 and Their Virucidal Properties under Indoor Light. Carbohydr. Polym. Technol. Appl. 2022, 3, 100182. [Google Scholar] [CrossRef]
- da Silva, D.J.; Duran, A.; Cabral, A.D.; Fonseca, F.L.A.; Bueno, R.F.; Wang, S.H.; Rosa, D.S. Delta SARS-CoV-2 Inactivation and Bactericidal Performance of Cotton Wipes Decorated with TiO2/Ag Nanoparticles like Brazilian Heavy-Fruited Myrciaria cauliflora. Mater. Today Commun. 2022, 33, 104288. [Google Scholar] [CrossRef]
- Moon, E.W.; Lee, H.-W.; Rok, J.H.; Ha, J.-H. Photocatalytic Inactivation of Viral Particles of Human Norovirus by Cu-Doped TiO2 Non-Woven Fabric under UVA-LED Wavelengths. Sci. Total Environ. 2020, 749, 141574. [Google Scholar] [CrossRef]
- Chechushkov, A.; Kozlova, Y.; Baykov, I.; Morozova, V.; Kravchuk, B.; Ushakova, T.; Bardasheva, A.; Zelentsova, E.; Allaf, L.A.; Tikunov, A.; et al. Influence of Caudovirales Phages on Humoral Immunity in Mice. Viruses 2021, 13, 1241. [Google Scholar] [CrossRef]
- Fan, X.; Yahia, L.; Sacher, E. Antimicrobial Properties of the Ag, Cu Nanoparticle System. Biology 2021, 10, 137. [Google Scholar] [CrossRef]
- Govind, V.; Bharadwaj, S.; Sai Ganesh, M.R.; Vishnu, J.; Shankar, K.V.; Shankar, B.; Rajesh, R. Antiviral Properties of Copper and Its Alloys to Inactivate COVID-19 Virus: A Review. Biometals 2021, 34, 1217–1235. [Google Scholar] [CrossRef]
- Köhler, J.R.; Hube, B.; Puccia, R.; Casadevall, A.; Perfect, J.R. Fungi That Infect Humans. Microbiol. Spectr. 2017, 5, 813–843. [Google Scholar] [CrossRef]
- Thambugala, K.M.; Daranagama, D.A.; Tennakoon, D.S.; Jayatunga, D.P.W.; Hongsanan, S.; Xie, N. Humans vs. Fungi: An Overview of Fungal Pathogens against Humans. Pathogens 2024, 13, 426. [Google Scholar] [CrossRef]
- Latgé, J.-P. The Cell Wall: A Carbohydrate Armour for the Fungal Cell. Mol. Microbiol. 2007, 66, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Behzadnia, A.; Montazer, M.; Rashidi, A.; Mahmoudi Rad, M. Rapid Sonosynthesis of N-Doped Nano TiO2 on Wool Fabric at Low Temperature: Introducing Self-cleaning, Hydrophilicity, Antibacterial/Antifungal Properties with Low Alkali Solubility, Yellowness and Cytotoxicity. Photochem. Photobiol. 2014, 90, 1224–1233. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, D.; Brzeziński, S.; Kamińska, I. Multifunctional Nanocoating Finishing of Polyester/Cotton Woven Fabric by the Sol-Gel Method. Text. Res. J. 2018, 88, 946–956. [Google Scholar] [CrossRef]
- Rilda, Y.; Mahardika, G.; Alif, A.; Agustien, A.; Djamaan, A. Antifungal Property of Cotton Fabric Textile: Modification of Cotton Fiber Functions by Coating Compounds of TiO2-SiO2/Chitosan. Pharma Chem. 2016, 8, 124–131. [Google Scholar]
- Al-Etaibi, A.M.; El-Apasery, M.A. Nano TiO2 Imparting Multifunctional Performance on Dyed Polyester Fabrics with Some Disperse Dyes Using High Temperature Dyeing as an Environmentally Benign Method. Int. J. Environ. Res. Public Health 2020, 17, 1377. [Google Scholar] [CrossRef]
- Behzadnia, A.; Montazer, M.; Rad, M.M. Simultaneous Sonosynthesis and Sonofabrication of N-Doped ZnO/TiO2 Core–Shell Nanocomposite on Wool Fabric: Introducing Various Properties Specially Nano Photo Bleaching. Ultrason. Sonochemistry 2015, 27, 10–21. [Google Scholar] [CrossRef]
- Mihailović, D.; Šaponjić, Z.; Vodnik, V.; Potkonjak, B.; Jovančić, P.; Nedeljković, J.M.; Radetić, M. Multifunctional PES Fabrics Modified with Colloidal Ag and TiO2 Nanoparticles. Polym. Adv. Technol. 2011, 22, 2244–2249. [Google Scholar] [CrossRef]
- Saraswati, M.; Levi Permadani, R. The Innovation of Antimicrobial and Self-Cleaning Using Ag/TiO2 Nanocomposite Coated on Cotton Fabric for Footwear Application. IOP Conf. Ser. Mater. Sci. Eng. 2019, 509, 12091. [Google Scholar] [CrossRef]
- Perelshtein, I.; Applerot, G.; Perkas, N.; Grinblat, J.; Gedanken, A. A One-Step Process for the Antimicrobial Finishing of Textiles with Crystalline TiO2 Nanoparticles. Chem.—Eur. J. 2012, 18, 4575–4582. [Google Scholar] [CrossRef]
- Maneerat, C.; Hayata, Y. Antifungal Activity of TiO2 Photocatalysis against Penicillium expansum in Vitro and in Fruit Tests. Int. J. Food Microbiol. 2006, 107, 99–103. [Google Scholar] [CrossRef]
- Ma, H.; Brennan, A.; Diamond, S.A. Photocatalytic Reactive Oxygen Species Production and Phototoxicity of Titanium Dioxide Nanoparticles Are Dependent on the Solar Ultraviolet Radiation Spectrum. Environ. Toxic Chem. 2012, 31, 2099–2107. [Google Scholar] [CrossRef]
- Scacchetti, F.A.P.; Pinto, E.; Soares, G. A Multifunctional Cotton Fabric Using TiO2 and PCMs: Introducing Thermal Comfort and Self-Cleaning Properties. IOP Conf. Ser. Mater. Sci. Eng. 2017, 254, 122011. [Google Scholar] [CrossRef]
- Nazari, A. Superior Self-Cleaning and Antimicrobial Properties on Cotton Fabrics Using Nano Titanium Dioxide along with Green Walnut Shell Dye. Fibers Polym. 2019, 20, 2503–2509. [Google Scholar] [CrossRef]
- Gierke, A.-M.; Hessling, M. Photoinactivation by UVA Radiation and Visible Light of Candida Auris Compared to Other Fungi. Photochem. Photobiol. Sci. 2024, 23, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Rosas, R.; Ramos-Garcia, R.; Salazar-Morales, M.F.; Robles-Águila, M.J.; Spezzia-Mazzocco, T. Evaluation of Antifungal Activity of Visible Light-Activated Doped TiO2 Nanoparticles. Photochem. Photobiol. Sci. 2024, 23, 823–837. [Google Scholar] [CrossRef]
- Nica, I.C.; Stan, M.S.; Dinischiotu, A.; Popa, M.; Chifiriuc, M.C.; Lazar, V.; Pircalabioru, G.G.; Bezirtzoglou, E.; Iordache, O.G.; Varzaru, E.; et al. Innovative Self-Cleaning and Biocompatible Polyester Textiles Nano-Decorated with Fe–N-Doped Titanium Dioxide. Nanomaterials 2016, 6, 214. [Google Scholar] [CrossRef]
- Busi, E.; Maranghi, S.; Corsi, L.; Basosi, R. Environmental Sustainability Evaluation of Innovative Self-Cleaning Textiles. J. Clean. Prod. 2016, 133, 439–450. [Google Scholar] [CrossRef]
- Lyulyukin, M.; Filippov, T.; Cherepanova, S.; Solovyeva, M.; Prosvirin, I.; Bukhtiyarov, A.; Kozlov, D.; Selishchev, D. Synthesis, Characterization and Visible-Light Photocatalytic Activity of Solid and TiO2-Supported Uranium Oxycompounds. Nanomaterials 2021, 11, 1036. [Google Scholar] [CrossRef]
- Kropinski, A.M.; Mazzocco, A.; Waddell, T.E.; Lingohr, E.; Johnson, R.P. Enumeration of Bacteriophages by Double Agar Overlay Plaque Assay. In Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions; Clokie, M.R.J., Kropinski, A.M., Eds.; Humana Press: Totowa, NJ, USA, 2009; pp. 69–76. ISBN 978-1-60327-164-6. [Google Scholar]
- Fedorov, E.; Samokhin, A.; Kozlova, Y.; Kretien, S.; Sheraliev, T.; Morozova, V.; Tikunova, N.; Kiselev, A.; Pavlov, V. Short-Term Outcomes of Phage-Antibiotic Combination Treatment in Adult Patients with Periprosthetic Hip Joint Infection. Viruses 2023, 15, 499. [Google Scholar] [CrossRef]
- Palma, F.; Acunzo, M.; Della Marca, R.; Dell’Annunziata, F.; Folliero, V.; Chianese, A.; Zannella, C.; Franci, G.; De Filippis, A.; Galdiero, M. Evaluation of Antifungal Spectrum of Cupferron against Candida albicans. Microb. Pathog. 2024, 194, 106835. [Google Scholar] [CrossRef]
Sample | Composition of Impregnation Suspension | |||
---|---|---|---|---|
TiO2-N, g L−1 | Ti Binder, vol% | iPrOH, vol% | Cu(OAc)2, g L−1 | |
IF | – | – | – | – |
PF-TN | 10 | 5 | 95 | – |
PF-TN-Cu | 10 | 5 | 95 | 0.28 |
Fragment | Primer Sequence | |
---|---|---|
HSPA8 | F | 5′-ACTGAACGGTTGATCGGTGA-3′ |
R | 5′-AGATGAGCACGTTTCTTTCT-3′ | |
GAPDH | F | 5′-GAAGGTGAAGGTCGGAGT-3′ |
R | 5′-GAAGATGGTGATGGGATTTC-3′ | |
28-2.2 | F | 5′-TAGACCGTCGTGAGACAGGT-3′ |
R | 5′-ATTGGCTCCTCAGCCAAGCA-3′ | |
18-1702 | F | 5′-TCCCTGCCCTTTGTACACA-3′ |
R | 5′-GGCCGATCCGAGGGCCTCA-3′ | |
28-2.1 (Internal control) | F | 5′-TAGACCGTCGTGAGACAGGT-3′ |
R | 5′-CAACACATCATCAGTAGGGT-3′ | |
Ph-PA136 | F | 5′-TTGATCGAGCCAGTAAAGGC-3′ |
R | 5′-AATCACATCCTTGGCGAACG-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solovyeva, M.; Zhuravlev, E.; Kozlova, Y.; Bardasheva, A.; Morozova, V.; Stepanov, G.; Kozlov, D.; Lyulyukin, M.; Selishchev, D. Visible-Light-Driven Degradation of Biological Contaminants on the Surface of Textile Fabric Modified with TiO2-N Photocatalyst. Int. J. Mol. Sci. 2025, 26, 7550. https://doi.org/10.3390/ijms26157550
Solovyeva M, Zhuravlev E, Kozlova Y, Bardasheva A, Morozova V, Stepanov G, Kozlov D, Lyulyukin M, Selishchev D. Visible-Light-Driven Degradation of Biological Contaminants on the Surface of Textile Fabric Modified with TiO2-N Photocatalyst. International Journal of Molecular Sciences. 2025; 26(15):7550. https://doi.org/10.3390/ijms26157550
Chicago/Turabian StyleSolovyeva, Maria, Evgenii Zhuravlev, Yuliya Kozlova, Alevtina Bardasheva, Vera Morozova, Grigory Stepanov, Denis Kozlov, Mikhail Lyulyukin, and Dmitry Selishchev. 2025. "Visible-Light-Driven Degradation of Biological Contaminants on the Surface of Textile Fabric Modified with TiO2-N Photocatalyst" International Journal of Molecular Sciences 26, no. 15: 7550. https://doi.org/10.3390/ijms26157550
APA StyleSolovyeva, M., Zhuravlev, E., Kozlova, Y., Bardasheva, A., Morozova, V., Stepanov, G., Kozlov, D., Lyulyukin, M., & Selishchev, D. (2025). Visible-Light-Driven Degradation of Biological Contaminants on the Surface of Textile Fabric Modified with TiO2-N Photocatalyst. International Journal of Molecular Sciences, 26(15), 7550. https://doi.org/10.3390/ijms26157550