Rapid Soil Tests for Assessing Soil Health
Abstract
1. Introduction
2. Materials and Methods
2.1. Step 1a: Near Infrared Spectroscopy
2.2. Step 1b: Soil Intensity Characteristics Measured with Multi-Nutrient Extractions with 0.01 M CaCl2
2.3. Step 2: Intermediate Phase
2.4. Step 3: Soil Health Indicator Report
3. Results
3.1. Step 1a: Soil Characteristics Determined with NIRS
3.2. Step 1b: Extractability of Nutrients and Heavy Metals with 0.01 M CaCl2
3.3. Step 2: Translation or New Calibrations
3.4. Step 3: Soil Health Indicator Report
4. Discussion
4.1. Choice of Soil Health Indicators
4.2. Boosting Soil Health
4.3. Towards a Uniform ABCDE Soil Health Scoring
4.4. Outlook
5. Conclusions
- This paper presents an internationally applicable rapid tool for comprehensive soil health testing for land users (agriculture, nature & forest, and urban & industry), the agrifood industry, research, and governmental agencies involved in land use planning and management.
- Soil health is defined as the continued capacity of soils to contribute to ecosystem services and encompasses soil physical, chemical, and biological characteristics. Soil health testing thus involves analyses of the key soil physical, chemical, and biological characteristics, combined with an integrated assessment of the soil health status and its capacity to contribute to soil ecosystem services.
- For a cost-efficient, fast, comprehensive soil health test, we used two broad-spectrum soil tests, i.e., NIRS and 0.01 M CaCl2 extraction of soil samples followed by advanced analytical techniques, i.e., discrete analysis (DA) and ICP-MS.
- Based on successful calibration and validation studies, the results of the broad-spectrum test were used to develop the soil health indicator report, which reports on the fitness of the soil for providing a range of ecosystem services.
- The SHI encompasses both Tier 1 and Tier 2 indicators proposed by the Soil Health Institute, i.e., soil physical, biological, and chemical characteristics needed to optimize soil management.
- The comprehensive soil health report has been successfully introduced in several countries, often through promotional campaigns by extension services. While incentives from governmental agencies and the agrifood sector can promote soil health testing, long-term success in maintaining soil health will depend on land users embracing innovative, sustainable crop husbandry practices.
- The soil health test discussed here is scalable and standardized. To further boost its potential, soil health literacy and monitoring should be energized further, perhaps best by consumers asking the agrifood industry to actually measure soil health as part of their sustainability claims.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McDaniel, M.D.; Walters, D.T.; Bundy, L.G.; Li, X.; Drijber, R.A.; Sawyer, J.E.; Castellano, M.J.; Laboski, C.A.M.; Scharf, P.C.; Horwath, W.R. Combination of biological and chemical soil tests best predict maize nitrogen response. Agron. J. 2020, 5, 1263–1278. [Google Scholar] [CrossRef]
- Campillo-Cora, C.; Rodríguez-Seijo, A.; Pérez-Rodríguez, P.; Fernández-Calviño, D.; Santás-Miguel, V. Effect of heavy metal pollution on soil microorganisms: Influence of soil physicochemical properties. A Syst. Rev. Eur. J. Soil Biol. 2025, 125, 103706. [Google Scholar] [CrossRef]
- Magdoff, F.; Es, H. Building Soils for Better Crops, 4th ed.; the Sustainable Agriculture Research and Education (SARE) program; SARE: College Park, MD, USA, 2021; pp. 1–410. [Google Scholar]
- Telo da Game, J. The Role of Soils in Sustainability, Climate Change, and Ecosystem Services: Challenges and Opportunities. Ecologies 2023, 4, 552–567. [Google Scholar] [CrossRef]
- Adhikari, K.; Hartemink, A.E. Linking soils to ecosystem services—A global review. Geoderma 2016, 262, 101–111. [Google Scholar] [CrossRef]
- Brevik, E. A Brief History of the Soil Health Concept; Soil Science Society of America: Madison, WI, USA, 2019; pp. 1–10. Available online: https://www.researchgate.net/publication/360608649_A_Brief_History_of_the_Soil_Health_Concept (accessed on 11 July 2025).
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The Concept and Future Prospects of Soil Health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef]
- European Commission (EC). The Continued Capacity of Soils to Contribute to Ecosystem Services. A Soil Deal for Europe; European Commission: Brussels, Belgium, 2023; pp. 1–25. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_23_4564 (accessed on 11 July 2025).
- Yara. Soil Health—Crop and Agronomy Knowledge. Available online: https://www.yara.com/crop-nutrition/crop-and-agronomy-knowledge/soil-health/ (accessed on 24 April 2025).
- ICL Growing Solutions. Is There a Link Between Fertilization with Controlled Release Urea and Soil Health? Available online: https://icl-growingsolutions.com/agriculture/knowledge-hub/is-there-a-link-between-fertilization-with-controlled-release-urea-and-soil-health/ (accessed on 24 April 2025).
- Direct Driller. An Introduction to Soil Health Management. Available online: https://directdriller.com/an-introduction-to-soil-health-management/ (accessed on 24 April 2025).
- Potato News Today. McCain’s Soil Health Mission: A Story of French Fries, Regenerative Agriculture, and a Beloved TV Character. Available online: https://www.potatonewstoday.com/2023/07/13/mccains-soil-health-mission-a-story-of-french-fries-regenerative-agriculture-and-a-beloved-tv-character (accessed on 24 April 2025).
- Arla. Regenerative Dairy Farming. Available online: https://www.arla.com/sustainability/the-land/regenerative-dairy-farming/ (accessed on 24 April 2025).
- Friesland Campina. Friesland Campina Launches Pilot to Accelerate Regenerative Agriculture. Available online: https://www.frieslandcampina.com/news/frieslandcampina-launches-pilot-to-accelerate-regenerative-agriculture/ (accessed on 24 April 2025).
- KWS. Mission & Values. Available online: https://www.kws.com/corp/en/company/vision-mission-values/ (accessed on 11 July 2025).
- DLF. Soil Nourishment for Sustainable Agriculture. Available online: https://dlf.com/news-insight/news-2023/december/soil-nurishment-for-sustainable-agriculture (accessed on 24 April 2025).
- Bayer. Soil Health. Available online: https://www.bayer.com/en/agriculture/soil-health (accessed on 24 April 2025).
- Syngenta. Soil Health. Available online: https://www.syngenta.com/en/sustainability/soil-health (accessed on 24 April 2025).
- Nestlé. Regenerative Agriculture. Available online: https://www.nestle.com/sustainability/nature-environment/regenerative-agriculture (accessed on 24 April 2025).
- Cargill. RegenConnect. Available online: https://regenconnect.cargill.com (accessed on 24 April 2025).
- Kraft Heinz Company. In Our Roots Report 2021. Available online: https://www.kraftheinzcompany.com/esg/pdf/KHC_InOurRoots_2021.pdf (accessed on 24 April 2025).
- Carlsberg Group. Zero Farming Footprint. Available online: https://www.carlsberggroup.com/sustainability/our-esg-programme/zero-farming-footprint/ (accessed on 24 April 2025).
- PepsiCo. Positive Agriculture. Available online: https://www.pepsico.com/our-impact/sustainability/esg-summary/pepsico-positive-pillars/positive-agriculture (accessed on 24 April 2025).
- Ahold Delhaize. Position on Biodiversity. Available online: https://www.aholddelhaize.com/sustainability/our-position-on-societal-and-environmental-topics/ (accessed on 11 July 2025).
- Food Navigator. Living Soils Initiative: Nestlé, McCain and Lidl Address Soil Health in France. Available online: https://www.foodnavigator.com/Article/2020/12/16/Living-Soils-initiative-Nestle-McCain-and-Lidl-address-soil-health-in-France (accessed on 24 April 2025).
- Walmart News. PepsiCo and Walmart Aim to Support Regenerative Agriculture Across More Than 2 Million Acres of Farmland. Available online: https://corporate.walmart.com/news/2023/07/26/pepsico-and-walmart-aim-to-support-regenerative-agriculture-across-more-than-2-million-acres-of-farmland (accessed on 24 April 2025).
- Arvesta. Homepage. Available online: https://arvesta.eu/en/ (accessed on 24 April 2025).
- Agrifirm. Regenerative Agriculture. Available online: https://www.agrifirm.com/Organisation/regenerative/ (accessed on 24 April 2025).
- Helsinki Research Portal. Knowhow and Tools for Resource-Efficient Soil Health Management in Collaborative Network. Available online: https://researchportal.helsinki.fi/en/projects/knowhow-and-tools-for-resource-efficient-soil-health-management-i (accessed on 24 April 2025).
- Procam. Timely Launch of New Service to Make Sense of Soil Science. Available online: https://www.procam.co.uk/timely-launch-of-new-service-to-make-sense-of-soil-science (accessed on 24 April 2025).
- SEGES Innovation. Regenerative Agriculture. Available online: https://segesinnovation.com/products-and-services/specialist-services/regenerative-agriculture/ (accessed on 24 April 2025).
- Wang, Z.; Wang, J.; Zhang, G.; Wang, Z. Evaluation of Agricultural Extension Service for Sustainable Agricultural Development Using a Hybrid Entropy and TOPSIS Method. Sustainability 2023, 15, 2275. [Google Scholar] [CrossRef]
- Government of Ontario. Ontario’s Agricultural Soil Health and Conservation Strategy. Available online: https://www.ontario.ca/page/new-horizons-ontarios-agricultural-soil-health-and-conservation-strategy (accessed on 24 April 2025).
- van Tol-Leenders, D.; Knotters, M.; de Groot, W.; Gerritsen, P.; Reijneveld, A.; van Egmond, F.; Wösten, H.; Kuikman, P. Koolstofvoorraad in de bodem van Nederland (1998–2018): CC-NL. Wagening. Environ. Res. Rapp. 2019, 2974, 1–83. [Google Scholar]
- Tsaliki, E.; Loison, R.; Kalivas, A.; Panoras, L.; Grigoriadis, L.; Traore, A.; Gourlot, J.P.; Loison, R. Cotton Cultivation in Greece under Sustainable Utilization of Inputs. Sustainability 2024, 16, 347. [Google Scholar] [CrossRef]
- Bouma, J. The 5C’s of soil security guiding realization of ecosystem services in line with the UN-SDGs. Geoderma Reg. 2023, 32, e00616. [Google Scholar] [CrossRef]
- Guo, M. Soil Health Assessment and Management: Recent Development in Science and Practices. J. Soil Sci. 2025, 10, 61. [Google Scholar] [CrossRef]
- Veerman, C.; Pinto Correia, T.; Bastioli, C.; Biro, B.; Bouma, J.; Cienciala, E.; Emmett, B.; Frison, E.A.; Grand, A.; Hristov, L.; et al. Caring for Soil is Caring for Life; Directorate-General for Research and Innovation; European Commission: Brussels, Belgium, 2020; pp. 1–80. [Google Scholar]
- Rinot, O.; Levy, G.J.; Steinberger, Y.; Svoray, T.; Eshel, G. Soil Health Assessment: A Critical Review of Current Methodologies and a Proposed New Approach. Sci. Total Environ. 2019, 648, 1484–1491. [Google Scholar] [CrossRef] [PubMed]
- Sprunger, C.D.; Martin, T.K. An Integrated Approach to Assessing Soil Biological Health. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2023; Volume 182, pp. 131–168. [Google Scholar] [CrossRef]
- Reijneveld, A.; Termorshuizen, A.; Vedder, H.; Oenema, O. Strategy for Innovation in Soil Tests Illustrated for P Tests. Commun. Soil Sci. Plant Anal. 2014, 45, 498–515. [Google Scholar] [CrossRef]
- Reijneveld, J.A.; van Oostrum, M.J.; Brolsma, K.M.; Fletcher, D.; Oenema, O. Empower Innovations in Routine Soil Testing. Agronomy 2022, 12, 191. [Google Scholar] [CrossRef]
- Chang, T.; Feng, G.; Paul, V.; Adeli, A.; Brooks, J.P. Soil Health Assessment Methods: Progress, Applications and Comparison. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2022; Volume 172, pp. 129–210. [Google Scholar] [CrossRef]
- Robinson, D.A.; Bentley, L.; Jones, L.; Feeney, C.; Garbutt, A.; Tandy, S.; Lebron, I.; Thomas, A.; Reinsch, S.; Norton, L.; et al. Five Decades’ Experience of Long-Term Soil Monitoring, and Key Design Principles, to Assist the EU Soil Health Mission. Soil Secur. 2023, 10, 100158. [Google Scholar] [CrossRef]
- European Commission. Towards a Harmonised Soil Monitoring Framework Across Europe; European Commission: Brussels, Belgium, 2025; Available online: https://prepsoil.eu/news/towards-harmonised-soil-monitoring-framework-across-europe?utm (accessed on 24 April 2025).
- FAO. Standard Operating Procedure for Soil Nitrogen—Kjeldahl Method. FAO Document 2025. Available online: http://www.fao.org (accessed on 24 April 2025).
- Nel, T.; Bruneel, Y.; Smolders, E. Comparison of Five Methods to Determine the Cation Exchange Capacity of Soil. Soil Sci. J. 2025, 40, 311–320. [Google Scholar] [CrossRef]
- Cornu, S.; Keesstra, S.; Bispo, A.; Fantappie, M.; van Egmond, F.; Smreczak, B.; Wawer, R.; Pavlů, L.; Sobocká, J.; Bakacsi, Z.; et al. National Soil Data in EU Countries, Where Do We Stand? Eur. J. Soil Sci. 2023, 74, e13398. [Google Scholar] [CrossRef]
- Oviedo Celis, R.; Gamboa, C.; Pascual, J.; Ros, M. Conceptual and Practical Challenges of Assessing Soil Quality. Soil Use Manag. 2024, 40, e13137. [Google Scholar] [CrossRef]
- Reijneveld, J.A.; van Oostrum, M.J.; Brolsma, K.M.; Oenema, O. Soil Carbon Check: A Tool for Monitoring and Guiding Soil Carbon Sequestration in Farmer Fields. Front. Agr. Sci. Eng. 2023, 10, 248–261. [Google Scholar] [CrossRef]
- European Commission. Proposal for a Directive of the European Parliament and of the Council on Soil Monitoring and Resilience (Soil Monitoring Law); European Commission: Brussels, Belgium, 2023.
- Hollis, J.M.; Hannam, J.; Bellamy, P.H. Empirically-derived pedotransfer functions for predicting bulk density in European soil. Eur. J. Soil Sci. 2012, 63, 96–109. [Google Scholar] [CrossRef]
- ISO 10390:2005; Soil Quality—Determination of pH. ISO: Geneva, Switzerland, 2005.
- ISO 17294-2:2016; Water Quality—Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS)—Part 2: Determination of Selected Elements Including Uranium Isotopes. ISO: Geneva, Switzerland, 2016.
- Houba, V.J.G.; Temminghoff, E.J.M.; Gaikhorst, G.A.; van Vark, W. Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Commun. Soil Sci. Plant Anal. 2000, 31, 1299–1396. [Google Scholar] [CrossRef]
- Neuckermans, J. (Eurofins, Nazareth, Belgium). Personal communication, 2025.
- Maes, S. (Arvesta, Leuven, Belgium). Personal communication, 2025.
- Halonen, A. (Eurofins, Mikkeli, Finland). Personal communication, 2025.
- Marchal, G.G. (Eurofins, Blois, France). Personal communication, 2025.
- Boguschewski, D. (Eurofins, Jena, Germany). Personal communication, 2025.
- Petraitis, R. (Agricultural Advisory Service, Akademija, Lithuania). Personal communication, 2025.
- Opsander, M. (Eurofins, Moss, Norway). Personal communication, 2025.
- Bohnsack, J. (Eurofins, Kristianstad, Sweden). Personal communication, 2025.
- Eurofins Agro. BemestingsWijzer: Een breed toegepast bemestingsonderzoek. In Handboek Bodem en Bemesting; Wageningen University & Research: Wageningen, The Netherlands, 2019. (In Dutch) [Google Scholar]
- Cawood Scientific Ltd. Advice Sheet 41: Classification of Soil Analysis Results to Indices. Technical Information, CDA-041-TBA-V2, Issued 11 August 2021. Available online: https://cawood.co.uk/wp-content/uploads/2022/04/Soil-Classification-Indices-Technical-Information.pdf (accessed on 2 May 2025).
- de Fraia, E. (Eurofins, São Paulo, Brasil). Personal communication, 2024.
- Miller, R. (Agricultural Laboratory Proficiency Program, Sterling, VA, USA). Personal communication, 2025.
- Zhang, F. (China Agricultural University, Beijing, China). Personal communication, 2019.
- Stiltes, S. (Eurofins, Christchurch, New Zealand). Personal communication, 2025.
- Nguyen, C.Q. (Economic Mission of the Netherlands to Vietnam, Ho Chi Minh City, Vietnam). Personal communication, 2024.
- Wuenscher, R.; Unterfrauner, H.; Peticzka, R.; Zehetner, F. A comparison of 14 soil phosphorus extraction methods applied to 50 agricultural soils from Central Europe. Plant Soil Environ. 2015, 61, 86–96. [Google Scholar] [CrossRef]
- Steinfurth, K.; Hirte, J.; Morel, C.; Buczko, U. Conversion Equations between Olsen-P and Other Methods Used to Assess Plant Available Soil Phosphorus in Europe—A Review. Geoderma 2021, 401, 115339. [Google Scholar] [CrossRef]
- Burt, R.; Mays, M.D.; Benham, E.C.; Wilson, M.A. Phosphorus characterization and correlation with properties of selected benchmark soils of the United States. Commun. Soil Sci. Plant Anal. 2002, 33, 117–141. [Google Scholar] [CrossRef]
- Todorova, M.; Atanassova, S.; Lange, H.; Pavlov, D. Estimation of Total N, Total P, pH and Electrical Conductivity in Soil by Near-Infrared Reflectance Spectroscopy. Agric. Sci. Technol. 2011, 3, 50–54. [Google Scholar]
- Parent, L. Predicting Soil Phosphorus and Other Properties Using Near Infrared Spectroscopy. Soil Sci. Soc. Am. J. 2012, 76, 2318–2326. [Google Scholar] [CrossRef]
- Fotyma, M.; Jadczyszyn, T.; Jozefaciuk, G. Hundredth Molar Calcium Chloride Extraction Procedure. Part II: Calibration with Conventional Soil Testing Methods for pH. Commun. Soil Sci. Plant Anal. 1998, 29, 1625–1632. [Google Scholar] [CrossRef]
- Houba, V.J.G.; Novozamsky, I.; Lexmond, T.M.; van der Lee, J.J. Applicability of 0.01 M CaCl2 as a Single Extraction Solution for the Assessment of the Nutrient Status of Soils and Other Diagnostic Purposes. Commun. Soil Sci. Plant Anal. 1990, 21, 2281–2290. [Google Scholar] [CrossRef]
- Dieckow, J.; Mielniczuk, J.; Knicker, H.; Bayer, C.; Dick, D.P.; Kögel-Knabner, I. Comparison of Carbon and Nitrogen Determination Methods for Samples of a Paleudult Subjected to No-Till Cropping Systems. Sci. Agric. 2007, 64, 532–540. [Google Scholar] [CrossRef]
- Kargas, G.; Londra, P.; Sotirakoglou, K. The Effect of Soil Texture on the Conversion Factor of 1:5 Soil/Water Extract Electrical Conductivity (EC1–5) to Soil Saturated Paste Extract Electrical Conductivity (ECe). Water 2022, 14, 642. [Google Scholar] [CrossRef]
- Ciesielski, H.; Sterckeman, T.; Santerne, M.; Willery, J.P. A comparison between three methods for the determination of cation exchange capacity and exchangeable cations in soils. Agronomie 1997, 17, 9–15. [Google Scholar] [CrossRef]
- Dontsova, K.M.; Norton, L.D. Clay Dispersion, Infiltration, and Erosion as Influenced by Exchangeable Ca and Mg. Soil Sci. 2002, 167, 184–193. [Google Scholar] [CrossRef]
- Rengasamy, P.; Tavakkoli, E.; McDonald, G. Exchangeable Cations and Clay Dispersion: Net Dispersive Charge, a New Concept for Dispersive Soil. Eur. J. Soil Sci. 2016, 67, 659–665. [Google Scholar] [CrossRef]
- Ros, G.H.; Bussink, W. Notitie: Toepassing pedotransferfuncties voor afleiding pF-curve. In Notitie Nutriënten Management Instituut; NMI Agro: Wageningen, The Netherlands, 2013. (In Dutch) [Google Scholar]
- Abdelbaki, A.M. Assessing the best performing pedotransfer functions for predicting the soil-water characteristic curve according to soil texture classes and matric potentials. Eur. J. Soil Sci. 2021, 72, 154–173. [Google Scholar] [CrossRef]
- Aringhieri, R.; Giachetti, M. Soil hydraulic conductivity as influenced by sodium-induced dispersion: Experimental and theoretical approaches. Soil Sci. Soc. Am. J. 2001, 65, 1133–1141. [Google Scholar] [CrossRef]
- Aringhieri, R.; Giachetti, M. Effect of sodium adsorption ratio and electrolyte concentrations on the saturated hydraulic conductivity of clay–sand mixtures. Eur. J. Soil Sci. 2002, 52, 449–458. [Google Scholar] [CrossRef]
- Xie, Y.; Ning, H.; Zhang, X.; Zhou, W.; Xu, P.; Song, Y.; Li, N.; Wang, X.; Liu, H. Reducing the sodium adsorption ratio improves soil aggregates and organic matter in brackish-water-irrigated cotton fields. Agronomy 2024, 14, 2169. [Google Scholar] [CrossRef]
- Visconti, F.; de Paz, J.M.; Rubio, J.L. What information does the electrical conductivity of soil water extracts of 1 to 5 ratio (w/v) provide for soil salinity assessment of agricultural irrigated lands? Geoderma 2010, 154, 387–397. [Google Scholar] [CrossRef]
- Seo, B.-S.; Jeong, Y.-J.; Baek, N.-R.; Park, H.-J.; Yang, H.I.; Park, S.-I.; Choi, W.-J. Soil texture affects the conversion factor of electrical conductivity from 1:5 soil-water to saturated paste extracts. Pedosphere 2022, 32, 905–915. [Google Scholar] [CrossRef]
- Locher, W.P.; de Bakker, H. Bodemkunde van Nederland: Deel 1—Algemene bodemkunde; Malmberg: Den Bosch, The Netherlands, 1990; ISBN 9789020835458. [Google Scholar]
- Kaur, A.; Chaudhary, A.; Kaur, A.; Choudhary, R.; Kaushik, R. Phospholipid fatty acid—A bioindicator of environment monitoring and assessment in soil ecosystem. Curr. Sci. 2005, 89, 1103–1112. [Google Scholar]
- Ramsey, P.W.; Rillig, M.C.; Feris, K.P.; Holben, W.E.; Gannon, J.E. Choice of methods for soil microbial community analysis: PLFA maximizes power compared to CLPP and PCR-based approaches. Pedobiologia 2006, 50, 275–280. [Google Scholar] [CrossRef]
- Zornoza, R.; Guerrero, C.; Mataix-Solera, J.; Arcenegui, V.; Mataix-Beneyto, J. Near infrared spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean soils. Soil Biol. Biochem. 2008, 40, 1923–1930. [Google Scholar] [CrossRef] [PubMed]
- Francisco, R.; Stone, D.; Creamer, R.E.; Sousa, J.P.; Morais, P.V. European scale analysis of phospholipid fatty acid composition of soils to establish operating ranges. Appl. Soil Ecol. 2016, 97, 49–60. [Google Scholar] [CrossRef]
- Van Rotterdam-Los, A.M.D. The Potential of Soils to Supply Phosphorus and Potassium, Processes and Predictions. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2010. [Google Scholar]
- Mengel, K.; Kirkby, E.A. Principles of Plant Nutrition, 5th ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; p. 849. [Google Scholar]
- Degryse, F.; Broos, K.; Smolders, E.; Merckx, R. Soil solution concentration of Cd and Zn can be predicted with a CaCl2 soil extract. Eur. J. Soil Sci. 2003, 54, 149–158. [Google Scholar] [CrossRef]
- Römkens, P.F.A.M.; Guo, H.Y.; Chu, C.L.; Liu, T.S.; Chiang, C.F.; Koopmans, G.F. Prediction of cadmium uptake by brown rice and derivation of soil–plant transfer models to improve soil protection guidelines. Environ. Pollut. 2009, 157, 2435–2444. [Google Scholar] [CrossRef]
- Zhang, H.; Van Gestel, C.A.M. Bioavailability and Ecotoxicity of Lead in Soil: Implications for Setting Ecological Soil Quality Standards. Environ. Toxicol. Chem. 2021, 40, 2405–2417. [Google Scholar] [CrossRef]
- Smolders, E.; Oorts, K.; Van Sprang, P.; Schoeters, I.; Janssen, C.R.; McGrath, S.P.; McLaughlin, M.J. Toxicity of Trace Metals in Soil as Affected by Soil Type and Aging after Contamination: Using Bioavailability and Bioaccessibility Tests to Predict Ecotoxicity. Environ. Toxicol. Chem. 2009, 28, 1633–1642. [Google Scholar] [CrossRef]
- Sauerbeck, D.R.; Styperek, P. Evaluation of Chemical Methods for Assessing the Cd and Zn Availability from Different Soils and Sources. In Chemical Methods for Assessing Bio-Available Metals in Sludges and Soils; Leschber, R., Davis, R.D., L’Hermite, P., Eds.; Elsevier Applied Science: London, UK, 1985; pp. 49–66. [Google Scholar]
- Wenzel, W.W.; Golestanifard, A.; Duboc, O. SOC: Clay ratio: A mechanistically-sound, universal soil health indicator across ecological zones and land use categories? Geoderma 2024, 452, 117080. [Google Scholar] [CrossRef]
- Feeney, C.J.; Bentley, L.; De Rosa, D.; Panagos, P.; Emmett, B.A.; Thomas, A.; Robinson, D.A. Benchmarking soil organic carbon (SOC) concentration provides more robust soil health assessment than the SOC/clay ratio at European scale. Sci. Total Environ. 2024, 951, 175642. [Google Scholar] [CrossRef]
- Mäkipää, R.; Menichetti, L.; Martínez-García, E.; Törmänen, T.; Lehtonen, A. Is the organic carbon-to-clay ratio a reliable indicator of soil health? Geoderma 2024, 444, 116862. [Google Scholar] [CrossRef]
- Prout, J.; Bellamy, P.H.; Bradley, R.I.; Lark, R.M.; Kirk, G.J.D. What is a good level of soil organic matter? An index based on organic carbon to clay ratio. Eur. J. Soil Sci. 2021, 72, 2493–2503. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. United Nations Sustainable Development Goals. 2015. Available online: https://sdgs.un.org/#goal_section (accessed on 3 May 2025).
- United Nations Development Programme (UNDP). Sustainable Development Goals. UNDP. 2015. Available online: https://www.undp.org/sustainable-development-goals (accessed on 3 May 2025).
- European Commission. A European Green Deal. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 3 May 2025).
- Platform of Latin America and the Caribbean for Climate Action on Agriculture (PLACA). PLACA Homepage. PLACA. Available online: https://accionclimaticaplaca.org/en/sobre-placa/ (accessed on 3 May 2025).
- Adaptation of African Agriculture (AAA) Initiative. Initiative for the Adaptation of African Agriculture to Climate Change. AAA Initiative. Available online: https://www.aaainitiative.org (accessed on 3 May 2025).
- Inter-American Institute for Cooperation on Agriculture (IICA). Living Soils of the Americas. IICA. 2020. Available online: https://www.ippc.int/en/partners/organizations-page-in-ipp/iica/ (accessed on 11 July 2025).
- European Commission, Joint Research Centre. LUCAS: Land Use/Cover Area frame Statistical Survey. European Soil Data Centre (ESDAC). Available online: https://esdac.jrc.ec.europa.eu/projects/lucas (accessed on 3 May 2025).
- Food and Agriculture Organization of the United Nations (FAO). Support for Development of National Soil Health Strategy and Action Plan. FAO in Vietnam. 12 September 2022. Available online: https://www.fao.org/vietnam/news/detail-events/zh/c/1626075 (accessed on 3 May 2025).
- Soil Health Institute. National Soil Health Measurements to Accelerate Agricultural Transformation. Soil Health Institute. 3 August 2017. Available online: https://soilhealthinstitute.org/news-events/national-soil-health-measurements-accelerate-agricultural-transformation/ (accessed on 11 July 2025).
- Menzies, N.W.; Donn, M.J.; Kopittke, P.M. Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environ. Pollut. 2007, 145, 121–130. [Google Scholar] [CrossRef]
- Lock, K.; Janssen, C. Influence of aging on metal availability in soils. Rev. Environ. Contam. Toxicol. 2003, 178, 1–21. [Google Scholar] [PubMed]
- Zhang, L.; Dong, Z.; Zhang, Y.; Wang, L.; Xu, C. Effects of CaCl2 on concentration and speciation of soil Cd around a Pb-Zn mine. IOP Conf. Ser. Earth Environ. Sci. 2022, 1087, 01205. [Google Scholar] [CrossRef]
- Singh, J.; Kalamdhad, A.S. Effects of Heavy Metals on Soil, Plants, Human Health and Aquatic Life. Int. J. Res. Chem. Environ. 2011, 1, 15–21. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine. Exploring Linkages Between Soil Health and Human Health; The National Academies Press: Washington, DC, USA, 2024. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Global Status of Salt-Affected Soils; FAO: Rome, Italy, 2024. [Google Scholar]
- Jalali, M.; Jalali, M. Investigation of potassium leaching risk with relation to different extractants in calcareous soils. J. Soil Sci. Plant Nutr. 2022, 22, 493–505. [Google Scholar] [CrossRef]
- Van Doorn, M.; Van Rotterdam, D.; Ros, G.H.; Koopmans, G.F.; Smolders, E.; de Vries, W. The phosphorus saturation degree as a universal agronomic and environmental soil P test. Crit. Rev. Environ. Sci. Technol. 2024, 54, 385–404. [Google Scholar] [CrossRef]
- Hesketh, N.; Brookes, P.C. Development of an indicator for risk of phosphorus leaching. J. Environ. Qual. 2000, 29, 13–19. [Google Scholar] [CrossRef]
- Fortune, S.; Lu, J.; Addiscott, T.M.; Brookes, P.C. Assessment of phosphorus leaching losses from arable land. Plant Soil 2005, 269, 99–108. [Google Scholar] [CrossRef]
- Reijneveld, J.A. Unravelling Changes in Soil Fertility of Agricultural Land in The Netherlands. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2013. [Google Scholar]
- Eurofins Suomi. Soil Life—Maaperän Mikrobianalyysi. Available online: https://www.eurofins.fi/agro/kasvintuotanto/soil-life-maaperaen-mikrobianalyysi (accessed on 3 May 2025).
- Eurofins Vietnam. Soil Analysis, Soil Quality Assessment, and Fertilizer Recommendation. Available online: https://www.eurofins.vn/en/our-services/agroscience-services/soil-analysis-soil-quality-assessment-and-fertilizer-recommendation (accessed on 3 May 2025).
- European Commission. Soil Strategy for 2030: Reaping the Benefits of Healthy Soils. Available online: https://environment.ec.europa.eu/topics/soil-health/soil-strategy-2030_en (accessed on 3 May 2025).
- Sharma, P.; Sharma, P.; Thakur, N. Sustainable farming practices and soil health: A pathway to achieving SDGs and future prospects. Discov. Sustain. 2024, 5, 250. [Google Scholar] [CrossRef]
- Nakelse, T.; Dennis, E. A Review of Sustainable Indices Relevant to the Agri-Food Industry. Sustainability 2024, 16, 8232. [Google Scholar] [CrossRef]
- Matson, A.; Fantappiè, M.; Campbell, G.A.; Miranda-Vélez, J.F.; Faber, J.H.; Gomes, L.C.; Hessel, R.; Lana, M.; Mocali, S.; Smith, P.; et al. Four approaches to setting soil health targets and thresholds in agricultural soils. J. Environ. Manag. 2024, 371, 123141. [Google Scholar] [CrossRef] [PubMed]
- Van Groenigen, J.W.; van Kessel, C.; Hungate, B.A.; Oenema, O.; Powlson, D.S.; van Groenigen, K.J. Sequestering Soil Organic Carbon: A Nitrogen Dilemma. Environ. Sci. Technol. 2017, 51, 4738–4739. [Google Scholar] [CrossRef] [PubMed]
- 4/1000 International “4 Per 1000” Initiative. Soils for Food Security and Climate. 4 Per 1000. Available online: https://4p1000.org/?lang=en (accessed on 3 May 2025).
- Domingues, R.R.; Sánchez-Monedero, M.A.; Spokas, K.A.; Melo, L.C.A.; Trugilho, P.F.; Valenciano, M.N.; Silva, C.A. Enhancing Cation Exchange Capacity of Weathered Soils Using Biochar: Feedstock, Pyrolysis Conditions and Addition Rate. Agronomy 2020, 10, 824. [Google Scholar] [CrossRef]
- Van Doorn, M.; Helfenstein, A.; Ros, G.H.; Heuvelink, G.B.M.; van Rotterdam-Los, D.A.M.D.; Verweij, S.E.; de Vries, W. High-resolution digital soil mapping of amorphous iron- and aluminium-(hydr)oxides to guide sustainable phosphorus and carbon management. Geoderma 2024, 443, 116838. [Google Scholar] [CrossRef]
- Ros, G.H.; Verweij, S.E.; Janssen, S.J.C.; De Haan, J.; Fujita, Y. An open soil health assessment framework facilitating sustainable soil management. Environ. Sci. Technol. 2022, 56, 17375–17384. [Google Scholar] [CrossRef]
- Government of India. Soil Health Card. Available online: https://www.india.gov.in/spotlight/soil-health-card (accessed on 3 May 2025).
- Moebius-Clune, B.; Schindelbeck, R.; van Es, H. Cornell Soil Health Test: New Guidelines, Packages of Tests, Easier Interpretation. In Proceedings of the Cover Crops & Soil Health Conference, Ithaca, NY, USA, 18–19 December 2012. [Google Scholar]
- Andrews, S.S.; Karlen, D.L.; Cambardella, C.A. The Soil Management Assessment Framework: A Quantitative Soil Quality Evaluation Method with Case Studies. Soil Sci. Soc. Am. J. 2004, 68, 1945–1962. [Google Scholar] [CrossRef]
- Doran, J.W.; Parkin, T.B. Soil Quality Test Kit Guide; USDA Natural Resources Conservation Service: Washington, DC, USA, 1994; pp. 1–82. Available online: https://nrcs.usda.gov/sites/default/files/2022-10/Soil%20Quality%20Test%20Kit%20Guide.pdf (accessed on 3 May 2025).
- Vågen, T.-G.; Walsh, M.G. The Land Degradation Surveillance Framework. In Land Health Surveillance—An Evidence-Based Approach to Land Ecosystem Management; United Nations Environment Programme: Nairobi, Kenya, 2012; pp. 115–171. [Google Scholar]
- Pulleman, M.; Creamer, R.; Hamer, U.; Helder, J.; Pelosi, C.; Peres, G.; Rutgers, M. Soil Biodiversity, Biological Indicators and Soil Ecosystem Services—An Overview of European Approaches. Curr. Opin. Environ. Sustain. 2012, 4, 529–538. [Google Scholar] [CrossRef]
- Associated Press. Farmers Reduce Methane Emissions by Changing How They Grow Rice in VIETNAM. AP News. 2023. Available online: https://apnews.com/article/vietnam-rice-methane-climate-mekong-e82d9101bcd440751a9d0db060b10c0f (accessed on 3 May 2025).
- Yousif, I.A.H. Optimizing Agricultural Land Evaluation of Some Areas in the New Delta Region, Al-Dabaa Corridor, Egypt. Egypt. J. Soil Sci. 2023, 63, 239906. [Google Scholar] [CrossRef]
- Bouma, J. How to Refocus Soil Research When Reacting to the Strategic Dialogue on the Future of EU Agriculture. Eur. J. Soil Sci. 2025, 76, e70085. [Google Scholar] [CrossRef]
- Reijneveld, J.A.; Geling, M.; Geling, E.; Bouma, J. Transforming Agricultural Living Labs into Lighthouses Contributing to Sustainable Development as Defined by the UN-SDGs. Soil Syst. 2024, 8, 79. [Google Scholar] [CrossRef]
Type | Region | n | P5 | Mean | SD | P95 | R2 | RPD | RMSEP |
---|---|---|---|---|---|---|---|---|---|
Calibration | - | 23,322 | 0.7 | 1.8 | 1.7 | 5.2 | 0.99 | 13.2 | 0.48 |
Validation | California, USA | 40 | 0.4 | 1.3 | 0.9 | 3.0 | 0.93 | - | 0.13 |
Validation | China | 223 | 0.4 | 1.0 | 1.8 | 3.1 | 0.96 | 4.7 | 0.29 |
Validation | Europe | 4037 | 1.0 | 3.3 | 2.7 | 9.3 | 0.98 | 8.7 | 0.32 |
Validation | New Zealand | 234 | 2.0 | 6.1 | 5.5 | 14 | 0.99 | 14.1 | 0.33 |
Validation | Vietnam | 213 | 0.3 | 1.4 | 0.6 | 4.2 | 0.96 | 4.7 | 0.12 |
Soil Characteristic | Reporting Limit | First Quartile | Median | Third Quartile | Average | St. Dev. | Kurtosis | Skewness |
---|---|---|---|---|---|---|---|---|
pH | - | 4.9 | 5.5 | 6.8 | 5.6 | 1.2 | −0.8 | −0.1 |
Aluminium (Al) | 600 | 1460 | 2820 | 5838 | 8971 | 17,719 | 14 | 3.5 |
Titanium (Ti) | 100 | 100 | 100 | 100 | 122 | 74 | 59 | 6.5 |
Vanadium (V) | 3.0 | 8.1 | 15 | 33 | 27 | 35 | 33 | 4.5 |
Arsenic (As) | 2.0 | 9.2 | 14 | 22 | 21 | 22 | 31 | 4.4 |
Cadmium (Cd) | 2.0 | 2.0 | 11 | 25 | 20 | 32 | 163 | 9.0 |
Chromium (Cr) | 2.0 | 20 | 20 | 20 | 21 | 4.2 | 76 | 8.1 |
Lead (Pb) | 10 | 10 | 10 | 15 | 46 | 116 | 65 | 6.5 |
Tin (Sn) | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 0.7 | 731 | 26 |
Nickel (Ni) | 20 | 22 | 42 | 95 | 85 | 124 | 61 | 5.9 |
Countries | N 1 | S | P | K | Ca | Mg | Clay | Silt | Sand | pH | Na | EC | CEC | SOM | TC | SOC | Soil Biology | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Flanders | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | [56] | |||||||||||
Wallonia | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | [57] | ||||||||
Finland | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | [58] | ||
France | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | [59] | ||||
Germany | ✓ | ✓ | ✓ | ✓ | [60] | |||||||||||||
Lithuania | ✓ | ✓ | ✓ | ✓ | [61] | |||||||||||||
Norway | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | [62] | ||||||||||
Sweden | ✓ | ✓ | ✓ | ✓ | ✓ | [63] | ||||||||||||
The Neth. | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | [64] | ||
UK | ✓ | ✓ | ✓ | ✓ | ✓ | [65] | ||||||||||||
Brazil | ✓ | ✓ | ✓ | ✓ | [66] | |||||||||||||
USA | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | [67] | ||||||||||
China | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | [68] | |||||||||||
N. Zealand | ✓ | ✓ | ✓ | ✓ | ✓ | [69] | ||||||||||||
Vietnam | [70] | |||||||||||||||||
EU | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | [51] |
EU | ABCDE | A | B | C | D | E | Unit |
---|---|---|---|---|---|---|---|
A1 | ECe | <2 | 2–4 | 4–6 | 6–8 | >8 | dS m−1 |
A3 | SOC:clay | >1/8 | 1/8–1/10 | 1/10–1/13 | 1/13–1/16 | <1/16 | - |
B1 | P-Olsen | 30–50 | 20–30 or 50–60 | 15–20 or 60–70 | 10–15 or 70–80 | <10 or >80 | mg P kg−1 |
B2 | Heavy metals (Cd) | pH dependent system, see Figure 5 | µg Cd kg−1 | ||||
C2 | Soil pH | 5.5–6.5 | 5.2–5.5 or 6.5–7.0 | 5.0–5.2 or 7.0–7.5 | 4.5–5.0 or >7.5 | <4.5 | - |
C4 | Biodiversity | SOC dependent system, see text | mg PLFA kg−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reijneveld, J.A.; Oenema, O. Rapid Soil Tests for Assessing Soil Health. Appl. Sci. 2025, 15, 8669. https://doi.org/10.3390/app15158669
Reijneveld JA, Oenema O. Rapid Soil Tests for Assessing Soil Health. Applied Sciences. 2025; 15(15):8669. https://doi.org/10.3390/app15158669
Chicago/Turabian StyleReijneveld, Jan Adriaan, and Oene Oenema. 2025. "Rapid Soil Tests for Assessing Soil Health" Applied Sciences 15, no. 15: 8669. https://doi.org/10.3390/app15158669
APA StyleReijneveld, J. A., & Oenema, O. (2025). Rapid Soil Tests for Assessing Soil Health. Applied Sciences, 15(15), 8669. https://doi.org/10.3390/app15158669