Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (510)

Search Parameters:
Keywords = biogas plant digestate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1149 KiB  
Article
Assessment of Biomethane Potential from Waste Activated Sludge in Swine Wastewater Treatment and Its Co-Digestion with Swine Slurry, Water Lily, and Lotus
by Sartika Indah Amalia Sudiarto, Hong Lim Choi, Anriansyah Renggaman and Arumuganainar Suresh
AgriEngineering 2025, 7(8), 254; https://doi.org/10.3390/agriengineering7080254 (registering DOI) - 7 Aug 2025
Abstract
Waste activated sludge (WAS), a byproduct of livestock wastewater treatment, poses significant disposal challenges due to its low biodegradability and potential environmental impact. Anaerobic digestion (AD) offers a sustainable approach for methane recovery and sludge stabilization. This study evaluates the biomethane potential (BMP) [...] Read more.
Waste activated sludge (WAS), a byproduct of livestock wastewater treatment, poses significant disposal challenges due to its low biodegradability and potential environmental impact. Anaerobic digestion (AD) offers a sustainable approach for methane recovery and sludge stabilization. This study evaluates the biomethane potential (BMP) of WAS and its co-digestion with swine slurry (SS), water lily (Nymphaea spp.), and lotus (Nelumbo nucifera) shoot biomass to enhance methane yield. Batch BMP assays were conducted at substrate-to-inoculum (S/I) ratios of 1.0 and 0.5, with methane production kinetics analyzed using the modified Gompertz model. Mono-digestion of WAS yielded 259.35–460.88 NmL CH4/g VSadded, while co-digestion with SS, water lily, and lotus increased yields by 14.89%, 10.97%, and 16.89%, respectively, surpassing 500 NmL CH4/g VSadded. All co-digestion combinations exhibited synergistic effects (α > 1), enhancing methane production beyond individual substrate contributions. Lower S/I ratios improved methane yields and biodegradability, highlighting the role of inoculum availability. Co-digestion reduced the lag phase limitations of WAS and plant biomass, improving process efficiency. These findings demonstrate that co-digesting WAS with nutrient-rich co-substrates optimizes biogas production, supporting sustainable sludge management and renewable energy recovery in livestock wastewater treatment systems. Full article
(This article belongs to the Section Sustainable Bioresource and Bioprocess Engineering)
25 pages, 3279 KiB  
Review
Current State of Development of Demand-Driven Biogas Plants in Poland
by Aleksandra Łukomska, Kamil Witaszek and Jacek Dach
Processes 2025, 13(8), 2369; https://doi.org/10.3390/pr13082369 - 25 Jul 2025
Viewed by 474
Abstract
Renewable energy sources (RES) are the foundation of the ongoing energy transition in Poland and worldwide. However, increased use of RES has brought several challenges, as most of these sources are dependent on weather conditions. The instability and lack of control over electricity [...] Read more.
Renewable energy sources (RES) are the foundation of the ongoing energy transition in Poland and worldwide. However, increased use of RES has brought several challenges, as most of these sources are dependent on weather conditions. The instability and lack of control over electricity production lead to both overloads and power shortages in transmission and distribution networks. A significant advantage of biogas plants over sources such as photovoltaics or wind turbines is their ability to control electricity generation and align it with actual demand. Biogas produced during fermentation can be temporarily stored in a biogas tank above the digester and later used in an enlarged CHP unit to generate electricity and heat during peak demand periods. While demand-driven biogas plants operate similarly to traditional installations, their development requires navigating regulatory and administrative procedures, particularly those related to the grid connection of the generated electricity. In Poland, it has only recently become possible to obtain grid connection conditions for such installations, following the adoption of the Act of 28 July 2023, which amended the Energy Law and certain other acts. However, the biogas sector still faces challenges, particularly the need for effective incentive mechanisms and the removal of regulatory and economic barriers, especially given its estimated potential of up to 7.4 GW. Full article
Show Figures

Figure 1

18 pages, 3316 KiB  
Article
Impact of Farm Biogas Plant Auxiliary Equipment on Electrical Power Quality
by Zbigniew Skibko, Andrzej Borusiewicz, Jacek Filipkowski, Łukasz Pisarek and Maciej Kuboń
Energies 2025, 18(14), 3849; https://doi.org/10.3390/en18143849 - 19 Jul 2025
Viewed by 229
Abstract
Devices that meet the needs of agricultural biogas plants represent a significant share of the energy balance of the source. The digester mixer is a crucial component installed in the fermentation chamber. Energy consumption during mixing depends on the regime and intensity, as [...] Read more.
Devices that meet the needs of agricultural biogas plants represent a significant share of the energy balance of the source. The digester mixer is a crucial component installed in the fermentation chamber. Energy consumption during mixing depends on the regime and intensity, as well as the rheological properties of the carrier liquid, the dry matter content, and the dimensions of the fibers. Bioreactor operators often oversize mixers and extend mixing duration to avoid disruptions in biogas production. This paper analyzed the influence of digester mixer operations on selected electrical power quality parameters. For this purpose, two agricultural biogas plants with a capacity of 40 kW, connected to the low-voltage grid, were studied (one located approximately 120 m from the transformer station and the second 430 m away). As shown by the correlations presented in the article, the connection point of the biogas plant significantly impacted the magnitude of the influence of mixer operations on the analyzed voltage parameters. In the second biogas plant, switching on the mixers (in the absence of generation) caused the grid voltage to drop to the lower value permitted by regulations. (Switching on the mixers caused a change in voltage by about 30 V.) The most disturbances were introduced into the grid when the power generated by the biogas plant was equal to the power consumed by its internal equipment. (THDI then reached as high as 63.2%, while in other cases, it did not exceed 17%.) Furthermore, the operation of the mixers alone resulted in a reduction of approximately 1 MWh of energy exported to the power grid per month. Full article
Show Figures

Figure 1

4 pages, 429 KiB  
Proceeding Paper
Overview of the Use of Anaerobic Digestion on Swine Farms and the Potential for Bioenergy Production in Minas Gerais, Brazil
by Marcela de Souza Silva, Sibele Augusta Ferreira Leite and Brenno Santos Leite
Proceedings 2025, 121(1), 5; https://doi.org/10.3390/proceedings2025121005 - 17 Jul 2025
Viewed by 225
Abstract
This study provides a comprehensive panorama of wastewater treatment on swine farms in Pará de Minas, MG, focusing on the performance of the anaerobic digester technologies adopted. Considering the economic and environmental importance of swine production, wastewater treatment is critical for mitigating environmental [...] Read more.
This study provides a comprehensive panorama of wastewater treatment on swine farms in Pará de Minas, MG, focusing on the performance of the anaerobic digester technologies adopted. Considering the economic and environmental importance of swine production, wastewater treatment is critical for mitigating environmental impacts while providing renewable energy opportunities. Data compilation from the Minas Gerais Institute of Agriculture (IMA), technical visits, and physicochemical analyses were conducted. Our results indicate that the region has significant potential to increase biogas production by expanding the number of plants and improving the efficiency of existing systems. Investments in scalable technological solutions tailored for small-scale operations are essential to enhance both wastewater treatment and biogas generation. This study demonstrates the potential for new business opportunities within the biogas value chain in Brazilian agribusiness. Full article
Show Figures

Figure 1

19 pages, 1165 KiB  
Article
Expansion of Mechanical Biological Residual Treatment Plant with Fermentation Stage for Press Water from Organic Fractions Involving a Screw Press
by Rzgar Bewani, Abdallah Nassour, Thomas Böning, Jan Sprafke and Michael Nelles
Recycling 2025, 10(4), 141; https://doi.org/10.3390/recycling10040141 - 16 Jul 2025
Viewed by 285
Abstract
A three-year optimization study was conducted at a mechanical biological treatment plant with the aim of enhancing organic fractions recovery from mechanically separated fine fractions (MSFF) of residual waste using a screw press. The study aimed to optimize key operating parameters for the [...] Read more.
A three-year optimization study was conducted at a mechanical biological treatment plant with the aim of enhancing organic fractions recovery from mechanically separated fine fractions (MSFF) of residual waste using a screw press. The study aimed to optimize key operating parameters for the employed screw press, such as pressure, liquid-to-MSFF, feeding quantity per hour, and press basket mesh size, to enhance volatile solids and biogas recovery in the generated press water for anaerobic digestion. Experiments were performed at the full-scale facility to evaluate the efficiency of screw press extraction with other pretreatment methods, like press extrusion, wet pulping, and hydrothermal treatment. The results indicated that hydrolysis of the organic fractions in MSFF was the most important factor for improving organic extraction from the MSFF to press water for fermentation. Optimal hydrolysis efficiency was achieved with a digestate and process water-to-MSFF of approximately 1000 L/ton, with a feeding rate between 8.8 and 14 tons per hour. Increasing pressure from 2.5 to 4.0 bar had minimal impact on press water properties or biogas production, regardless of the press basket size. The highest volatile solids (29%) and biogas (50%) recovery occurred at 4.0 bar pressure with a 1000 L/ton liquid-to-MSFF. Further improvements could be achieved with longer mixing times before pressing. These findings demonstrate the technical feasibility of the pressing system for preparing an appropriate substrate for the fermentation process, underscoring the potential for optimizing the system. However, further research is required to assess the cost–benefit balance. Full article
Show Figures

Figure 1

21 pages, 1897 KiB  
Article
Simulation of Conventional WWTPs Acting as Mediators in H2/CO2 Conversion into Methane
by Rubén González and Xiomar Gómez
Environments 2025, 12(7), 245; https://doi.org/10.3390/environments12070245 - 16 Jul 2025
Viewed by 509
Abstract
CO2-biomethanation was studied in the present manuscript by considering the direct injection of hydrogen into a conventional anaerobic digester treating sewage sludge within a simulated wastewater treatment plant (WWTP). The plant was simulated using the Python 3.12.4 software, and a Monte [...] Read more.
CO2-biomethanation was studied in the present manuscript by considering the direct injection of hydrogen into a conventional anaerobic digester treating sewage sludge within a simulated wastewater treatment plant (WWTP). The plant was simulated using the Python 3.12.4 software, and a Monte Carlo simulation was conducted to account for the high variability in the organic content of the wastewater and the methane potential of the sludge. Two modes of operation were studied. The first mode involves the use of an anaerobic digester to upgrade biogas, and the second mode considers using the digester as a CO2 utilization unit, transforming captured CO2. Upgrading biogas and utilizing the extra methane to generate electricity within the same plant leads to a negative economic balance (first scenario). A hydrogen injection of 1 L of H2/Lr d (volumetric H2 injection per liter of reactor per day) was required to transform the CO2 present in the biogas into methane. The benefits associated with this approach resulted in lower savings regarding heat recovery from the electrolyzer, increased electricity production, and an additional oxygen supply for the waste-activated sludge treatment system. Increasing the injection rate to values of 5 and 30 L of H2/Lr d was also studied by considering the operation of the digester under thermophilic conditions. The latter assumptions benefited from the better economy of scale associated with larger installations. They allowed for enough savings to be obtained in terms of the fuel demand for sludge drying, in addition to the previous categories analyzed in the biogas upgrading case. However, the current electricity price makes the proposal unfeasible unless a lower price is set for hydrogen generation. A standard electricity price of 7.6 c€/kWh was assumed for the analysis, but the specific operation of producing hydrogen required a price below 3.0 c€/kWh to achieve profitability. Full article
Show Figures

Figure 1

17 pages, 2432 KiB  
Article
Fertilization Effects of Solid Digestate Treatments on Earthworm Community Parameters and Selected Soil Attributes
by Anna Mazur-Pączka, Kevin R. Butt, Marcin Jaromin, Edmund Hajduk, Mariola Garczyńska, Joanna Kostecka and Grzegorz Pączka
Agriculture 2025, 15(14), 1511; https://doi.org/10.3390/agriculture15141511 - 13 Jul 2025
Viewed by 824
Abstract
An increasing number of soils, including those in EU countries, are affected by organic matter deficiency and the deterioration of nutrients, and using mineral fertilizers is often associated with negative environmental impacts. One of the basic recommendations for sustainable agriculture is to increase [...] Read more.
An increasing number of soils, including those in EU countries, are affected by organic matter deficiency and the deterioration of nutrients, and using mineral fertilizers is often associated with negative environmental impacts. One of the basic recommendations for sustainable agriculture is to increase the proportion of organic fertilizers in crop production and preserve soil biodiversity. An increasingly common organic fertilizer is biogas plant digestate, the physical and chemical properties of which depend primarily on the waste material used in biogas production. However, the fertilizer value of this additive and its effects on the soil environment, including beneficial organisms, remain insufficiently studied. Soil macrofauna, particularly earthworms, play a crucial role in soil ecosystems, because they significantly impact the presence of plant nutrients, actively participate in forming soil structures, and strongly influence organic matter dynamics. The present study was undertaken to determine the effects of fertilizing a silt loam soil with the solid fraction of digestate in monoculture crop production on earthworm community characteristics and the resulting changes in selected soil physicochemical properties. The research was conducted at a single site, so the original soil characteristics across the experimental plots were identical. Plots were treated annually (for 3 years; 2021–2023) with different levels of digestate: DG100 (100% of the recommended rate; 30 t ha−1), DG75 (75% of the recommended rate; 22.5 t ha−1), DG50 (15 t ha−1), DG25 (7.5 t ha−1), and CL (a control plot without fertilizer). An electrical method was used to extract earthworms. Those found at the study site belonged to seven species representing three ecological groups: Dendrodrilus rubidus (Sav.), Lumbricus rubellus (Hoff.), and Dendrobaena octaedra (Sav.) (epigeics); Aporrectodea caliginosa (Sav.), Aporrectodea rosea (Sav.), and Octolasion lacteum (Örley) (endogeics); and Lumbricus terrestris (L.) (anecics). Significant differences in the abundance and biomass of earthworms were found between the higher level treatments (DG100, DG75, and DG50), and the lowest level of fertilization and the control plot (DG25 and CL). The DG25 and CL plots showed an average of 24.7% lower earthworm abundance and 22.8% lower biomass than the other plots. There were no significant differences in the earthworm metrics between the plots within each of the two groups (DG100, DG75, and DG50; and DG25 and CL). The most significant influence on the average abundance and average biomass of Lumbricidae was probably exerted by soil moisture and the annual dosage of digestate. A significant increase in the abundance and biomass of Lumbricidae was shown at plots DG100, DG75, and DG50 in the three successive years of the experiment. The different fertilizer treatments were found to have different effects on selected soil parameters. No significant differences were found among the values of the analyzed soil traits within each plot in the successive years of the study. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

22 pages, 3729 KiB  
Article
Assessing the Impact of Residual Municipal Solid Waste Characteristics on Screw Press Performance in a Mechanical Biological Treatment Plant Optimized with Anaerobic Digestion
by Rzgar Bewani, Abdallah Nassour, Thomas Böning, Jan Sprafke and Michael Nelles
Sustainability 2025, 17(14), 6365; https://doi.org/10.3390/su17146365 - 11 Jul 2025
Cited by 1 | Viewed by 372
Abstract
Mechanical–biological treatment plants face challenges in effectively separating organic fractions from residual municipal solid waste for biological treatment. This study investigates the optimization measures carried out at the Erbenschwang MBT facility, which transitioned from solely aerobic treatment to integrated anaerobic digestion using a [...] Read more.
Mechanical–biological treatment plants face challenges in effectively separating organic fractions from residual municipal solid waste for biological treatment. This study investigates the optimization measures carried out at the Erbenschwang MBT facility, which transitioned from solely aerobic treatment to integrated anaerobic digestion using a screw press. This study focused on evaluating the efficiency of each mechanical pretreatment step by investigating the composition of the residual waste, organic fraction recovery rate, and screw press performance in recovering organic material and biogas to press water. The results showed that 92% of the organic material from the residual waste was recovered into fine fractions after shredding and trommel screening. The pressing experiments produced high-quality press water with less than 3% inert material (0.063–4 mm size). Mass balance analysis revealed that 47% of the input fresh mass was separated into press water, corresponding to 24% of the volatile solids recovered. Biogas yield tests showed that the press water had a biogas potential of 416 m3/ton VS, recovering 38% of the total biogas potential. In simple terms, the screw press produced 32 m3 of biogas per ton of mechanically separated fine fractions and 20 m3 per ton of input residual waste. This low-pressure, single-step screw press efficiently and cost-effectively prepares anaerobic digestion feedstock, making it a promising optimization for both existing and new facilities. The operational configuration of the screw press remains an underexplored area in current research. Therefore, further studies are needed to systematically evaluate key parameters such as screw press pressure (bar), liquid-to-waste (L/ton), and feed rate (ton/h). Full article
Show Figures

Figure 1

20 pages, 2601 KiB  
Article
Waste as a Source of Fuel and Developments in Hydrogen Storage: Applied Cases in Spain and Their Future Potential
by Juan Pous de la Flor, María-Pilar Martínez-Hernando, Roberto Paredes, Enrique Garcia-Franco, Juan Pous Cabello and Marcelo F. Ortega
Appl. Sci. 2025, 15(13), 7514; https://doi.org/10.3390/app15137514 - 4 Jul 2025
Viewed by 365
Abstract
The integration of renewable energy with circular economy strategies offers effective pathways to reduce greenhouse gas emissions while enhancing local energy independence. This study analyses three real-world projects implemented in Spain that exemplify this synergy. LIFE Smart Agromobility converts pig manure into biomethane [...] Read more.
The integration of renewable energy with circular economy strategies offers effective pathways to reduce greenhouse gas emissions while enhancing local energy independence. This study analyses three real-world projects implemented in Spain that exemplify this synergy. LIFE Smart Agromobility converts pig manure into biomethane to power farm vehicles, using anaerobic digestion and microalgae-based upgrading systems. Smart Met Value refines biogas from a wastewater treatment plant in Guadalajara to produce high-purity biomethane for the municipal fleet, demonstrating the viability of energy recovery from sewage sludge. The UNDERGY project addresses green hydrogen storage by repurposing a depleted natural gas reservoir, showing geochemical and geomechanical feasibility for seasonal underground hydrogen storage. Each project utilises regionally available resources to produce clean fuels—biomethane or hydrogen—while mitigating methane and CO2 emissions. Results show significant energy recovery potential: biomethane production can replace a substantial portion of fossil fuel use in rural and urban settings, while hydrogen storage provides a scalable solution for surplus renewable energy. These applied cases demonstrate not only the technical feasibility but also the socio-economic benefits of integrating waste valorisation and energy transition technologies. Together, they represent replicable models for sustainable development and energy resilience across Europe and beyond. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

14 pages, 4079 KiB  
Article
Optimization of Biogas Production from Agricultural Residues Through Anaerobic Co-Digestion and GIS Tools in Colombia
by Alfonso García Álvaro, Carlos Arturo Vides Herrera, Elena Moreno-Amat, César Ruiz Palomar, Aldo Pardo García, Adalberto José Ospino and Ignacio de Godos
Processes 2025, 13(7), 2013; https://doi.org/10.3390/pr13072013 - 25 Jun 2025
Viewed by 369
Abstract
The ongoing global population growth and the corresponding rise in energy demand have contributed to increased greenhouse gas (GHG) emissions. The integration of alternative, locally sourced energy solutions such as biogas presents a promising strategy to partially offset conventional energy consumption. In this [...] Read more.
The ongoing global population growth and the corresponding rise in energy demand have contributed to increased greenhouse gas (GHG) emissions. The integration of alternative, locally sourced energy solutions such as biogas presents a promising strategy to partially offset conventional energy consumption. In this context, countries like Colombia—characterized by a high availability of organic waste such as palm oil mill effluent (POME), rice straw, and pig manure—have the potential to harness these residues for biogas production. This study integrates experimental assays of anaerobic co-digestion tests with the spatial analysis of substrate distribution through GIS tools, enabling the identification of optimal regions for biogas production. Methane yields reached 412 mL CH4/g VS, comparable or superior to those reported in similar studies. In addition to laboratory assays, Geographic Information System (GIS) tools were used to generate a weighted heatmap index based on feedstock availability (POME, rice straw, pig manure) across 40 municipalities in Colombia. This integrated approach supports decentralized renewable energy planning and helps identify optimal locations for biogas plant development. Full article
(This article belongs to the Special Issue Waste Management and Biogas Production Process and Application)
Show Figures

Figure 1

15 pages, 1564 KiB  
Article
Organic Waste and Wastewater Sludge to Volatile Fatty Acids and Biomethane: A Semi-Continuous Biorefinery Approach
by Paolo S. Calabrò, Domenica Pangallo, Mariastella Ferreri, Altea Pedullà and Demetrio A. Zema
Recycling 2025, 10(4), 125; https://doi.org/10.3390/recycling10040125 - 21 Jun 2025
Cited by 1 | Viewed by 471
Abstract
Volatile fatty acids (VFA) are valuable intermediates with growing demand in chemical, pharmaceutical, and environmental applications. Their sustainable production from organic waste is increasingly explored in the context of circular economy and biorefinery models. This study investigates the co-fermentation of waste-activated sludge (WAS) [...] Read more.
Volatile fatty acids (VFA) are valuable intermediates with growing demand in chemical, pharmaceutical, and environmental applications. Their sustainable production from organic waste is increasingly explored in the context of circular economy and biorefinery models. This study investigates the co-fermentation of waste-activated sludge (WAS) and the organic fraction of municipal solid waste (OFMSW) as a strategy for integrated VFA and biogas production. Semi-continuous experiments were carried out to assess the effect of the substrates ratio (WAS:OFMSW = 90:10 and 30:70), hydraulic retention time (HRT), and pH control (5, 9, no control) on VFA yield and composition. Results showed that higher OFMSW content and alkaline conditions favoured VFA production, with a maximum yield of 144.9 mgHAc·gVS−1 at pH 9 and 70:30 ratio. Acetate dominated, while butyrate production peaked at 114.1 mgHBu·gVS−1 under high sludge conditions. However, the addition of alkali required for pH control may lead to excessive accumulation of alkaline-earth metal ions, which can disrupt biological processes due to their potential toxicity. Anaerobic digestion of fermentation residues enhanced biomethane yields significantly (0.27 NL·gVS−1 vs. 0.05 NL·gVS−1 from raw sludge). The proposed process demonstrates potential for converting wastewater treatment plants into biorefineries, maximising resource recovery while reducing environmental impact. Full article
(This article belongs to the Special Issue Biomass Revival: Rethinking Waste Recycling for a Greener Future)
Show Figures

Graphical abstract

16 pages, 1761 KiB  
Article
Biogas from Food Waste on the Island of Tenerife: Potential from Kitchens and Restaurants, Stabilisation and Conversion in a Biogas Plant Made of Textile Materials
by Verónica Hidalgo-Sánchez, María Emma Borges, Josef Hofmann, Daniel Cuñarro, Sophie Schneider and Tobias Finsterwalder
Appl. Sci. 2025, 15(12), 6922; https://doi.org/10.3390/app15126922 - 19 Jun 2025
Viewed by 471
Abstract
Municipal solid waste management (MSWM) on islands involves several challenges relating to politics, society, the environment, and technology. This paper addresses the potential for producing biogas and biomethane from food waste on Tenerife, including waste from households, with the aim of reducing landfill [...] Read more.
Municipal solid waste management (MSWM) on islands involves several challenges relating to politics, society, the environment, and technology. This paper addresses the potential for producing biogas and biomethane from food waste on Tenerife, including waste from households, with the aim of reducing landfill and primary fossil energy consumption. The study also introduces the European and Regional policy framework and requirements. Effective microorganisms have been studied as proposals to stabilise the food waste from households, avoiding odours and decomposition during storage. The trials show positive results in terms of the preservation of organic matter until the food waste is transported to the biogas plant. In addition, a new concept for a small biogas plant made of textile materials, which are suited to the municipalities of Tenerife, is presented to provide an easy-to-build solution, with ranges of up to 75 kW in electrical power. With a theoretical potential of 299,012 tons of food waste being available per year (based on 2022), preliminary laboratory experiments with real samples of the island showed a theoretical potential of 28.97 × 106 Nm3 for biogas and 264,612 tons for digestate, which can be used as fertilisers, with potential savings of 18.15 × 106 L of gasoline and 42.66 × 103 equivalent CO2 tons. Full article
Show Figures

Figure 1

17 pages, 1333 KiB  
Article
Anaerobic Digestion of the Halophyte Salicornia ramosissima in Co-Digestion with Swine Manure in Lab-Scale Batch and Continuous Reactor Tests
by Aadila Cayenne and Hinrich Uellendahl
Energies 2025, 18(12), 3085; https://doi.org/10.3390/en18123085 - 11 Jun 2025
Viewed by 317
Abstract
This laboratory study investigated the anaerobic co-digestion process of the halophyte S. ramosissima (Sram) together with swine manure (SM) in different mixing ratios in batch and continuous reactor experiments. In the batch experiments, a methane yield of 214 mLCH4·gVS−1 was [...] Read more.
This laboratory study investigated the anaerobic co-digestion process of the halophyte S. ramosissima (Sram) together with swine manure (SM) in different mixing ratios in batch and continuous reactor experiments. In the batch experiments, a methane yield of 214 mLCH4·gVS−1 was obtained for Sram in mono-digestion. In co-digestion with SM, the methane yields were slightly higher than calculated from the yields of each substrate in mono-digestion. Also, the kinetic rate constant in the co-digestion with swine manure increased from 0.219 d−1 for mono-digested S. ramosissima to 0.318 d−1 in the co-digestion of 50:50 Sram:SM (based on VS). Two continuous 5 L lab-scale CSTR reactors were operated: one as a control (100% SM) and the other as a co-digestion reactor with an increasing VS share of Sram (15, 25, and 35%) in the feed. Both reactors were operated at an organic loading rate (OLR) of 2.5 gVS.L−1·d−1 and a hydraulic retention time (HRT) of 20 days. In the continuous process, the highest methane yield of 276 mLCH4·gVS−1 was achieved at a co-digestion VS ratio of Sram:SM 25:75, corresponding to a methane yield from the added S. ramosissima of 277 mLCH4·gVS−1. This showed successful operation of the continuous co-digestion process of S. ramosissima and swine manure, with higher methane yields of S. ramosissima than in the mono-digestion batch tests. Full article
(This article belongs to the Special Issue Biomass Resources to Bioenergy: 2nd Edition)
Show Figures

Figure 1

14 pages, 698 KiB  
Article
Exergy Analysis of a Biogas Plant for Municipal Solid Waste Treatment and Energy Cogeneration
by Joana Prisco Pinheiro, Priscila Rosseto Camiloti, Ildo Luis Sauer and Carlos Eduardo Keutenedjian Mady
Energies 2025, 18(11), 2804; https://doi.org/10.3390/en18112804 - 28 May 2025
Viewed by 444
Abstract
The amount of municipal solid waste (MSW) produced has increased with population growth and consumption patterns. Currently, most waste goes to dumps, although the Brazilian law requires the final destination to be landfills. The latter does not consider the energy lost by these [...] Read more.
The amount of municipal solid waste (MSW) produced has increased with population growth and consumption patterns. Currently, most waste goes to dumps, although the Brazilian law requires the final destination to be landfills. The latter does not consider the energy lost by these solutions and the carbon footprint that better destinations could avoid. However, not treating the waste correctly aggravates land availability problems, especially in large cities such as São Paulo. Anaerobic digestion is an alternative to traditional waste management, and in addition to treating residues, it generates energy and recovers the nutrients present in MSW. Thermodynamic analyses are still scarce in the literature despite being a known process. This study performed an exergy analysis of an existing biogas plant at the Institute of Energy and Environment of the University of São Paulo with a processing capacity of 20 tons of MSW per day composed of three reactors (430 m3 each) and one internal combustion engine (ICE) of 75 kW. The plant uses MSW as the substrate for anaerobic digestion and generates electrical energy, biogas, and fertilizer for agriculture (digestate). Additionally, the plant operates in cogeneration, as the anaerobic digestion reactor uses the heat produced to generate electrical energy. The results showed that the exergy present in the substrate is 67,320 MJ/day. The products’ exergy flows and the processes’ efficiencies show that the exergy flow of the biogas (44,488 MJ/day) is significantly higher than the exergy flow of the digestate (1455 MJ/day). When considering the cogeneration process, the exergy flow was similar for heat and electric energy as the final products, with 10,987 MJ/day for electric energy and 5215 MJ/day for electric energy. The exergy efficiency of the digestion process was 68.25%, while that of cogeneration (digestate, heat and electric energy) was 26.23%. These results can help identify inefficiencies and optimize processes in an anaerobic digestion plant. Furthermore, thermodynamic analyses of anaerobic digestion found in the literature are mostly based on theoretical models. Thus, this study fills a gap regarding exergy analysis of actual biogas plants. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

29 pages, 4070 KiB  
Article
Impact of Digestate-Derived Nitrogen on Nutrient Content Dynamics in Winter Oilseed Rape Before Flowering
by Remigiusz Łukowiak, Witold Szczepaniak and Dominik Młodecki
Agronomy 2025, 15(5), 1241; https://doi.org/10.3390/agronomy15051241 - 20 May 2025
Viewed by 537
Abstract
The increase in biogas production has caused a simultaneous increase in the production of digestate, which is a valuable carrier of nutrients in crop plant production. Digestate-derived nitrogen ensures the optimal nutritional status of winter oilseed plants at critical stages of yield formation. [...] Read more.
The increase in biogas production has caused a simultaneous increase in the production of digestate, which is a valuable carrier of nutrients in crop plant production. Digestate-derived nitrogen ensures the optimal nutritional status of winter oilseed plants at critical stages of yield formation. This hypothesis was verified in field experiments with winter oilseed rape (WOSR) conducted in the 2015/2016, 2016/2017, and 2017/2018 growing seasons. The experiment consisted of three nitrogen fertilization systems (FSs)—mineral ammonium nitrate (AN) (AN-FS), digestate-based (D-FS), and 2/3 digestate + 1/3 AN (DAN-FS)—and five Nf doses: 0, 80, 120, 160, and 240 kg N ha−1. Plants fertilized with digestate had higher yields than those fertilized with AN. The highest seed yield (SY) was recorded in the DAN-FS, which was 0.56 t ha−1 higher than that in the M-FS. The nitrogen fertilizer replacement value (NFRV), averaged over N doses, was 104% for the D-FS and reached 111% for the mixed DAN-FS system. The N content in WOSR leaves, which was within the range of 41–48 g kg−1 DM at the rosette stage and within 34–44 g kg−1 DM at the beginning of flowering, ensured optimal plant growth and seed yield. In WOSR plants fertilized with digestate, the nitrogen (N) content was significantly lower compared to that in plants fertilized with AN, but this difference did not have a negative impact on the seed yield (SY). The observed positive effect of the digestate on plant growth in the pre-flowering period of WOSR growth and on SY resulted from the impact of Mg, which effectively controlled Ca, especially in the third growing season (which was dry). Mg had a significant effect on the biomass of rosettes and on SY, but only when its content in leaves exceeded 2.0 g kg−1 DM. It is necessary to emphasize the specific role of the digestate, which significantly reduced the Ca content in the indicator WOSR organs. Increased Ca content during the vegetative period of WOSR growth reduced leaf N and Zn contents, which ultimately led to a decrease in SY. Therefore, the rosette phase of WOSR growth should be considered a reliable diagnostic phase for both the correction of plants’ nutritional status and the prediction of SY. It can be concluded that the fertilization value of digestate-derived N was the same as that of ammonium nitrate. This means that the mineral fertilizer can be replaced by digestate in WOSR production. Full article
Show Figures

Figure 1

Back to TopTop