Optimization of Biogas Production from Agricultural Residues Through Anaerobic Co-Digestion and GIS Tools in Colombia
Abstract
1. Introduction
2. Materials and Methods
2.1. Substrates and Anaerobic Inoculum
2.2. Experimental Setup
2.3. Analytical Methods
2.4. Modelling
2.5. Geographic Information System (GIS) Study
Study Case: Norte De Santander
3. Results and Discussion
3.1. BMP Tests
3.2. Modelling Results
3.3. Study Case
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Horváth, I.S.; Tabatabaei, M.; Karimi, K.; Kumar, R. Recent Updates on Biogas Production—A Review. Biofuel Res. J. 2016, 3, 394–402. [Google Scholar] [CrossRef]
- Boloy, R.A.M.; da Cunha Reis, A.; Rios, E.M.; de Araújo Santos Martins, J.; Soares, L.O.; de Sá Machado, V.A.; de Moraes, D.R. Waste-to-Energy Technologies Towards Circular Economy: A Systematic Literature Review and Bibliometric Analysis. Water Air Soil Pollut. 2021, 232, 306. [Google Scholar] [CrossRef]
- Aliyu Yaro, N.S.; Sutanto, M.H.; Habib, N.Z.; Napiah, M.; Usman, A.; Jagaba, A.H.; Al-Sabaeei, A.M. Application and Circular Economy Prospects of Palm Oil Waste for Eco-Friendly Asphalt Pavement Industry: A Review. J. Road Eng. 2022, 2, 309–331. [Google Scholar] [CrossRef]
- Li, Z.; Wei, X.; Al Shraah, A.; Khudoykulov, K.; Albasher, G.; Ortiz, G.G.R. Role of Green Energy Usage in Reduction of Environmental Degradation: A Comparative Study of East Asian Countries. Energy Econ. 2023, 126, 106927. [Google Scholar] [CrossRef]
- Álvaro, A.G.; Palomar, C.R.; Torre, R.M.; Redondo, D.H.; de Godos Crespo, I. Hybridization of Anaerobic Digestion with Solar Energy: A Solution for Isolated Livestock Farms. Energy Convers. Manag. X 2023, 20, 100488. [Google Scholar] [CrossRef]
- Ampese, L.C.; Sganzerla, W.G.; Di Domenico Ziero, H.; Mudhoo, A.; Martins, G.; Forster-Carneiro, T. Research Progress, Trends, and Updates on Anaerobic Digestion Technology: A Bibliometric Analysis. J. Clean. Prod. 2022, 331, 130004. [Google Scholar] [CrossRef]
- Farizal, F.; Amanda, T.; Dachyar, M.; Noor, Z.Z. 2030 Oil Palm Plantation Carbon Footprint Estimation Using O-LCA and Forecasting. J. Clean. Prod. 2024, 463, 142646. [Google Scholar] [CrossRef]
- Ferry, J.G. The Chemical Biology of Methanogenesis. Planet. Space Sci. 2010, 58, 1775–1783. [Google Scholar] [CrossRef]
- Méndez, L.; García, D.; Perez, E.; Blanco, S.; Muñoz, R. Photosynthetic Upgrading of Biogas from Anaerobic Digestion of Mixed Sludge in an Outdoors Algal-Bacterial Photobioreactor at Pilot Scale. J. Water Process Eng. 2022, 48, 102891. [Google Scholar] [CrossRef]
- Ruiz Palomar, C.; Álvaro, A.G.; Muñoz, R.; Repáraz, C.; Ortega, M.F.; de Godos, I. Pre-Commercial Demonstration of a Photosynthetic Upgrading Plant: Investment and Operating Cost Analysis. Processes 2024, 12, 2794. [Google Scholar] [CrossRef]
- Raposo, F.; De la Rubia, M.A.; Fernández-Cegrí, V.; Borja, R. Anaerobic Digestion of Solid Organic Substrates in Batch Mode: An Overview Relating to Methane Yields and Experimental Procedures. Renew. Sustain. Energy Rev. 2012, 16, 861–877. [Google Scholar] [CrossRef]
- Mutungwazi, A.; Awosusi, A.; Matambo, T.S. Comparative Functional Microbiome Profiling of Various Animal Manures during Their Anaerobic Digestion in Biogas Production Processes. Biomass Bioenergy 2023, 170, 106728. [Google Scholar] [CrossRef]
- Shah, F.A.; Mahmood, Q.; Rashid, N.; Pervez, A.; Raja, I.A.; Shah, M.M. Co-Digestion, Pretreatment and Digester Design for Enhanced Methanogenesis. Renew. Sustain. Energy Rev. 2015, 42, 627–642. [Google Scholar] [CrossRef]
- Kunatsa, T.; Xia, X. A Review on Anaerobic Digestion with Focus on the Role of Biomass Co-Digestion, Modelling and Optimisation on Biogas Production and Enhancement. Bioresour. Technol. 2022, 344, 126311. [Google Scholar] [CrossRef]
- Hagos, K.; Zong, J.; Li, D.; Liu, C.; Lu, X. Anaerobic Co-Digestion Process for Biogas Production: Progress, Challenges and Perspectives. Renew. Sustain. Energy Rev. 2017, 76, 1485–1496. [Google Scholar] [CrossRef]
- Farid, M.A.A.; Hassan, M.A.; Othman, M.R.; Shirai, Y.; Ariffin, H. Chapter 10—Sustainability of Oil Palm Biomass-Based Products. In Lignocellulose for Future Bioeconomy; Ariffin, H., Sapuan, S.M., Hassan, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 207–242. ISBN 978-0-12-816354-2. [Google Scholar]
- Jeguirim, M.; Khiari, B. Chapter 9—Biofuels Production. In Palm Trees and Fruits Residues; Jeguirim, M., Khiari, B., Jellali, S., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 351–391. ISBN 978-0-12-823934-6. [Google Scholar]
- Pallikodathan, S.; Man, H.C.; Ghazi, T.I.M.; Sulaiman, A.; Nagarajoo, G.; Shukery, M.F. Minimizing Carbon Dioxide (CO2) Emissions of POME Treatment System Using MILP Model. Processes 2025, 13, 583. [Google Scholar] [CrossRef]
- Aziz, M.M.A.; Kassim, K.A.; ElSergany, M.; Anuar, S.; Jorat, M.E.; Yaacob, H.; Ahsan, A.; Imteaz, M.A. Arifuzzaman Recent Advances on Palm Oil Mill Effluent (POME) Pretreatment and Anaerobic Reactor for Sustainable Biogas Production. Renew. Sustain. Energy Rev. 2020, 119, 109603. [Google Scholar] [CrossRef]
- Khadaroo, S.N.B.A.; Poh, P.E.; Gouwanda, D.; Grassia, P. Applicability of Various Pretreatment Techniques to Enhance the Anaerobic Digestion of Palm Oil Mill Effluent (POME): A Review. J. Environ. Chem. Eng. 2019, 7, 103310. [Google Scholar] [CrossRef]
- Lim, Y.F.; Chan, Y.J.; Hue, F.S.; Ng, S.C.; Hashma, H. Anaerobic Co-Digestion of Palm Oil Mill Effluent (POME) with Decanter Cake (DC): Effect of Mixing Ratio and Kinetic Study. Bioresour. Technol. Rep. 2021, 15, 100736. [Google Scholar] [CrossRef]
- Ramón Vanegas, A.A.; Vásquez, J.; Molina, F.; Peñuela Vásquez, M. Evaluation of Anaerobic Digestion of Palm Oil Mill Effluent (POME) Using Different Sludges as Inoculum. Water Resour. Ind. 2024, 31, 100247. [Google Scholar] [CrossRef]
- Choong, Y.Y.; Chou, K.W.; Norli, I. Strategies for Improving Biogas Production of Palm Oil Mill Effluent (POME) Anaerobic Digestion: A Critical Review. Renew. Sustain. Energy Rev. 2018, 82, 2993–3006. [Google Scholar] [CrossRef]
- Liew, Z.K.; Chan, Y.J.; Ho, Z.T.; Yip, Y.H.; Teng, M.C.; Ameer Abbas bin, A.I.T.; Chong, S.; Show, P.L.; Chew, C.L. Biogas Production Enhancement by Co-Digestion of Empty Fruit Bunch (EFB) with Palm Oil Mill Effluent (POME): Performance and Kinetic Evaluation. Renew. Energy 2021, 179, 766–777. [Google Scholar] [CrossRef]
- Ahmad, A.; Shah, S.M.U.; Othman, M.F.; Abdullah, M.A. Aerobic and Anaerobic Co-Cultivation of Nannochloropsis Oculata with Oil Palm Empty Fruit Bunch for Enhanced Biomethane Production and Palm Oil Mill Effluent Treatment. Desalination Water Treat. 2015, 56, 2055–2065. [Google Scholar] [CrossRef]
- Álvaro, A.G.; Ruiz Palomar, C.; Valenzuela, E.I.; Hermosilla Redondo, D.; Muñoz Torre, R.; de Godos Crespo, I. Microbial Analysis of Anaerobic Digester Reveals Prevalence of Manure Microbiota. J. Water Process Eng. 2024, 60, 105162. [Google Scholar] [CrossRef]
- Abraham, A.; Mathew, A.K.; Sindhu, R.; Pandey, A.; Binod, P. Potential of Rice Straw for Bio-Refining: An Overview. Bioresour. Technol. 2016, 215, 29–36. [Google Scholar] [CrossRef]
- Yalcinkaya, S. A Spatial Modeling Approach for Siting, Sizing and Economic Assessment of Centralized Biogas Plants in Organic Waste Management. J. Clean. Prod. 2020, 255, 120040. [Google Scholar] [CrossRef]
- Chukwuma, E.C.; Okey-Onyesolu, F.C.; Ani, K.A.; Nwanna, E.C. GIS Bio-Waste Assessment and Suitability Analysis for Biogas Power Plant: A Case Study of Anambra State of Nigeria. Renew. Energy 2021, 163, 1182–1194. [Google Scholar] [CrossRef]
- Ankathi, S.; Watkins, D.; Sreedhara, P.; Zuhlke, J.; Shonnard, D.R. GIS-Integrated Optimization for Locating Food Waste and Manure Anaerobic Co-Digestion Facilities. ACS Sustain. Chem. Eng. 2021, 9, 4024–4032. [Google Scholar] [CrossRef]
- Aktar, K.; Yabar, H.; Mizunoya, T.; Islam, M. Application of GIS in Introducing Community-Based Biogas Plants from Dairy Farm Waste: Potential of Renewable Energy for Rural Areas in Bangladesh. Geomatics 2024, 4, 384–411. [Google Scholar] [CrossRef]
- Bedoić, R.; Smoljanić, G.; Pukšec, T.; Čuček, L.; Ljubas, D.; Duić, N. Geospatial Analysis and Environmental Impact Assessment of a Holistic and Interdisciplinary Approach to the Biogas Sector. Energies 2021, 14, 5374. [Google Scholar] [CrossRef]
- Holliger, C.; Alves, M.; Andrade, D.; Angelidaki, I.; Astals, S.; Baier, U.; Bougrier, C.; Buffière, P.; Carballa, M.; de Wilde, V.; et al. Towards a Standardization of Biomethane Potential Tests. Water Sci. Technol. 2016, 74, 2515–2522. [Google Scholar] [CrossRef] [PubMed]
- Lindner, J.; Zielonka, S.; Oechsner, H.; Lemmer, A. Effect of Different PH-Values on Process Parameters in Two-Phase Anaerobic Digestion of High-Solid Substrates. Environ. Technol. 2015, 36, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Alvaro, A.G.; Palomar, C.R.; Redondo, D.H.; Torre, R.M.; de Godos Crespo, I. Simultaneous Production of Biogas and Volatile Fatty Acids through Anaerobic Digestion Using Cereal Straw as Substrate. Environ. Technol. Innov. 2023, 31, 103215. [Google Scholar] [CrossRef]
- American Public Health Association (APHA). Standard Methods for the Examination of Water & Wastewater, 22nd ed.; APHA: Washington DC, USA, 2012. [Google Scholar]
- Shamurad, B.; Gray, N.; Petropoulos, E.; Tabraiz, S.; Membere, E.; Sallis, P. Predicting the Effects of Integrating Mineral Wastes in Anaerobic Digestion of OFMSW Using First-Order and Gompertz Models from Biomethane Potential Assays. Renew. Energy 2020, 152, 308–319. [Google Scholar] [CrossRef]
- Buchanan, R.L.; Whiting, R.C.; Damert, W.C. When Is Simple Good Enough: A Comparison of the Gompertz, Baranyi, and Three-Phase Linear Models for Fitting Bacterial Growth Curves. Food Microbiol. 1997, 14, 313–326. [Google Scholar] [CrossRef]
- FedePalma (Federación Nacional de Cultivadores de Palma de Aceite). Statistical Yearbook. Key Figures for the Oil Palm Agro-Industry and the World 2018–2022; Fedepalma: Bogota, Colombia, 2023. [Google Scholar]
- FedeArroz. National Rice Census 2023; FedeArroz: Bogota, Colombia, 2023. [Google Scholar]
- ICA—Instituto Colombiano Agropecuario. Agricultural Census in Colombia, 2023; ICA: Bogota, Colombia, 2023.
- Hashemi, B.; Sarker, S.; Lamb, J.J.; Lien, K.M. Yield Improvements in Anaerobic Digestion of Lignocellulosic Feedstocks. J. Clean. Prod. 2021, 288, 125447. [Google Scholar] [CrossRef]
- Camargo, F.P.; Rabelo, C.A.B.S.; Duarte, I.C.S.; Silva, E.L.; Varesche, M.B.A. Biogas from Lignocellulosic Feedstock: A Review on the Main Pretreatments, Inocula and Operational Variables Involved in Anaerobic Reactor Efficiency. Int. J. Hydrogen Energy 2023, 48, 20613–20632. [Google Scholar] [CrossRef]
- Mata-Alvarez, J.; Macé, S.; Llabrés, P. Anaerobic Digestion of Organic Solid Wastes. An Overview of Research Achievements and Perspectives. Bioresour. Technol. 2000, 74, 3–16. [Google Scholar] [CrossRef]
- Cabbai, V.; Ballico, M.; Aneggi, E.; Goi, D. BMP Tests of Source Selected OFMSW to Evaluate Anaerobic Codigestion with Sewage Sludge. Waste Manag. 2013, 33, 1626–1632. [Google Scholar] [CrossRef]
- Rocha-Meneses, L.; Luna-delRisco, M.; González, C.A.; Moncada, S.V.; Moreno, A.; Sierra-Del Rio, J.; Castillo-Meza, L.E. An Overview of the Socio-Economic, Technological, and Environmental Opportunities and Challenges for Renewable Energy Generation from Residual Biomass: A Case Study of Biogas Production in Colombia. Energies 2023, 16, 5901. [Google Scholar] [CrossRef]
- Yıldız, T.D.; Güner, M.O.; Kural, O. Effects of EU-Compliant Mining Waste Regulation on Turkish Mining Sector: A Review of Characterization, Classification, Storage, Management, Recovery of Mineral Wastes. Resour. Policy 2024, 90, 104836. [Google Scholar] [CrossRef]
- Jandieri, G. A Generalized Model for Assessing and Intensifying the Recycling of Metal-Bearing Industrial Waste: A New Approach to the Resource Policy of Manganese Industry in Georgia. Resour. Policy 2022, 75, 102462. [Google Scholar] [CrossRef]
- Triolo, J.M.; Sommer, S.G.; Møller, H.B.; Weisbjerg, M.R.; Jiang, X.Y. A New Algorithm to Characterize Biodegradability of Biomass during Anaerobic Digestion: Influence of Lignin Concentration on Methane Production Potential. Bioresour. Technol. 2011, 102, 9395–9402. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, A.T.W.M.; Zeeman, G. Pretreatments to Enhance the Digestibility of Lignocellulosic Biomass. Bioresour. Technol. 2009, 100, 10–18. [Google Scholar] [CrossRef]
- Herrmann, C.; Idler, C.; Heiermann, M. Biogas Crops Grown in Energy Crop Rotations: Linking Chemical Composition and Methane Production Characteristics. Bioresour. Technol. 2016, 206, 23–35. [Google Scholar] [CrossRef]
- Álvaro, A.G.; Ruiz Palomar, C.; Díaz Villalobos, I.; Hermosilla, D.; Muñoz, R.; de Godos, I. Energy Integration of Thermal Pretreatment in Anaerobic Digestion of Wheat Straw. Energies 2024, 17, 2030. [Google Scholar] [CrossRef]
- Pan, S.-Y.; Tsai, C.-Y.; Liu, C.-W.; Wang, S.-W.; Kim, H.; Fan, C. Anaerobic Co-Digestion of Agricultural Wastes toward Circular Bioeconomy. iScience 2021, 24, 102704. [Google Scholar] [CrossRef] [PubMed]
- Sainz-Ortiz, E.; Somohano-Rodriguez, F.M.; Pascual-Muñoz, P.; Arroyo, A.; Manana, M. Dynamic Web-Based GIS Tool for Pre-Feasibility Evaluation of Renewable Energy Projects. Energy Convers. Manag. 2024, 322, 119162. [Google Scholar] [CrossRef]
- Sørensen, B.; Meibom, P. GIS Tools for Renewable Energy Modelling. Renew. Energy 1999, 16, 1262–1267. [Google Scholar] [CrossRef]
Study | Country | Feedstocks | GIS Approach | Impact | Reference |
---|---|---|---|---|---|
Yalcinkaya (2020) | Turkey | OFMSW and livestock manure | GIS Multi-criteria analysis; ArcGIS V10 | Siting, sizing, and economic assessment of centralized biogas plants | [28] |
Chukwuma et al. (2021) | Nigeria | Municipal biowaste | GIS Multi-criteria analysis; ArcGIS V10 | Biogas plant suitability map | [29] |
Ankathi et al. (2020) | USA (Wisconsin) | Food waste + manure | GIS + mixed-integer linear programing + network modelling; ArcGIS V10 | Optimized plant locations and sizes | [30] |
Aktar et al. (2024) | Bangladesh | Dairy farm manure | GIS + restriction and suitability + cluster analysis; ArcGIS V10 | Optimized biogas plant locations | [31] |
Bedoić et al. (2021) | Croatia | Multiple biogas feedstocks | Holistic GIS + LCA for environmental impact; QGIS V3 | Demonstrated GIS-enabled models can reduce environmental burden | [32] |
This study | Colombia | POME + Rice Straw + Pig Manure | GIS + weighted heatmap + overlay | Optimized biogas plant locations |
Analytic Parameter | POME | Pig Manure | Rice Straw | Inoculum |
---|---|---|---|---|
Total solids (g/kg) | 76.1 | 24.1 | 911.9 | 14.8 |
Volatile solids (g/kg) | 63.5 | 15.8 | 791.6 | 10.1 |
COD (g/L) | 132.7 | 95.3 | 1319.4 * | 19.1 |
Total carbon (%) | 18.98 | 0.93 | 38.3 | - |
Total nitrogen (%) | 1.19 | 0.11 | 0.46 | - |
C:N relation | 15.9 | 8.0 | 82.5 | - |
Experiment | Inoculum (mL) | POME (mL) | Pig Manure (mL) | Rice Straw (mg) | C:N Ratio |
---|---|---|---|---|---|
Blank | 70 | 0 | 0 | 0 | - |
POME | 65 | 5.6 | 0 | 0 | 15.9 |
PM | 50 | 0 | 20.8 | 0 | 8 |
RS | 70 | 0 | 0 | 0.32 | 82.5 |
POME + PM | 60 | 4.1 | 6 | 0 | 11.2 |
POME + RS | 67 | 3 | 0 | 0.15 | 19.2 |
PM + RS | 60 | 0 | 10 | 0.23 | 9.7 |
POME + PM + RS | 66 | 2 | 2 | 0.2 | 15.4 |
Experiment | M (mL CH4/g VS) | R (mL CH4/g VS·Day) | λ (Days) | R2 (%) |
---|---|---|---|---|
POME | 384 | 78.0 | 0.14 | 99.6 |
PM | 373 | 55.5 | 0.16 | 99.8 |
RS | 274 | 22.3 | 1.81 | 98.8 |
POME + PM | 321 | 66.5 | 0.11 | 99.7 |
POME + RS | 402 | 83.8 | 0.00 | 98.9 |
PM + RS | 228 | 42.9 | 0.00 | 98.2 |
POME + PM + RS | 412 | 77.2 | 0.00 | 98.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García Álvaro, A.; Vides Herrera, C.A.; Moreno-Amat, E.; Ruiz Palomar, C.; García, A.P.; Ospino, A.J.; de Godos, I. Optimization of Biogas Production from Agricultural Residues Through Anaerobic Co-Digestion and GIS Tools in Colombia. Processes 2025, 13, 2013. https://doi.org/10.3390/pr13072013
García Álvaro A, Vides Herrera CA, Moreno-Amat E, Ruiz Palomar C, García AP, Ospino AJ, de Godos I. Optimization of Biogas Production from Agricultural Residues Through Anaerobic Co-Digestion and GIS Tools in Colombia. Processes. 2025; 13(7):2013. https://doi.org/10.3390/pr13072013
Chicago/Turabian StyleGarcía Álvaro, Alfonso, Carlos Arturo Vides Herrera, Elena Moreno-Amat, César Ruiz Palomar, Aldo Pardo García, Adalberto José Ospino, and Ignacio de Godos. 2025. "Optimization of Biogas Production from Agricultural Residues Through Anaerobic Co-Digestion and GIS Tools in Colombia" Processes 13, no. 7: 2013. https://doi.org/10.3390/pr13072013
APA StyleGarcía Álvaro, A., Vides Herrera, C. A., Moreno-Amat, E., Ruiz Palomar, C., García, A. P., Ospino, A. J., & de Godos, I. (2025). Optimization of Biogas Production from Agricultural Residues Through Anaerobic Co-Digestion and GIS Tools in Colombia. Processes, 13(7), 2013. https://doi.org/10.3390/pr13072013