Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (485)

Search Parameters:
Keywords = bimetallic nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3666 KiB  
Review
Electrochemical (Bio) Sensors Based on Metal–Organic Framework Composites
by Ping Li, Ziyu Cui, Mengshuang Wang, Junxian Yang, Mingli Hu, Qiqing Cheng and Shi Wang
Electrochem 2025, 6(3), 28; https://doi.org/10.3390/electrochem6030028 - 4 Aug 2025
Abstract
Metal–organic frameworks (MOFs) have characteristics such as a large specific surface area, distinct functional sites, and an adjustable pore size. However, the inherent low conductivity of MOFs significantly affects the charge transfer efficiency when they are used for electrocatalytic sensing. Combining MOFs with [...] Read more.
Metal–organic frameworks (MOFs) have characteristics such as a large specific surface area, distinct functional sites, and an adjustable pore size. However, the inherent low conductivity of MOFs significantly affects the charge transfer efficiency when they are used for electrocatalytic sensing. Combining MOFs with conductive materials can compensate for these deficiencies. For MOF/metal nanoparticle composites (e.g., composites with gold, silver, platinum, and bimetallic nanoparticles), the high electrical conductivity and catalytic activity of metal nanoparticles are utilized, and MOFs can inhibit the agglomeration of nanoparticles. MOF/carbon-based material composites integrate the high electrical conductivity and large specific surface area of carbon-based materials. MOF/conductive polymer composites offer good flexibility and tunability. MOF/multiple conductive material composites exhibit synergistic effects. Although MOF composites provide an ideal platform for electrocatalytic reactions, current research still suffers from several issues, including a lack of comparative studies, insufficient research on structure–property correlations, limited practical applications, and high synthesis costs. In the future, it is necessary to explore new synthetic pathways and seek; inexpensive alternative raw materials. Full article
(This article belongs to the Special Issue Feature Papers in Electrochemistry)
Show Figures

Figure 1

24 pages, 8010 KiB  
Article
Mono-(Ni, Au) and Bimetallic (Ni-Au) Nanoparticles-Loaded ZnAlO Mixed Oxides as Sunlight-Driven Photocatalysts for Environmental Remediation
by Monica Pavel, Liubovi Cretu, Catalin Negrila, Daniela C. Culita, Anca Vasile, Razvan State, Ioan Balint and Florica Papa
Molecules 2025, 30(15), 3249; https://doi.org/10.3390/molecules30153249 - 2 Aug 2025
Viewed by 177
Abstract
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was [...] Read more.
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was obtained via the thermal decomposition of its corresponding layered double hydroxide (LDH) precursors. X-ray diffraction (XRD) patterns confirmed the successful fabrication of the nanocomposites, including the synthesis of the metallic NPs, the formation of LDH-like structure, and the subsequent transformation to ZnO phase upon LDH calcination. The obtained nanostructures confirmed the nanoplate-like morphology inherited from the original LDH precursors, which tended to aggregate after the addition of gold NPs. According to the UV-Vis spectroscopy, loading NPs onto the ZnAlO support enhanced the light absorption and reduced the band gap energy. ATR-DRIFT spectroscopy, H2-TPR measurements, and XPS analysis provided information about the functional groups, surface composition, and reducibility of the materials. The catalytic performance of the developed nanostructures was evaluated by the photodegradation of bisphenol A (BPA), under simulated solar irradiation. The conversion of BPA over the bimetallic Ni-Au@ZnAlO reached up to 95% after 180 min of irradiation, exceeding the monometallic Ni@ZnAlO and Au@ZnAlO catalysts. Its enhanced activity was correlated with good dispersion of the bimetals, narrower band gap, and efficient charge carrier separation of the photo-induced e/h+ pairs. Full article
Show Figures

Graphical abstract

14 pages, 2090 KiB  
Article
A Carbon Nanofiber Electrochemical Sensor Made of FeMn@C for the Rapid Detection of Tert-Butyl Hydroquinone in Edible Oil
by Yan Xiao, Yi Zhang, Zhigui He, Liwen Zhang, Tongfei Wang, Tingfan Tang, Jiaxing Chen and Hao Cheng
Molecules 2025, 30(13), 2725; https://doi.org/10.3390/molecules30132725 - 25 Jun 2025
Cited by 1 | Viewed by 320
Abstract
Overuse of tert-butylhydroquinone (TBHQ) as a food antioxidant has the potential to pollute the environment and threaten human health. Therefore, it is imperative to develop precise and rapid methods to detect TBHQ in food products. In this study, Fe- and Mn-doped Prussian blue [...] Read more.
Overuse of tert-butylhydroquinone (TBHQ) as a food antioxidant has the potential to pollute the environment and threaten human health. Therefore, it is imperative to develop precise and rapid methods to detect TBHQ in food products. In this study, Fe- and Mn-doped Prussian blue analogs (FeMn-PBAs) were prepared by co-precipitation, FeMn-PBAs/PAN was prepared by electrostatic spinning, and a novel FeMn@C/CNFs composite was prepared by carbonization in nitrogen. Bimetallic FeMn doping has been shown to reduce vacancy defects and enhance the structural stability of PBA. Furthermore, electrostatic spinning has been demonstrated to reduce the agglomeration of PBA nanoparticles, which are electrode-modifying materials with high stability and good electrical conductivity. The morphological and structural characteristics of the FeMn@C/CNF composites were examined using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The electrochemical behavior of tert-butyl hydroquinone in FeMn@C/CNFs was studied by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronocoulometry (CC). The results demonstrate that the sensor exhibits excellent repeatability, reproducibility, and anti-interference capabilities. The prepared electrochemical sensor can be effectively utilized for the detection of TBHQ in food samples such as soybean and peanut oil samples, proving its strong potential for practical applications. Full article
(This article belongs to the Special Issue Advances in Food Analytical Methods)
Show Figures

Figure 1

19 pages, 8776 KiB  
Article
Exploring the Impact of Bi Content in Nanostructured Pd-Bi Catalysts Used for Selective Oxidation of Glucose: Synthesis, Characterization and Catalytic Properties
by Mariya P. Shcherbakova-Sandu, Semyon A. Gulevich, Eugene P. Meshcheryakov, Kseniya I. Kazantseva, Aleksandr V. Chernyavskii, Alexey N. Pestryakov, Ajay K. Kushwaha, Ritunesh Kumar, Akshay K. Sonwane, Sonali Samal and Irina A. Kurzina
Inorganics 2025, 13(6), 205; https://doi.org/10.3390/inorganics13060205 - 19 Jun 2025
Viewed by 444
Abstract
This work is devoted to the study of the effect of small Bi additives on the functional properties of Pdx:Bi/Al2O3 catalysts in the selective oxidation of glucose to gluconic acid. The catalysts obtained by the joint impregnation method were characterized [...] Read more.
This work is devoted to the study of the effect of small Bi additives on the functional properties of Pdx:Bi/Al2O3 catalysts in the selective oxidation of glucose to gluconic acid. The catalysts obtained by the joint impregnation method were characterized (TEM) by high dispersion of bimetallic nanoparticles with a median diameter of 4–5 nm. The structure of the Pd-Bi solid solution was confirmed via XPS and showed a change in the valence state of Pd and Bi depending on the Bi content, as well as the fraction of the oxidized state of Bi. TPR-H2 revealed various forms of Pd, including PdO and mixed Pd-O-Bi structures. The Pd10:Bi1/Al2O3 catalyst demonstrated the highest efficiency (77.2% glucose conversion, 96% sodium gluconate selectivity), which is due to the optimal ratio between Pd and Bi, ensuring the stabilization of metallic Pd and preventing its oxidation. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

35 pages, 2501 KiB  
Review
Polysaccharides from Agro-Industrial Waste and By-Products: An Overview on Green Synthesis of Metallic Nanoparticles—An Ecofriendly Approach
by Frida Lourdes García-Larez, Ariel Alain Vergel-Alfonso, Hylse Aurora Ruiz-Velducea, Karla Hazel Ozuna-Valencia, Miguel Ángel Urías-Torres, Dora Evelia Rodríguez-Félix, María Jesús Moreno-Vásquez, Carlos Gregorio Barreras-Urbina, Clara Rosalía Álvarez-Chávez, Betzabe Ebenhezer López-Corona, Idania Emedith Quintero-Reyes, Francisco Rodríguez-Félix and José Agustín Tapia-Hernández
Polysaccharides 2025, 6(2), 53; https://doi.org/10.3390/polysaccharides6020053 - 19 Jun 2025
Viewed by 689
Abstract
This review explores the eco-friendly synthesis of metallic nanoparticles derived from polysaccharides obtained from agricultural and food industry waste. Initially, it outlines the problem of agri-food waste, highlighting its abundance and the potential to extract valuable polysaccharides such as cellulose, hemicellulose, lignin, and [...] Read more.
This review explores the eco-friendly synthesis of metallic nanoparticles derived from polysaccharides obtained from agricultural and food industry waste. Initially, it outlines the problem of agri-food waste, highlighting its abundance and the potential to extract valuable polysaccharides such as cellulose, hemicellulose, lignin, and pectin. The focus is on green synthesis methods that use these polysaccharides to produce metallic nanoparticles, emphasizing the environmental benefits compared to conventional methods. The article reviews the physicochemical properties of key polysaccharides and details their extraction processes from various agricultural waste. The synthesis of diverse types of metallic nanoparticles, including monometallic (e.g., gold, silver, and platinum), bimetallic (e.g., gold–silver and gold–zinc), and oxide nanoparticles (e.g., zinc oxide and iron oxide), is extensively covered. Additionally, mechanisms of nanoparticle synthesis, such as nucleation, growth, stabilization, and capping, are examined, alongside examples from existing research. The article highlights the applications of these nanoparticles in diverse fields, including food safety, healthcare, agriculture, and environmental protection. It concludes by underscoring the potential of green synthesis to reduce waste and promote sustainable industrial practices and calls for further research to optimize these methods. Full article
(This article belongs to the Collection Current Opinion in Polysaccharides)
Show Figures

Figure 1

29 pages, 5921 KiB  
Review
Au-Ag Bimetallic Nanoparticles for Surface-Enhanced Raman Scattering (SERS) Detection of Food Contaminants: A Review
by Pengpeng Yu, Chaoping Shen, Xifeng Yin, Junhui Cheng, Chao Liu and Ziting Yu
Foods 2025, 14(12), 2109; https://doi.org/10.3390/foods14122109 - 16 Jun 2025
Cited by 1 | Viewed by 977
Abstract
Food contaminants, including harmful microbes, pesticide residues, heavy metals and illegal additives, pose significant public health risks. While traditional detection methods are effective, they are often slow and require complex equipment, which limits their application in real-time monitoring and rapid response. Surface-enhanced Raman [...] Read more.
Food contaminants, including harmful microbes, pesticide residues, heavy metals and illegal additives, pose significant public health risks. While traditional detection methods are effective, they are often slow and require complex equipment, which limits their application in real-time monitoring and rapid response. Surface-enhanced Raman scattering (SERS) technology has gained widespread use in related research due to its hypersensitivity, non-destructibility and molecular fingerprinting capabilities. In recent years, Au-Ag bimetallic nanoparticles (Au-Ag BNPs) have emerged as novel SERS substrates, accelerating advancements in SERS detection technology. Au-Ag BNPs can be classified into Au-Ag alloys, Au-Ag core–shells and Au-Ag aggregates, among which the Au-Ag core–shell structure is more widely applied. This review discusses the types, synthesis methods and practical applications of Au-Ag BNPs in food contaminants. The study aims to provide valuable insights into the development of new Au-Ag BNPs and their effective use in detecting common food contaminants. Additionally, this paper explores the challenges and future prospects of SERS technology based on Au-Ag BNPs for pollutant detection, including the development of functional integrated substrates, advancements in intelligent algorithms and the creation of portable on-site detection platforms. These innovations are designed to streamline the detection process and offer guidance in selecting optimal sensing methods for the on-site detection of specific pollutants. Full article
Show Figures

Figure 1

20 pages, 8428 KiB  
Article
The Role of Pd-Pt Bimetallic Catalysts in Ethylene Detection by CMOS-MEMS Gas Sensor Dubbed GMOS
by Hanin Ashkar, Sara Stolyarova, Tanya Blank and Yael Nemirovsky
Micromachines 2025, 16(6), 672; https://doi.org/10.3390/mi16060672 - 31 May 2025
Cited by 1 | Viewed by 2986
Abstract
The importance and challenges of ethylene detection based on combustion-type low-cost commercial sensors for agricultural and industrial applications are well-established. This work summarizes the significant progress in ethylene detection based on an innovative Gas Metal Oxide Semiconductor (GMOS) sensor and a new catalytic [...] Read more.
The importance and challenges of ethylene detection based on combustion-type low-cost commercial sensors for agricultural and industrial applications are well-established. This work summarizes the significant progress in ethylene detection based on an innovative Gas Metal Oxide Semiconductor (GMOS) sensor and a new catalytic composition of metallic nanoparticles. The paper presents a study on ethylene and ethanol sensing using a miniature catalytic sensor fabricated by Complementary Metal Oxide Semiconductor–Silicon-on-Insulator–Micro-Electro-Mechanical System (CMOS-SOI-MEMS) technology. The GMOS performance with bimetallic palladium–platinum (Pd-Pt) and monometallic palladium (Pd) and platinum (Pt) catalysts is compared. The synergetic effect of the Pd-Pt catalyst is observed, which is expressed in the shift of combustion reaction ignition to lower catalyst temperatures as well as increased sensitivity compared to monometallic components. The optimal catalysts and their temperature regimes for low and high ethylene concentrations are chosen, resulting in lower power consumption by the sensor. Full article
(This article belongs to the Collection Women in Micromachines)
Show Figures

Figure 1

14 pages, 2869 KiB  
Article
Ligand-Mediated Tuning of Pd-Au Nanoalloys for Selective H2O2 Production in Direct Synthesis from H2 and O2
by Tingting Hu, Baozeng Ren and Liang Zhao
Catalysts 2025, 15(6), 544; https://doi.org/10.3390/catal15060544 - 30 May 2025
Viewed by 588
Abstract
Hydrogen peroxide (H2O2) is an important industrial chemical that is widely applied in many areas. The direct synthesis of H2O2 from H2 and O2 has proved to be a green and economic pathway. Pd-based [...] Read more.
Hydrogen peroxide (H2O2) is an important industrial chemical that is widely applied in many areas. The direct synthesis of H2O2 from H2 and O2 has proved to be a green and economic pathway. Pd-based bimetallic catalysts, due to their superior catalytic performances in this reaction, have attracted intensive attention. Herein, Tetrakis(hydroxymethyl)phosphonium chloride (THPC) was adopted as the protective ligand to immobilize Pd-Au alloy nanoparticles onto activated carbon (AC). The varied Pd/Au molar ratios demonstrated homogeneously distributed Pd-Au nanoalloys with average particle sizes ranging from 3.51 to 5.75 nm. The optimal ratio was observed over the Pd3Au1/AC-THPC catalyst with a maximum H2O2 productivity of 165 mol/(kgPd·h) and selectivity of 82.3% under ambient pressure. The relationship between the electronic structure and catalytic activity indicated Pd0 was the active site, while the presence of Au inhibited H2O2 degradation rate. This research could help in the design efficient bimetallic catalysts for the direct synthesis of H2O2. Full article
(This article belongs to the Special Issue Advances in Metal Nanoparticle Catalysis)
Show Figures

Graphical abstract

12 pages, 3620 KiB  
Article
Enhanced Electrocatalysts for Oxygen Reduction Reaction: Insights from Accelerated Stress Testing and IL-TEM Analysis
by Angelina S. Pavlets, Elizaveta A. Moguchikh, Ilya V. Pankov, Yana V. Astravukh, Sergey V. Belenov and Anastasia A. Alekseenko
Nanomaterials 2025, 15(10), 776; https://doi.org/10.3390/nano15100776 - 21 May 2025
Viewed by 387
Abstract
This report introduces a high-performance bimetallic electrocatalyst for the oxygen reduction reaction (ORR) featuring a 20 wt.% platinum content. The PtCu-based catalyst combines de-alloyed nanoparticles (NPs) supported on nitrogen-doped carbon. Enhanced uniformity in NP distribution significantly boosts the catalyst performance. Nitrogen-doped carbon provides [...] Read more.
This report introduces a high-performance bimetallic electrocatalyst for the oxygen reduction reaction (ORR) featuring a 20 wt.% platinum content. The PtCu-based catalyst combines de-alloyed nanoparticles (NPs) supported on nitrogen-doped carbon. Enhanced uniformity in NP distribution significantly boosts the catalyst performance. Nitrogen-doped carbon provides active centers for NP deposition, which is confirmed by HAADF-STEM and EDX. The PtCu/CN catalyst achieves over 5.6 times the ORR mass activity and two times the stability under pulse cycling compared to commercial Pt/C. Uniquely, the study examines bimetallic NPs and local nano-sites before and after stress testing using IL-TEM. In situ analysis of PtCu/CN microstructure revealed two primary degradation mechanisms, (i) partial dissolution of NPs and (ii) NP agglomeration, with the C–N support significantly mitigating these effects through strong NP–support interactions. The findings underscore the prospects of bimetallic PtCu catalysts with nitrogen-doped support by showcasing exceptional ORR activity and durability. Full article
Show Figures

Graphical abstract

16 pages, 3239 KiB  
Article
Cu-Sn Electrocatalyst Prepared with Chemical Foaming and Electroreduction for Electrochemical CO2 Reduction
by Caibo Zhu, Ao Yu, Yin Zhang, Wenbo Chen, Zhijian Wu, Manni Xu, Deyu Qu, Junxin Duan and Xi Li
Catalysts 2025, 15(5), 484; https://doi.org/10.3390/catal15050484 - 16 May 2025
Cited by 1 | Viewed by 543
Abstract
The conversion of CO2 through the electrochemical reduction reaction (ECO2RR) into chemicals or fuels is regarded as one of the effective ways to decrease atmospheric CO2 concentrations. In this study, a Cu-Sn bimetallic electrocatalyst (ER-SnmCunO [...] Read more.
The conversion of CO2 through the electrochemical reduction reaction (ECO2RR) into chemicals or fuels is regarded as one of the effective ways to decrease atmospheric CO2 concentrations. In this study, a Cu-Sn bimetallic electrocatalyst (ER-SnmCunOx-t/CC) was successfully prepared via a chemical foaming method and electrochemical reduction. SEM showed that ER-Sn1Cu1Ox-500 nanoparticles were uniformly distributed on the carbon cloth, which benefited from foaming. The XPS results demonstrated the synergistic interaction between Cu and Sn and the existence of oxygen vacancies originating from the electroreduction. Due to the above features, ER-Sn1Cu1Ox-500/CC achieved 84.1% FE for HCOOH at −1.1 V vs. RHE, and the corresponding JHCOOH was up to 32.4 mA·cm−2 in the H-type cell. Especially in the flow cell, ER-Sn1Cu1Ox-500/GDE could reach a high JHCOOH of 190 mA·cm−2 at −1.1 V vs. RHE and maintained JHCOOH higher than 100 mA·cm−2 for 24 h with a formic acid selectivity over 70%, indicating both excellent catalytic activity and high HCOOH selectivity. In situ FTIR results revealed that synergism between Cu and Sn could regulate the adsorption of intermediates, thus enhancing the catalytic performance of ER-Sn1Cu1Ox-500 for ECO2RR. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Graphical abstract

18 pages, 5259 KiB  
Article
Synergistic Cu-Pd Nanocatalysts on MOF-Derived N-Doped Carbon for Selective Hydrogenolysis of Lignin to Aromatic Monomers
by Wenjun Lei, Yan Fu, Shipeng Gu, Shuaishuai Qiu and Jie Chang
Catalysts 2025, 15(5), 455; https://doi.org/10.3390/catal15050455 - 7 May 2025
Viewed by 548
Abstract
Catalytic hydrogenolysis of lignin to produce high-value monophenols has emerged as a pivotal strategy in modern biorefineries. In this study, we synthesized spherical nitrogen-doped porous carbon (SNCB) materials by using Al/Co-BTC as a precursor, introducing melamine as a supplementary carbon and nitrogen source, [...] Read more.
Catalytic hydrogenolysis of lignin to produce high-value monophenols has emerged as a pivotal strategy in modern biorefineries. In this study, we synthesized spherical nitrogen-doped porous carbon (SNCB) materials by using Al/Co-BTC as a precursor, introducing melamine as a supplementary carbon and nitrogen source, and activating the material with NaOH solution. The SNCB framework was decorated with Cu-Pd bimetallic nanoparticles, exhibiting outstanding catalytic activity in the hydrogenolytic depolymerization of organosolv lignin. The Cu-Pd@SNCB catalyst exhibited remarkable activity, attributed to the hierarchical porous structure of SNCB that facilitated metal nanoparticle dispersion and reactant accessibility. The synergistic effect between Cu as the reactive site for reactant adsorption and Pd as the reactive site for H2 adsorption enhanced the catalytic activity of the catalyst. Systematically optimized conditions (2 MPa H2, 270 °C, 3 h) yielded 43.02 wt% phenolic monomers, with 4-(3-hydroxypropyl)-2,6-dimethoxyphenol dominating the product profile at 46.3% selectivity. The catalyst and its reaction products were analyzed using advanced characterization techniques, including XPS, XRD, TEM, SEM, BET, GC-MS, GPC, 2D HSQC NMR, and FT-IR, to elucidate the reaction mechanism. The mechanism proceeds through: (1) nucleophilic substitution of the β-O-4 hydroxyl group by MeOH, followed by (2) simultaneous hydrogenolytic cleavage of Cβ-O and Cα-O bonds mediated by Cu-Pd@SNCB under H2 atmosphere, which selectively produces 4-(3-hydroxypropyl)-2,6-dimethoxyphenol and 4-propyl-2,6-dimethoxyphenol. This study proposes a bimetallic synergistic mechanism, offering a general blueprint for developing selective lignin valorization catalysts. Full article
(This article belongs to the Special Issue Catalytic Conversion and Utilization of Biomass)
Show Figures

Figure 1

15 pages, 5978 KiB  
Article
Enhanced Methanol Electro-Oxidation in Hierarchical Au-Pt Dendrites Supported on Graphene-like Substrate
by Zifeng Zhu, Yiming Zhao, Yongming Ruan, Xuexiang Weng and Gesmi Milcovich
Coatings 2025, 15(4), 458; https://doi.org/10.3390/coatings15040458 - 12 Apr 2025
Cited by 1 | Viewed by 680
Abstract
This study presents an easy and rapid two-step electrodeposition method for the synthesis of a novel hierarchical dendritic AuPt bimetallic nanocomposite electrode. Ascorbic acid served as both a reducing and directing agent, while a roughened carbon substrate facilitated the formation of the unique [...] Read more.
This study presents an easy and rapid two-step electrodeposition method for the synthesis of a novel hierarchical dendritic AuPt bimetallic nanocomposite electrode. Ascorbic acid served as both a reducing and directing agent, while a roughened carbon substrate facilitated the formation of the unique dendritic nanostructure. The structural and compositional properties of the synthesized material were comprehensively characterized using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), selected area electron diffraction (SAED), and transmission electron microscopy (TEM). The resulting nanocomposite exhibited a significantly enhanced specific surface area of 6.97 m2 g−1, compared to commercial Pt/C. Electrochemical investigations demonstrated superior electrocatalytic activity and durability for methanol oxidation in the prepared AuPt nanocomposite electrode, suggesting its promising potential for fuel cell applications. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

16 pages, 6592 KiB  
Article
A Theoretical Study on the Structural Evolution of Ru–Zn Bimetallic Nanoparticles
by Luxin Mu, Jingli Han and Yongpeng Yang
Nanomaterials 2025, 15(8), 568; https://doi.org/10.3390/nano15080568 - 8 Apr 2025
Viewed by 519
Abstract
Ru–Zn catalysts exhibit excellent catalytic performance for the selective hydrogenation of benzene to cyclohexene and has been utilized in industrial production. However, the structure–performance relationship between Ru–Zn catalysts and benzene hydrogenation remains lacking. In this work, we focused on the evolution of Ru–Zn [...] Read more.
Ru–Zn catalysts exhibit excellent catalytic performance for the selective hydrogenation of benzene to cyclohexene and has been utilized in industrial production. However, the structure–performance relationship between Ru–Zn catalysts and benzene hydrogenation remains lacking. In this work, we focused on the evolution of Ru–Zn nanoparticles with size and Ru/Zn ratio. The structures of Ru nanoparticles and Ru–Zn bimetallic nanoparticles with different sizes were determined by the minima-hopping global optimization method in combination with density functional theory and high-dimensional neural network potential. Furthermore, we propose the growth mechanism for Ru nanoparticles and evolution processes for Ru–Zn bimetallic nanoparticles. Additionally, we analyzed the structural stability, electronic properties, and adsorption properties of Zn atoms. This work provides valuable reference and guidance for future theoretical research and applications. Full article
(This article belongs to the Special Issue The Interaction of Electron Phenomena on the Mesoscopic Scale)
Show Figures

Graphical abstract

17 pages, 4065 KiB  
Article
Smartphone-Assisted Plasmonic Nanosensor for Visual and Specific Sensing of Toxic Cyanide Ions by β−Cyclodextrin Templated Gold-Rich/Silver Bimetallic Alloy Nanoparticles
by Nguyen Nam Phuong Truong, Ramar Rajamanikandan, Kandasamy Sasikumar and Heongkyu Ju
Materials 2025, 18(7), 1604; https://doi.org/10.3390/ma18071604 - 2 Apr 2025
Viewed by 604
Abstract
As cyanide ion (CN), an ecologically harmful pollutant, has received incessant attention with growing industrialization on a global scale, the capability of on-site monitoring of CN contamination becomes increasingly crucial. In this work, we have fabricated a simplistic plasmonic-sensing platform [...] Read more.
As cyanide ion (CN), an ecologically harmful pollutant, has received incessant attention with growing industrialization on a global scale, the capability of on-site monitoring of CN contamination becomes increasingly crucial. In this work, we have fabricated a simplistic plasmonic-sensing platform for CN, which can be combined with the human naked eye for visual monitoring. The main sensor part consisted of β-Cyclodextrin (β−CD)-decorated gold-rich silver bimetallic alloy nanoparticles (β−CD-Ag/Au-rich alloy NPs), while a sensing analysis was performed by a spectrophotometer or smartphone, where optical data gathered by its camera were analyzed by RGB color sensing. Upon the introduction of various CN quantities into β−CD-Ag/Au-rich alloy NPs, the spectral peak of the surface plasmon resonance (SPR) shifted from 488 nm to 496 nm. This redshift indicated a strong etching reaction between alloy NPs and CN, demonstrating a ultrahigh detection sensitivity, i.e., a limit of detection (LOD) of 0.24 nM. During the formation of metal-cyano complexes in the CN-induced etching response of β−CD-Ag/Au-rich alloy NPs, we observed a naked-eye discernible color change from brownish-red to colorless, allowing for naked-eye monitoring. The smartphone could also analyze the colorimetric response for such an etching process via RGB color sensing, demonstrating a LOD of 1.35 nM, being still less than the maximum concentration (1.91 nM) in drinking water, which is allowable by the World Health Organization (WHO). The straightforwardness and very high sensitivity of the proposed technique for CN detection using alloy nanoparticles with a smartphone may hold promise for simplistic, affordable in-field examinations of CN⁻ in water. Full article
(This article belongs to the Special Issue Nanomaterials: Recent Advances in Photocatalysis and Sensing)
Show Figures

Figure 1

14 pages, 4006 KiB  
Article
A Bifunctional Nanostructured RuPt/C Electrocatalyst for Energy Storage Based on the Chlor-Alkali Process
by Nuria Romero, Mahmoud M. Gomaa, Jérôme Esvan, Manuel A. Rodrigo, Karine Philippot and Justo Lobato
Nanomaterials 2025, 15(7), 506; https://doi.org/10.3390/nano15070506 - 27 Mar 2025
Cited by 1 | Viewed by 550
Abstract
This study focuses on the design of a novel electrode for an energy storage system utilizing EDEN (electrochemical-based decarbonizing energy) technology. This technology implies a chlor-alkali electrochemical cell with dual functionality: first, the electrolysis of water and NaCl to produce hydrogen (H2 [...] Read more.
This study focuses on the design of a novel electrode for an energy storage system utilizing EDEN (electrochemical-based decarbonizing energy) technology. This technology implies a chlor-alkali electrochemical cell with dual functionality: first, the electrolysis of water and NaCl to produce hydrogen (H2) and chlorine (Cl2), and subsequently, the utilization of these products in an H2/Cl2 fuel cell to generate electricity. Bimetallic RuPt nanoparticles have been synthesized on Vulcan carbon (C-V) from organometallic precursors to be used as electrocatalysts. Characterization includes transmission electron microscopy (TEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and powder X-ray diffraction (XRD). The RuPt/C-V-based electrode demonstrated notable performance in the target reversible electrochemical cell, acting as the anode for electrolysis and as the cathode in fuel-cell mode. Testing in a 3D-printed electrochemical cell revealed high efficiency, with a coulombic efficiency exceeding 96% for hydrogen production, yielding 11.75 mg·Wh−1 and achieving a power output of approximately 4.5 mW·cm−2 in H2/Cl2 fuel-cell operation. Full article
(This article belongs to the Special Issue Nano-Enabled Materials for Clean Water and Energy Generation)
Show Figures

Figure 1

Back to TopTop