A Theoretical Study on the Structural Evolution of Ru–Zn Bimetallic Nanoparticles
Abstract
:1. Introduction
2. Computational Details
2.1. Density Functional Calculations
2.2. Training of High-Dimensional Neural Network Potential
2.3. Molecular Dynamics Simulations
3. Results and Discussion
3.1. HDNNP Performance for Ru–Zn
3.2. Global Minimum Structures of Ru Nanoparticles
3.3. The Structural Evolution of Ru–Zn Bimetallic Nanoparticles
3.4. The Electronic Properties of Ru Nanoparticles and Ru–Zn Bimetallic Nanoparticles
3.5. The Adsorption Properties of Zn Atoms on Ru Surfaces
4. Conclusions
- (1)
- This work serves as a reference for resolving other metallic nanostructures and studying the evolutionary processes.
- (2)
- It offers insights into directional growth and precise control of Ru nanoparticles and Ru–Zn bimetallic nanoparticles.
- (3)
- It also provides the possibility to study the reactivity of Ru nanoparticles and Ru–Zn bimetallic nanoparticles and reveal the relationship between structure and catalytic performance.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, P.; Wu, T.; Jiang, T.; Wang, W.; Liu, H.; Fan, H.; Zhang, Z.; Han, B. Ru–Zn supported on hydroxyapatite as an effective catalyst for partial hydrogenation of benzene. Green Chem. 2013, 15, 152–159. [Google Scholar]
- Soares, J.C.S.; Gonçalves, A.H.A.; Zotin, F.M.Z.; de Araújo, L.R.R.; Gaspar, A.B. Cyclohexene to adipic acid synthesis using heterogeneous polyoxometalate catalysts. Mol. Catal. 2018, 458, 223–229. [Google Scholar]
- Sun, H.; Guo, W.; Zhou, X.; Chen, Z.; Liu, Z.; Liu, S. Progress in Ru-Based Amorphous Alloy Catalysts for Selective Hydrogenation of Benzene to Cyclohexene. Chin. J. Catal. 2011, 32, 1–16. [Google Scholar]
- Azevedo, P.V.C.; Dias, M.V.; Gonçalves, A.H.A.; Borges, L.E.P.; Gaspar, A.B. Influence of cadmium on Ru/xCd/Al2O3 catalyst for benzene partial hydrogenation. Mol. Catal. 2021, 499, 111288. [Google Scholar]
- He, H.; Meyer, R.J.; Rioux, R.M.; Janik, M.J. Catalyst Design for Selective Hydrogenation of Benzene to Cyclohexene through Density Functional Theory and Microkinetic Modeling. ACS Catal. 2021, 11, 11831–11842. [Google Scholar]
- Wang, Y.; Yu, H.C.; He, Y.R.; Xiang, S.L.; Qin, X.T.; Yang, L.N.; Chen, J.W.; Si, Y.; Zhang, J.W.; Diao, J.Y.; et al. Fully Exposed Ru Clusters for the Efficient Multi-Step Toluene Hydrogenation Reaction. Angew. Chem. Int. Ed. 2024, 64, e202415542. [Google Scholar]
- Zhang, K.L.; Meng, Q.L.; Wu, H.H.; Yan, J.; Mei, X.L.; An, P.F.; Zheng, L.R.; Zhang, J.; He, M.Y.; Han, B.X. Selective Hydrodeoxygenation of Aromatics to Cyclohexanols over Ru Single Atoms Supported on CeO2. J. Am. Chem. Soc. 2022, 144, 20834–20846. [Google Scholar]
- Ye, M.; Li, Y.; Yang, Z.; Yao, C.; Sun, W.; Zhang, X.; Chen, W.; Qian, G.; Duan, X.; Cao, Y.; et al. Ruthenium/TiO2-Catalyzed Hydrogenolysis of Polyethylene Terephthalate: Reaction Pathways Dominated by Coordination Environment. Angew. Chem. Int. Ed. 2023, 62, e202301024. [Google Scholar]
- Qi, H.F.; Yang, J.; Liu, F.; Zhang, L.L.; Yang, J.Y.; Liu, X.Y.; Li, L.; Su, Y.; Liu, Y.F.; Hao, R.; et al. Highly selective and robust single-atom catalyst Ru1/NC for reductive amination of aldehydes/ketones. Nat. Commun. 2021, 12, 3295. [Google Scholar]
- Yu, Y.Z.; Cheng, Y.; Cheng, S.; Wu, Z.Y. Advanced Ruthenium-Based Electrocatalysts for NOx Reduction to Ammonia. Adv. Mater. 2025, 37, 2412363. [Google Scholar]
- Li, Y.; Qin, T.; Wei, Y.; Xiong, J.; Zhang, P.; Lai, K.; Chi, H.; Liu, X.; Chen, L.; Yu, X.; et al. A single site ruthenium catalyst for robust soot oxidation without platinum or palladium. Nat. Commun. 2023, 14, 7149. [Google Scholar] [PubMed]
- Zhang, Y.; Su, X.; Li, L.; Qi, H.; Yang, C.; Liu, W.; Pan, X.; Liu, X.; Yang, X.; Huang, Y.; et al. Ru/TiO2 Catalysts with Size-Dependent Metal/Support Interaction for Tunable Reactivity in Fischer–Tropsch Synthesis. ACS Catal. 2020, 10, 12967–12975. [Google Scholar]
- Yu, H.; Wang, C.; Xin, X.; Wei, Y.; Li, S.; An, Y.; Sun, F.; Lin, T.; Zhong, L. Engineering ZrO2–Ru interface to boost Fischer-Tropsch synthesis to olefins. Nat. Commun. 2024, 15, 5143. [Google Scholar] [PubMed]
- Struijk, J.; Scholten, J.J.F. Selectivity to cyclohexenes in the liquid phase hydrogenation of benzene and toluene over ruthenium catalysts, as influenced by reaction modifiers. Appl. Catal. A 1992, 82, 277–287. [Google Scholar]
- Nagahara, H.; Ono, M.; Konishi, M.; Fukuoka, Y. Partial hydrogenation of benzene to cyclohexene. Appl. Surf. Sci. 1997, 121–122, 448–451. [Google Scholar]
- Sun, H.J.; Wang, H.X.; Jiang, H.B.; Li, S.H.; Liu, S.C.; Liu, Z.Y.; Yuan, X.M.; Yang, K.J. Effect of (Zn(OH)2)3(ZnSO4)(H2O)5 on the performance of Ru-Zn catalyst for benzene selective hydrogenation to cyclohexene. Appl. Catal. A 2013, 450, 160–168. [Google Scholar]
- Sun, H.J.; Zhang, X.D.; Chen, Z.H.; Zhou, X.L.; Guo, W.; Liu, Z.Y.; Liu, S.C. Monolayer Dispersed Ru-Zn Catalyst and Its Performance in the Selective Hydrogenation of Benzene to Cyclohexene. Chin. J. Catal. 2011, 32, 224–230. [Google Scholar]
- Sun, H.; Jiang, H.; Li, S.; Dong, Y.; Wang, H.; Pan, Y.; Liu, S.; Tang, M.; Liu, Z. Effect of alcohols as additives on the performance of a nano-sized Ru–Zn(2.8%) catalyst for selective hydrogenation of benzene to cyclohexene. Chem. Eng. J. 2013, 218, 415–424. [Google Scholar] [CrossRef]
- Sun, H.; Pan, Y.; Wang, H.; Dong, Y.; Liu, Z.; Liu, S. Selective Hydrogenation of Benzene to Cyclohexene over a Ru-Zn catalyst with Diethanolamine as an Additive. Chin. J. Catal. 2012, 33, 610–620. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, Q.; Zheng, Q.; Wang, Z. Novel Reaction-Adsorption Method for Preparation of Ru–Zn–La/ZrO2 Catalysts with High Catalytic Performance for Selective Hydrogenation of Benzene. Ind. Eng. Chem. Res. 2023, 62, 7397–7410. [Google Scholar]
- Yan, X.; Zhang, Q.; Zhu, M.; Wang, Z. Selective hydrogenation of benzene to cyclohexene over Ru–Zn/ZrO2 catalysts prepared by a two-step impregnation method. J. Mol. Catal. A Chem. 2016, 413, 85–93. [Google Scholar] [CrossRef]
- Sun, H.; Chen, Z.; Chen, L.; Li, H.; Peng, Z.; Liu, Z.; Liu, S. Selective Hydrogenation of Benzene to Cyclohexene over Ru-Zn Catalysts: Investigations on the Effect of Zn Content and ZrO2 as the Support and Dispersant. Catalysts 2018, 8, 513. [Google Scholar] [CrossRef]
- Zhou, G.B.; Wang, H.; Pei, Y.; Qiao, M.H.; Sun, B.; Zong, B.N. Pore Size Effect of Ru-Zn/ZrO2 Catalyst on Partial Hydrogenation of Benzene to Cyclohexene. Acta Chim. Sinica 2017, 75, 321–328. [Google Scholar] [CrossRef]
- He, H.M.; Yuan, P.Q.; Ma, Y.M.; Cheng, Z.M.; Yuan, W.K. Theoretical and Experimental Study on the Partial Hydrogenation of Benzene over Ru-Zn/ZrO2 Catalyst. Chin. J. Catal. 2009, 30, 312–318. [Google Scholar]
- Wang, Z.B.; Zhang, Q.; Lu, X.F.; Chen, S.J.; Liu, C.J. Ru-Zn catalysts for selective hydrogenation of benzene using coprecipitation in low alkalinity. Chin. J. Catal. 2015, 36, 400–407. [Google Scholar] [CrossRef]
- Kühne, T.D.; Iannuzzi, M.; Del Ben, M.; Rybkin, V.V.; Seewald, P.; Stein, F.; Laino, T.; Khaliullin, R.Z.; Schütt, O.; Schiffmann, F.; et al. CP2K: An electronic structure and molecular dynamics software package—Quickstep: Efficient and accurate electronic structure calculations. J. Chem. Phys. 2020, 152, 3092. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- VandeVondele, J.; Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 2007, 127, 114105. [Google Scholar] [CrossRef] [PubMed]
- Goedecker, S.; Teter, M.; Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 1996, 54, 1703–1710. [Google Scholar] [CrossRef]
- Becke, A.D.; Johnson, E.R. Exchange-hole dipole moment and the dispersion interaction: High-order dispersion coefficients. J. Chem. Phys. 2006, 124, 014104. [Google Scholar] [CrossRef]
- Goedecker, S. Minima hopping: An efficient search method for the global minimum of the potential energy surface of complex molecular systems. J. Chem. Phys. 2004, 120, 9911–9917. [Google Scholar] [PubMed]
- Krummenacher, M.; Gubler, M.; Finkler, J.A.; Huber, H.; Sommer-Jörgensen, M.; Goedecker, S. Performing highly efficient Minima Hopping structure predictions using the Atomic Simulation Environment (ASE). SoftwareX 2024, 25, 101632. [Google Scholar]
- Singraber, A.; Morawietz, T.; Behler, J.; Dellago, C. Parallel Multistream Training of High-Dimensional Neural Network Potentials. J. Chem. Theory Comput. 2019, 15, 3075–3092. [Google Scholar]
- Tokita, A.M.; Behler, J. How to train a neural network potential. J. Chem. Phys. 2023, 159, 121501. [Google Scholar]
- Schran, C.; Brezina, K.; Marsalek, O. Committee neural network potentials control generalization errors and enable active learning. J. Chem. Phys. 2020, 153, 104105. [Google Scholar]
- Du, X.; Lang, Y.; Cao, K.; Yang, J.; Cai, J.; Shan, B.; Chen, R. Bifunctionally faceted Pt/Ru nanoparticles for preferential oxidation of CO in H2. J. Catal. 2021, 396, 148–156. [Google Scholar]
- Soini, T.M.; Ma, X.; Üzengi Aktürk, O.; Suthirakun, S.; Genest, A.; Rösch, N. Extending the cluster scaling technique to ruthenium clusters with hcp structures. Surf. Sci. 2016, 643, 156–163. [Google Scholar]
- Tran, R.; Xu, Z.; Radhakrishnan, B.; Winston, D.; Sun, W.; Persson, K.A.; Ong, S.P. Surface energies of elemental crystals. Sci. Data 2016, 3, 160080. [Google Scholar] [PubMed]
- Li, S.F.; Zhao, X.J.; Xu, X.S.; Gao, Y.F.; Zhang, Z. Stacking principle and magic sizes of transition metal nanoclusters based on generalized Wulff construction. Phys. Rev. Lett. 2013, 111, 115501. [Google Scholar]
- Nanba, Y.; Ishimoto, T.; Koyama, M. Structural Stability of Ruthenium Nanoparticles: A Density Functional Theory Study. J. Phys. Chem. C 2017, 121, 27445–27452. [Google Scholar]
- Wang, Z.; Chen, K.; Xu, Y.; Wang, Z.; Kong, L.; Wang, S.; Su, W.S. Structure, stability and electronic properties of two-dimensional monolayer noble metals with triangular lattices: Cu, Ag, and Au. Phys. Chem. Chem. Phys. 2025, 27, 4766–4774. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Gao, K.R.; Wang, X.D.; Zheng, H.J.; Cao, J.Y.; Mi, L.R.; Huo, Q.H.; Yang, H.P.; Liu, J.H.; He, C.X. Subnanometric Ru clusters with upshifted D band center improve performance for alkaline hydrogen evolution reaction. Nat. Commun. 2022, 13, 3958. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Huang, H. Step Surface Profile Measurement Based on Fringe Projection Phase-Shifting Using Selective Sampling. Photonics 2021, 8, 592. [Google Scholar] [CrossRef]
- Wong, Y.; Choi, Y.H.; Tanaka, S.; Yoshioka, H.; Mukai, K.; Halim, H.H.; Mohamed, A.R.; Inagaki, K.; Hamamoto, Y.; Hamada, I.; et al. Adsorption of CO2 on Terrace, Step, and Defect Sites on Pt Surfaces: A Combined TPD, XPS, and DFT Study. J. Phys. Chem. C 2021, 125, 23657–23668. [Google Scholar] [CrossRef]
- Zubkov, T.; Morgan, G.A.; Yates, J.T.; Kühlert, O.; Lisowski, M.; Schillinger, R.; Fick, D.; Jänsch, H.J. The effect of atomic steps on adsorption and desorption of CO on Ru(109). Surf. Sci. 2003, 526, 57–71. [Google Scholar] [CrossRef]
- Morgan, G.A.; Sorescu, D.C.; Kim, Y.K.; Yates, J.T. Comparison of the adsorption of N2 on Ru(109) and Ru(001)—A detailed look at the role of atomic step and terrace sites. Surf. Sci. 2007, 601, 3533–3547. [Google Scholar] [CrossRef]
Energy RMSE (meV/atom) | Force RMSE (meV/Å) | |||
---|---|---|---|---|
Training | Test | Training | Test | |
1 | 4.63 | 4.77 | 228 | 228 |
2 | 4.89 | 5.06 | 247 | 247 |
3 | 5.01 | 5.14 | 241 | 241 |
4 | 4.67 | 5.06 | 237 | 242 |
5 | 4.98 | 5.08 | 242 | 243 |
6 | 4.80 | 4.81 | 247 | 246 |
7 | 4.81 | 4.92 | 232 | 233 |
8 | 4.63 | 4.77 | 231 | 232 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, L.; Han, J.; Yang, Y. A Theoretical Study on the Structural Evolution of Ru–Zn Bimetallic Nanoparticles. Nanomaterials 2025, 15, 568. https://doi.org/10.3390/nano15080568
Mu L, Han J, Yang Y. A Theoretical Study on the Structural Evolution of Ru–Zn Bimetallic Nanoparticles. Nanomaterials. 2025; 15(8):568. https://doi.org/10.3390/nano15080568
Chicago/Turabian StyleMu, Luxin, Jingli Han, and Yongpeng Yang. 2025. "A Theoretical Study on the Structural Evolution of Ru–Zn Bimetallic Nanoparticles" Nanomaterials 15, no. 8: 568. https://doi.org/10.3390/nano15080568
APA StyleMu, L., Han, J., & Yang, Y. (2025). A Theoretical Study on the Structural Evolution of Ru–Zn Bimetallic Nanoparticles. Nanomaterials, 15(8), 568. https://doi.org/10.3390/nano15080568