Ligand-Mediated Tuning of Pd-Au Nanoalloys for Selective H2O2 Production in Direct Synthesis from H2 and O2
Abstract
1. Introduction
2. Results and Discussion
2.1. Structural Properties of PdxAuy/AC-THPC
2.2. Catalytic Performance of PdxAuy/AC-THPC
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Catalyst Preparation
3.2.1. Pd-Au/AC-THPC Catalysts
3.2.2. Pd-Au/Al2O3 Catalyst
3.3. Catalyst Testing
3.4. Catalyst Characterisation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Campos-Martin, J.M.; Blanco-Brieva, G.; Fierro, J.L. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angew. Chem. Int. Ed. 2006, 45, 6962–6984. [Google Scholar] [CrossRef]
- Lewis, R.J.; Hutchings, G.J. Recent advances in the direct synthesis of H2O2. ChemCatChem 2019, 11, 298–308. [Google Scholar] [CrossRef]
- Samanta, C. Direct synthesis of hydrogen peroxide from hydrogen and oxygen: An overview of recent developments in the process. Appl. Catal. A Gen. 2008, 350, 133–149. [Google Scholar] [CrossRef]
- Zhang, X.; Xia, Y.; Xia, C.; Wang, H. Insights into practical-scale electrochemical H2O2 synthesis. Trends Chem. 2020, 2, 942–953. [Google Scholar] [CrossRef]
- Ranganathan, S.; Sieber, V. Recent advances in the direct synthesis of hydrogen peroxide using chemical catalysis—A review. Catalysts 2018, 8, 379. [Google Scholar] [CrossRef]
- Santos, A.; Lewis, R.J.; Malta, G.; Howe, A.G.; Morgan, D.J.; Hampton, E.; Gaskin, P.; Hutchings, G.J. Direct synthesis of hydrogen peroxide over Au–Pd supported nanoparticles under ambient conditions. Ind. Eng. Chem. Res. 2019, 58, 12623–12631. [Google Scholar] [CrossRef]
- Edwards, J.K.; Solsona, B.E.; Landon, P.; Carley, A.F.; Herzing, A.; Kiely, C.J.; Hutchings, G.J. Direct synthesis of hydrogen peroxide from H2 and O2 using TiO2-supported Au–Pd catalysts. J. Catal. 2005, 236, 69–79. [Google Scholar] [CrossRef]
- Ishihara, T.; Ohura, Y.; Yoshida, S.; Hata, Y.; Nishiguchi, H.; Takita, Y. Synthesis of hydrogen peroxide by direct oxidation of H2 with O2 on Au/SiO2 catalyst. Appl. Catal. A Gen. 2005, 291, 215–221. [Google Scholar] [CrossRef]
- Bu, Y.; Wang, Y.; Han, G.F.; Zhao, Y.; Ge, X.; Li, F.; Zhang, Z.; Zhong, Q.; Baek, J.B. Carbon-based electrocatalysts for efficient hydrogen peroxide production. Adv. Mater. 2021, 33, 2103266. [Google Scholar] [CrossRef]
- Wei, J.; Wang, S.; Wu, J.; Cao, D.; Cheng, D. Progress and perspectives of Pd-based catalysts for direct synthesis of hydrogen peroxide. Ind. Chem. Mater. 2024, 2, 7–29. [Google Scholar] [CrossRef]
- Lopez-Sanchez, J.A.; Dimitratos, N.; Miedziak, P.; Ntainjua, E.; Edwards, J.K.; Morgan, D.; Carley, A.F.; Tiruvalam, R.; Kiely, C.J.; Hutchings, G.J. Au–Pd supported nanocrystals prepared by a sol immobilisation technique as catalysts for selective chemical synthesis. Phys. Chem. Chem. Phys. 2008, 10, 1921–1930. [Google Scholar] [CrossRef] [PubMed]
- Wilson, N.M.; Schröder, J.; Priyadarshini, P.; Bregante, D.T.; Kunz, S.; Flaherty, D.W. Direct synthesis of H2O2 on PdZn nanoparticles: The impact of electronic modifications and heterogeneity of active sites. J. Catal. 2018, 368, 261–274. [Google Scholar] [CrossRef]
- Edwards, J.K.; Freakley, S.J.; Carley, A.F.; Kiely, C.J.; Hutchings, G.J. Strategies for designing supported gold–palladium bimetallic catalysts for the direct synthesis of hydrogen peroxide. Acc. Chem. Res. 2014, 47, 845–854. [Google Scholar] [CrossRef]
- Han, Y.-F.; Zhong, Z.; Ramesh, K.; Chen, F.; Chen, L.; White, T.; Tay, Q.; Yaakub, S.N.; Wang, Z. Au promotional effects on the synthesis of H2O2 directly from H2 and O2 on supported Pd− Au alloy catalysts. J. Phys. Chem. C 2007, 111, 8410–8413. [Google Scholar] [CrossRef]
- Edwards, J.K.; Solsona, B.; Carley, A.F.; Herzing, A.A.; Kiely, C.J.; Hutchings, G.J. Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science 2009, 323, 1037–1041. [Google Scholar] [CrossRef]
- Edwards, J.K.; Solsona, B.; Landon, P.; Carley, A.F.; Herzing, A.; Watanabe, M.; Kiely, C.J.; Hutchings, G.J. Direct synthesis of hydrogen peroxide from H2 and O2 using Au–Pd/Fe2O3 catalysts. J. Mater. Chem. 2005, 15, 4595–4600. [Google Scholar] [CrossRef]
- Gao, F.; Goodman, D.W. Pd–Au bimetallic catalysts: Understanding alloy effects from planar models and (supported) nanoparticles. Chem. Soc. Rev. 2012, 41, 8009–8020. [Google Scholar] [CrossRef]
- Morad, M.; Sankar, M.; Cao, E.; Nowicka, E.; Davies, T.E.; Miedziak, P.J.; Morgan, D.J.; Knight, D.W.; Bethell, D.; Gavriilidis, A. Solvent-free aerobic oxidation of alcohols using supported gold palladium nanoalloys prepared by a modified impregnation method. Catal. Sci. Technol. 2014, 4, 3120–3128. [Google Scholar] [CrossRef]
- El Kolli, N.; Delannoy, L.; Louis, C. Bimetallic Au–Pd catalysts for selective hydrogenation of butadiene: Influence of the preparation method on catalytic properties. J. Catal. 2013, 297, 79–92. [Google Scholar] [CrossRef]
- Enache, D.I.; Edwards, J.K.; Landon, P.; Solsona-Espriu, B.; Carley, A.F.; Herzing, A.A.; Watanabe, M.; Kiely, C.J.; Knight, D.W.; Hutchings, G.J. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science 2006, 311, 362–365. [Google Scholar] [CrossRef]
- Rucinska, E.; Pattisson, S.; Miedziak, P.J.; Brett, G.L.; Morgan, D.J.; Sankar, M.; Hutchings, G.J. Cinnamyl alcohol oxidation using supported bimetallic Au–Pd nanoparticles: An optimization of metal ratio and investigation of the deactivation mechanism under autoxidation conditions. Top. Catal. 2020, 63, 99–112. [Google Scholar] [CrossRef]
- Tiruvalam, R.; Pritchard, J.C.; Dimitratos, N.; Lopez-Sanchez, J.A.; Edwards, J.K.; Carley, A.F.; Hutchings, G.J.; Kiely, C.J. Aberration corrected analytical electron microscopy studies of sol-immobilized Au+ Pd, Au {Pd} and Pd {Au} catalysts used for benzyl alcohol oxidation and hydrogen peroxide production. Faraday Discuss. 2011, 152, 63–86. [Google Scholar] [CrossRef]
- Koczkur, K.M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S.E. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 2015, 44, 17883–17905. [Google Scholar] [CrossRef]
- Rossi, L.M.; Fiorio, J.L.; Garcia, M.A.; Ferraz, C.P. The role and fate of capping ligands in colloidally prepared metal nanoparticle catalysts. Dalton Trans. 2018, 47, 5889–5915. [Google Scholar] [CrossRef]
- Han, G.-H.; Lee, S.-H.; Seo, M.-g.; Lee, K.-Y. Effect of polyvinylpyrrolidone (PVP) on palladium catalysts for direct synthesis of hydrogen peroxide from hydrogen and oxygen. RSC Adv. 2020, 10, 19952–19960. [Google Scholar] [CrossRef]
- Song, B.; Chung, I.; Kim, J.; Yun, M.; Yun, Y. Promoting effects of residual poly(vinyl alcohol) capping agent on the activity and chemoselectivity of Pt/Al2O3 for catalytic hydrogenation. J. Catal. 2022, 413, 614–622. [Google Scholar] [CrossRef]
- Cattaneo, S.; Stucchi, M.; Villa, A.; Prati, L. Gold catalysts for the selective oxidation of biomass-derived products. ChemCatChem 2019, 11, 309–323. [Google Scholar] [CrossRef]
- Hueso, J.L.; Sebastián, V.; Mayoral, Á.; Usón, L.; Arruebo, M.; Santamaría, J. Beyond gold: Rediscovering tetrakis-(hydroxymethyl)-phosphonium chloride (THPC) as an effective agent for the synthesis of ultra-small noble metal nanoparticles and Pt-containing nanoalloys. RSC Adv. 2013, 3, 10427–10433. [Google Scholar] [CrossRef]
- Wang, J.; Qiu, X.; Su, K.; Wang, S.; Li, J.; Tang, Y. Breaking the lattice match of Pd on Au (111) nanowires: Manipulating the island and epitaxial growth pathways to boost the oxygen reduction reactivity. J. Mater. Chem. A 2020, 8, 19300–19308. [Google Scholar] [CrossRef]
- Wan, X.; Zhou, C.; Chen, J.; Deng, W.; Zhang, Q.; Yang, Y.; Wang, Y. Base-Free Aerobic Oxidation of 5-Hydroxymethyl-furfural to 2,5-Furandicarboxylic Acid in Water Catalyzed by Functionalized Carbon Nanotube-Supported Au–Pd Alloy Nanoparticles. ACS Catal. 2014, 4, 2175–2185. [Google Scholar] [CrossRef]
- Singh, S.; Bhatnagar, A.; Dixit, V.; Shukla, V.; Shaz, M.A.; Sinha, A.S.K.; Srivastava, O.N.; Sekkar, V. Synthesis, characterization and hydrogen storage characteristics of ambient pressure dried carbon aerogel. Int. J. Hydrog. Energy 2016, 41, 3561–3570. [Google Scholar] [CrossRef]
- Hanrieder, E.K.; Jentys, A.; Lercher, J.A. Interaction of alkali acetates with silica supported PdAu. Catal. Sci. Technol. 2016, 6, 7203–7211. [Google Scholar] [CrossRef]
- Zhu, X.; Guo, Q.; Sun, Y.; Chen, S.; Wang, J.Q.; Wu, M.; Fu, W.; Tang, Y.; Duan, X.; Chen, D.; et al. Optimising surface d charge of AuPd nanoalloy catalysts for enhanced catalytic activity. Nat. Commun. 2019, 10, 1428. [Google Scholar] [CrossRef]
- Wilson, N.M.; Priyadarshini, P.; Kunz, S.; Flaherty, D.W. Direct synthesis of H2O2 on Pd and AuxPd1 clusters: Understanding the effects of alloying Pd with Au. J. Catal. 2018, 357, 163–175. [Google Scholar] [CrossRef]
- Ouyang, L.; Da, G.-J.; Tian, P.-F.; Chen, T.-Y.; Liang, G.-D.; Xu, J.; Han, Y.-F. Insight into active sites of Pd–Au/TiO2 catalysts in hydrogen peroxide synthesis directly from H2 and O2. J. Catal. 2014, 311, 129–136. [Google Scholar] [CrossRef]
- Tian, P.; Ouyang, L.; Xu, X.; Ao, C.; Xu, X.; Si, R.; Shen, X.; Lin, M.; Xu, J.; Han, Y.-F. The origin of palladium particle size effects in the direct synthesis of H2O2: Is smaller better? J. Catal. 2017, 349, 30–40. [Google Scholar] [CrossRef]
- Gu, J.; Wang, S.; He, Z.; Han, Y.; Zhang, J. Direct synthesis of hydrogen peroxide from hydrogen and oxygen over activated-carbon-supported Pd–Ag alloy catalysts. Catal. Sci. Technol. 2016, 6, 809–817. [Google Scholar] [CrossRef]
- Menegazzo, F.; Burti, P.; Signoretto, M.; Manzoli, M.; Vankova, S.; Boccuzzi, F.; Pinna, F.; Strukul, G. Effect of the addition of Au in zirconia and ceria supported Pd catalysts for the direct synthesis of hydrogen peroxide. J. Catal. 2008, 257, 369–381. [Google Scholar] [CrossRef]
- Kanungo, S.; van Haandel, L.; Hensen, E.J.M.; Schouten, J.C.; Neira d’Angelo, M.F. Direct synthesis of H2O2 in AuPd coated micro channels: An in-situ X-Ray absorption spectroscopic study. J. Catal. 2019, 370, 200–209. [Google Scholar] [CrossRef]
- Wang, S.; Gao, K.; Li, W.; Zhang, J. Effect of Zn addition on the direct synthesis of hydrogen peroxide over supported palladium catalysts. Appl. Catal. A Gen. 2017, 531, 89–95. [Google Scholar] [CrossRef]
- Wang, S.; Lewis, R.J.; Doronkin, D.E.; Morgan, D.J.; Grunwaldt, J.-D.; Hutchings, G.J.; Behrens, S. The direct synthesis of hydrogen peroxide from H2 and O2 using Pd–Ga and Pd–In catalysts. Catal. Sci. Technol. 2020, 10, 1925–1932. [Google Scholar] [CrossRef]
- Asad, S.; Torabi, S.-F.; Fathi-Roudsari, M.; Ghaemi, N.; Khajeh, K. Phosphate buffer effects on thermal stability and H2O2-resistance of horseradish peroxidase. Int. J. Biol. Macromol. 2011, 48, 566–570. [Google Scholar] [CrossRef] [PubMed]
Catalyst | SSA (m2/g) | Pore Volume (cm3/g) | Average Pore Size (nm) |
---|---|---|---|
Pd1Au1/AC-THPC | 1087 | 0.589 | 3.18 |
Pd2Au1/AC-THPC | 1088 | 0.588 | 3.17 |
Pd3Au1/AC-THPC | 1053 | 0.573 | 3.13 |
Pd4Au1/AC-THPC | 1027 | 0.561 | 3.15 |
Catalyst | Time (min) | Solvent | Temperature (°C) | Pressure (bar) | H2O2 Productivity mol/(kgPd·h) | H2O2 Selectivity (%) |
---|---|---|---|---|---|---|
Pd1Au1/AC-THPC | 30 | EtOH/H2SO4 | 10 | 1 | 18 | 3.8 |
Pd2Au1/AC-THPC | 30 | EtOH/H2SO4 | 10 | 1 | 14 | 5.3 |
Pd3Au1/AC-THPC | 10 | EtOH/H2SO4 | 10 | 1 | 165 | 82.3 |
Pd3Au1/AC-THPC | 30 | EtOH/H2SO4 | 10 | 1 | 71 | 35.9 |
Pd3Au1/AC-THPC | 60 | EtOH/H2SO4 | 10 | 1 | 42 | 6.0 |
Pd4Au1/AC-THPC | 30 | EtOH/H2SO4 | 10 | 1 | 56 | 19.5 |
Pd4Au1/AC-THPC | 60 | EtOH/H2SO4 | 10 | 1 | 45 | 5.7 |
Pd2.5Au0.5/TiO2 [35] | 30 | EtOH/H2SO4 | 10 | 1 | 2069 | 46.0 |
Pd0.5Au2.5/TiO2 [35] | 30 | EtOH/H2SO4 | 10 | 1 | 774 | 38.5 |
Pd/HAP [36] | 30 | EtOH/H2SO4 | 10 | 1 | 741 | 43 |
Pd40Ag1/AC [37] | 15 | MeOH/H2SO4 | 2 | 30 | 7022 | 71 |
Pd1Au1/CeZrOx [38] | 180 | MeOH/H2SO4 | 20 | 1 | 1270 | 61 |
Pd1Au1/AC [15] | 30 | MeOH/H2O | 2 | 37 | 320 | 95 |
Pd3Au1/SiO2 [39] | 150 | MeOH/HCl | 10 | 1 | 1770 | 63 |
Pd1Zn9/Al2O3 [40] | 15 | MeOH/H2SO4 | 2 | 30 | 25,431 | 78.5 |
Pd2Ga/TiO2 [41] | 30 | MeOH/H2O | 2 | 29 | 4269 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, T.; Ren, B.; Zhao, L. Ligand-Mediated Tuning of Pd-Au Nanoalloys for Selective H2O2 Production in Direct Synthesis from H2 and O2. Catalysts 2025, 15, 544. https://doi.org/10.3390/catal15060544
Hu T, Ren B, Zhao L. Ligand-Mediated Tuning of Pd-Au Nanoalloys for Selective H2O2 Production in Direct Synthesis from H2 and O2. Catalysts. 2025; 15(6):544. https://doi.org/10.3390/catal15060544
Chicago/Turabian StyleHu, Tingting, Baozeng Ren, and Liang Zhao. 2025. "Ligand-Mediated Tuning of Pd-Au Nanoalloys for Selective H2O2 Production in Direct Synthesis from H2 and O2" Catalysts 15, no. 6: 544. https://doi.org/10.3390/catal15060544
APA StyleHu, T., Ren, B., & Zhao, L. (2025). Ligand-Mediated Tuning of Pd-Au Nanoalloys for Selective H2O2 Production in Direct Synthesis from H2 and O2. Catalysts, 15(6), 544. https://doi.org/10.3390/catal15060544