Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (195)

Search Parameters:
Keywords = bed scouring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3824 KiB  
Article
An Integrated TDR Waveguide and Data Interpretation Framework for Multi-Phase Detection in Soil–Water Systems
by Songcheng Wen, Jingwei Wu and Yuan Guo
Sensors 2025, 25(15), 4683; https://doi.org/10.3390/s25154683 - 29 Jul 2025
Viewed by 220
Abstract
Time domain reflectometry (TDR) has been validated for monitoring water level evolution and riverbed scouring in the laboratory. Previous studies have also validated the feasibility of field-based single hydrological parameter monitoring using TDR. However, the current research focuses on developing separated TDR sensing [...] Read more.
Time domain reflectometry (TDR) has been validated for monitoring water level evolution and riverbed scouring in the laboratory. Previous studies have also validated the feasibility of field-based single hydrological parameter monitoring using TDR. However, the current research focuses on developing separated TDR sensing systems, and integrated measurements of multiple hydrological parameters from a single reflected waveform have not been reported. This study presents an improved helical probe sensor specifically designed for implementation in geologically hard soils, together with an improved data interpreting methodology to simultaneously determine water surface level, bed elevation, and suspended sediment concentration from a single reflection signal. Experimental comparisons were conducted in the laboratory to evaluate the measuring performance between the traditional dual-needle probe and the novel spiral probe under the same scouring conditions. The experiments confirmed the reliability and superior performance of spiral probe in accurately capturing multiple hydrological parameters. The measurement errors for the spiral probe across multiple hydrological parameters were all within ±10%, and the accuracy further improved with increased probe embedding depth in the sand medium. Across all tested parameters, the spiral probe showed enhanced measurement precision with a particularly significant improvement in suspended sediment concentration detection. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

26 pages, 11770 KiB  
Article
Flow Dynamics and Local Scour Around Seabed-Mounted Artificial Reefs: A Case Study from Torbay, UK
by Amir Bordbar, Jakub Knir, Vasilios Kelefouras, Samuel John Stephen Hickling, Harrison Short and Yeaw Chu Lee
J. Mar. Sci. Eng. 2025, 13(8), 1425; https://doi.org/10.3390/jmse13081425 - 26 Jul 2025
Viewed by 288
Abstract
This study investigates the flow dynamics and local scour around a Reef Cube® artificial reef deployed in Torbay, UK, using computational fluid dynamics. The flow is modelled using Reynolds-Averaged Navier–Stokes (RANS) equations with a k-ω SST turbulence model. A novel hydro-morphodynamic model [...] Read more.
This study investigates the flow dynamics and local scour around a Reef Cube® artificial reef deployed in Torbay, UK, using computational fluid dynamics. The flow is modelled using Reynolds-Averaged Navier–Stokes (RANS) equations with a k-ω SST turbulence model. A novel hydro-morphodynamic model employing the generalized internal boundary method in HELYX (OpenFOAM-based) is used to simulate scour development. Model performance was validated against experimental data for flow fields, bed shear stress, and local scour. Flow simulations across various scenarios demonstrated that parameters such as the orientation angle and arrangement of Reef Cubes significantly influence flow patterns, bed shear stress, and habitat suitability. The hydro-morphodynamic model was used to simulate scouring around a reef cube in the Torbay marine environment. Results indicate that typical tidal flow velocity flow in the region is barely sufficient to initiate sediment motion, whereas extreme flow events, represented by doubling the mean flow velocity, significantly accelerate scour development, producing holes up to ten times deeper. These findings underscore the importance of considering extreme flow conditions in scour analyses due to their potential impact on the stability and failure risk of AR projects. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

26 pages, 7033 KiB  
Article
Numerical Investigation into the Response of a Laterally Loaded Pile in Coastal and Offshore Slopes Considering Scour Effect
by Hao Zhang, Abubakarr Barrie, Fayun Liang and Chen Wang
Water 2025, 17(13), 2032; https://doi.org/10.3390/w17132032 - 7 Jul 2025
Viewed by 324
Abstract
This study investigates the response of laterally loaded pile foundations embedded in sloping beds under scour conditions, which is vital for the design and stability of coastal and offshore infrastructure like sea-crossing bridges, offshore wind turbines, and wharves. While previous studies have focused [...] Read more.
This study investigates the response of laterally loaded pile foundations embedded in sloping beds under scour conditions, which is vital for the design and stability of coastal and offshore infrastructure like sea-crossing bridges, offshore wind turbines, and wharves. While previous studies have focused on scour-affected pile performance in horizontal beds, this research expands the scope by incorporating sloped beds and corresponding scour effect, which are common in coastal and offshore environments. A three-dimensional finite element model was established to evaluate the pile foundation’s lateral load-bearing capacity under different slope and scour conditions, according to preceding flume tests on the mechanism of local scour around a pile in sloping bed. The results indicate that the lateral response of the pile is significantly influenced by the seabed slope and scour depth. A negatively inclined seabed weakens the interaction between the pile and the surrounding sediment, thereby reducing the lateral bearing capacity and bending moment. As the scour depth increases, the support provided by the soil further weakens, intensifying the reduction in lateral resistance. This effect is particularly pronounced for steep negative slopes, where the combined impact of slope and scour has a more significant detrimental effect. Full article
Show Figures

Figure 1

17 pages, 5789 KiB  
Article
Experimental Studies on the Local Scour Development of the Riverbed Below the Piaseczno Weir
by Marta Kiraga, Sławomir Bajkowski, Janusz Urbański and Piotr Siwicki
Water 2025, 17(13), 1916; https://doi.org/10.3390/w17131916 - 27 Jun 2025
Viewed by 343
Abstract
The article investigates the development of local scour downstream of a damming structure, emphasizing the dynamic equilibrium of river morphology influenced by both natural processes and human interventions like the construction of weirs. It distinguishes between clear-water and live-bed conditions, discussing how sediment [...] Read more.
The article investigates the development of local scour downstream of a damming structure, emphasizing the dynamic equilibrium of river morphology influenced by both natural processes and human interventions like the construction of weirs. It distinguishes between clear-water and live-bed conditions, discussing how sediment transport interacts with hydraulic forces to shape the riverbed. The introduction of a damming structure disrupts sediment flow and initiates local scour formation, which varies depending on stream conditions. In the experimental section, a physical model of a damming weir was tested under controlled conditions. The laboratory model was inspired by an existing damming weir on the Radomka River in Poland. Granulometric analysis and eleven flow series were conducted to assess scour evolution over time. The results showed the fastest erosion in the first hours, followed by stabilization in scour depth but continued elongation of the scour hole. The analysis identified four phases of scour development: initiation, intensive growth, stabilization, and equilibrium. Despite depth stabilization, scour length continued to increase, indicating that full equilibrium had not been reached. The study highlights the complexity of predicting scour behavior and recommends incorporating both depth and length evolution into design analyses to improve the resilience of such damming structures. The innovative aspect of the present study lies in the inclusion of coarse sediment transport, previously accumulated in the upstream reach due to the weir’s impoundment effect, into the scour development process. This specific effect has not been addressed in the studies cited by other authors. This research provides crucial insights for the sustainable design of hydraulic structures and effective sediment management strategies, contributing to the long-term stability and safety of riverine infrastructure. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

17 pages, 5909 KiB  
Article
Experimental Assessment of Scour Around Side-by-Side Double Piers in an S-Shaped Channel with Ice-Jammed Flow
by Zhonglin Li, Zhenhua Zhang, Jueyi Sui and Jun Wang
Water 2025, 17(12), 1768; https://doi.org/10.3390/w17121768 - 12 Jun 2025
Viewed by 395
Abstract
Through laboratory experiments in an S-shaped channel, this study analyzes how the flow Froude number, the ratio of ice-to-flow rate, pier spacing-diameter ratio, and bed material median grain size influence scour depth around side-by-side double piers under ice-jammed flow conditions. Unlike the development [...] Read more.
Through laboratory experiments in an S-shaped channel, this study analyzes how the flow Froude number, the ratio of ice-to-flow rate, pier spacing-diameter ratio, and bed material median grain size influence scour depth around side-by-side double piers under ice-jammed flow conditions. Unlike the development of a scour hole around a bridge pier in a straight channel, where the scour depth increases with the flow Froude number under ice-covered conditions, this study reveals that in an S-shaped channel, scour depth increases with the flow Froude number near the convex bank pier and decreases near the concave bank counterpart. Irrespective of ice conditions, a higher ratio of pier spacing-diameter correlates with augmented scour depth at the convex bank and diminished scour at the concave bank. As the ice-to-flow rate ratio increases, the ice jam thickness in the S-shaped channel also increases, leading to a significant decrease in the flow area and resulting in deeper scour holes around the piers. Equations have been developed to calculate the maximum scour depth around side-by-side double piers positioned in an S-shaped channel with ice-jammed flow. Full article
(This article belongs to the Special Issue Flow Dynamics and Sediment Transport in Rivers and Coasts)
Show Figures

Figure 1

22 pages, 6590 KiB  
Article
Scour Depth Around Cylinders Under Combined Effects of River Flow and Tidal Currents
by Yuezhang Xia, Jiahao Liu, Shiyu Yang, Shaohua Wang and Li Li
J. Mar. Sci. Eng. 2025, 13(6), 1114; https://doi.org/10.3390/jmse13061114 - 2 Jun 2025
Viewed by 375
Abstract
The safety of coastal structures is a growing global concern due to the combined effects of strong tides and river flow. In this study, the local scour around cylinders under the influence of tides combined with river flows was investigated numerically. When only [...] Read more.
The safety of coastal structures is a growing global concern due to the combined effects of strong tides and river flow. In this study, the local scour around cylinders under the influence of tides combined with river flows was investigated numerically. When only tidal current is considered, the distribution of vorticity and excess shear stress on the bed varies periodically with the inflow velocity. The scour depth gradually increased. When coupling the river flow and tidal current, the scour depth on the river side is 1.3 times deeper than that on the tide side; the relative scour depth (the ratio of scour depth to pile diameter, S/D) deepened linearly with the increase of river flow intensity. In the river–tide-coupled condition, the impact of river flow on scour is greater under fixed-bed conditions than under movable-bed conditions. Under fixed-bed conditions, the maximum scour depth in the river–tide-coupled case is 3.94 times larger than that in the tide case. The relative scour depth gradually decreased with the increase in the relative diameter of the cylinder. The scour hole becomes more asymmetric with the increased cylinder diameter. The scour process became slower and the scour rate was smaller when tidal periods increased. The findings supplement the mechanism of local scour under river–tide coupling and provide guiding significance for pile foundation protection in an estuary. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

18 pages, 5743 KiB  
Article
Study on the Mechanism of Local Scour Around Bridge Piers
by Haiyang Dong, Zongyu Li and Zhilin Sun
J. Mar. Sci. Eng. 2025, 13(6), 1021; https://doi.org/10.3390/jmse13061021 - 23 May 2025
Viewed by 597
Abstract
Local scour around bridge piers poses significant challenges to the stability and safety of bridge structures. Local scour results from the combined effects of increased longitudinal flow velocity, the direct impact of the flow in front of the pier, and the suction effect [...] Read more.
Local scour around bridge piers poses significant challenges to the stability and safety of bridge structures. Local scour results from the combined effects of increased longitudinal flow velocity, the direct impact of the flow in front of the pier, and the suction effect of horseshoe vortices. This study utilizes a three-dimensional mathematical model to simulate the flow field around the pier, employing the SWASH (simulating waves till shore) model. Experimental observations in a bed load flume were conducted to analyze the contribution of different factors to local scour. The results indicate that the scour depth caused predominantly by the flow accounts for approximately 75–80% of the total scour depth. Analysis of the longitudinal flow velocity distribution suggests that the scour depth due to the redistribution of longitudinal flow velocity generally accounts for 15–30% of the total scour depth. These findings provide insights into the local scour mechanism and have implications for the design and maintenance of bridge foundations. Full article
Show Figures

Figure 1

20 pages, 12609 KiB  
Article
Response of Riverbed Shaping to a Flood Event in the Reach from Alar to Xinquman in the Mainstream of the Tarim River
by Mingcheng Zhao, Yujian Li, Lin Li and Wenhong Dai
Water 2025, 17(7), 1092; https://doi.org/10.3390/w17071092 - 6 Apr 2025
Viewed by 616
Abstract
As the largest inland river in China, the Tarim River’s flood events significantly influence its riverbed formation. This paper took the Alar to Xinquman section of the Tarim River as the study area. The study area’s digital elevation model of the river was [...] Read more.
As the largest inland river in China, the Tarim River’s flood events significantly influence its riverbed formation. This paper took the Alar to Xinquman section of the Tarim River as the study area. The study area’s digital elevation model of the river was constructed using historical Google images and Copernicus DEM 30. Six different flood events were selected, corresponding to flood events with varying sediment loads, flood volumes, and peak flow volumes. The MIKE 21 software was used to simulate and investigate the response of the riverbed shape to different flood events. The experimental findings indicate that the sand content constitutes a pivotal factor in the formation of the riverbed during flood events. Flood sediment load goes through stages linked to changes in riverbed erosion and deposition. The combination of high peak flow and bed-forming flow after the peak effectively shapes the central channel’s morphology. The fourth type of flood event had the highest sediment transport coefficient Φ among the six types of floods and caused the most significant scouring effect on the riverbed under low sediment load conditions. Full article
(This article belongs to the Special Issue Flow Dynamics and Sediment Transport in Rivers and Coasts)
Show Figures

Figure 1

19 pages, 8968 KiB  
Article
Role of Hungry Water on Sediment Dynamics: Assessment of Valley Degradation, Bed Material Changes and Flood Inundation in Pamba River During Kerala Flood, 2018
by Sreelash Krishnan Kutty, Padmalal Damodaran, Jeenu Mathai, Micky Mathew, Asha Rani, Rajat Kumar Sharma and Maya Kesavan
Hydrology 2025, 12(4), 79; https://doi.org/10.3390/hydrology12040079 - 1 Apr 2025
Viewed by 763
Abstract
Flood frequencies, along with the associated loss of life and property, have risen significantly due to climate change and increasing human activities. While prior research has primarily focused on high-intensity rainfall events and reservoir management in flood management, the influence of sediment-starved water—termed [...] Read more.
Flood frequencies, along with the associated loss of life and property, have risen significantly due to climate change and increasing human activities. While prior research has primarily focused on high-intensity rainfall events and reservoir management in flood management, the influence of sediment-starved water—termed “hungry water”—released from dams in controlling flood dynamics has not gained much attention. The present study is aimed at exploring the potential role of sediment-starved water, or the “hungry water effect” on the valley degradation, bed material changes and flood inundation in the Pamba River during the Kerala Flood, 2018, through a detailed characterization of bed materials and their deposition in the channel bed. The release of sediment-starved water from the Kakki reservoir during the episodic precipitation event (15 to 17 August 2018) resulted in significant bed degradation and scouring of the valley slopes, leading to the deposition of large boulders and rock masses and the inundating of approximately 196 km2 of floodplains. This study highlights the need for integrated sediment management strategies in reservoir operations by providing essential insights into sediment transport dynamics during extreme weather events. Understanding these processes is crucial for formulating effective flood mitigation strategies and improving the resilience of riverine ecosystems, particularly as the interaction between intense rainfall and sediment-depleted releases significantly exacerbated the flood’s severity. Full article
Show Figures

Figure 1

23 pages, 14375 KiB  
Article
Entity Model Test and Analysis of Local Scour of Three Different Structures of Artificial Reefs
by Shishi Zhu, Yongqi Yao, Zheng Li, Shuo Zhang and Shike Gao
J. Mar. Sci. Eng. 2025, 13(4), 694; https://doi.org/10.3390/jmse13040694 - 30 Mar 2025
Viewed by 458
Abstract
In this study, we aim to optimize the design of artificial reefs and improve their applicability and durability in the marine environment. Three types of reefs were selected to be placed in Indonesian waters as the target, and we analyzed the local scour [...] Read more.
In this study, we aim to optimize the design of artificial reefs and improve their applicability and durability in the marine environment. Three types of reefs were selected to be placed in Indonesian waters as the target, and we analyzed the local scour characteristics and the influence of structural parameters of the artificial reefs at four different flow velocities through flume model tests and numerical simulations. The results showed that the local scour was insignificant when the flow velocity was less than 0.8 m/s and became severe when it reached 0.8 m/s. The structure of the reefs affects the degree of scouring, and a multi-column support structure will form a complex flow field, which can be optimized by combining with the design of sand content; the high and low values of the flow field, the bed shear, and the vortex field in the numerical simulation correspond to the areas of the local scour in the test. In conclusion, this study provides an essential basis for the design, deployment, and later management and maintenance of artificial reefs, which can help to improve their stability, better fulfill their ecological function, and promote the sustainable development of marine fisheries. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

20 pages, 8137 KiB  
Article
Impact of Flow Rate, Sediment Uniformity, and Outlet Size on Sediment Removal Upstream of a Cross-River Structure
by Rana Saud Ahmed and Thamer Ahmed Mohammed
Water 2025, 17(7), 967; https://doi.org/10.3390/w17070967 - 26 Mar 2025
Viewed by 418
Abstract
The sediment accumulation behind dams and cross-river structures reduces storage capacity, increases pool water level, reduces hydropower production, and causes damage to the blades of turbines. The operation of the impoundment hydropower and run-of-river plants is affected by the sediment accumulation in the [...] Read more.
The sediment accumulation behind dams and cross-river structures reduces storage capacity, increases pool water level, reduces hydropower production, and causes damage to the blades of turbines. The operation of the impoundment hydropower and run-of-river plants is affected by the sediment accumulation in the vicinity of their water intake. In this study, the effectiveness of sediment removal through an outlet in a model of cross-river structure was experimentally investigated. The model was fixed tightly at the end of a 2 m working section in a laboratory flume with a length of 12 m, a width of 0.3 m, and a depth of 0.45 m. To study the impact of main variables on scour volume (Vs), a total of 27 experiments were conducted. The studied variables were flow rate (Q), area (Ao), location of outlet centerline outlet from the bed (hs), and uniformity of the sedimentation used in the mobile bed of the working section. For the same outlet area (Ao = 47.5 cm2), results show that when the flow rate increased from 3.2 to 6.3 l/s, the scour volume in nonuniform sediment was increased by twofold. However, the above increment caused the scour volume in uniform sediment to increase by only 170%. In addition, the scour volume in the mobile bed of uniform sediment was found to be greater than that in nonuniform sediment by an average of 17%. For a flow of 3 l/s and when the outlet area was reduced by either 25% or 50%, the scour volume in both uniform and nonuniform sediment was reduced by 46%. The accuracy of the proposed dimensionless multiregression model was statistically tested by calculating the Nash efficiency coefficient (NEC) and found to be 0.91, which confirmed the accuracy of the model prediction. The outcomes of the present study are useful to engineers involved in dam design and management. Full article
(This article belongs to the Special Issue Hydrodynamics and Sediment Transport in Ocean Engineering)
Show Figures

Figure 1

20 pages, 14270 KiB  
Article
Hydrodynamic Loads on Rectangular Bridge Decks at Very Low Proximity in Fixed and Movable Beds
by Michele Palermo, Ajit Kumar, Huan Wei and Stefano Pagliara
Water 2025, 17(5), 617; https://doi.org/10.3390/w17050617 - 20 Feb 2025
Viewed by 615
Abstract
Bridges positioned near riverbeds experience complex interactions between flow dynamics and structural geometry, significantly affecting hydrodynamic loading and stability. This study analyzes the effect of deck proximity to the bed on pressure distribution and hydrodynamic loading, including drag and lift forces. Experimental tests [...] Read more.
Bridges positioned near riverbeds experience complex interactions between flow dynamics and structural geometry, significantly affecting hydrodynamic loading and stability. This study analyzes the effect of deck proximity to the bed on pressure distribution and hydrodynamic loading, including drag and lift forces. Experimental tests were conducted in a rectangular channel using a scaled bridge deck model, varying deck positions, flow conditions, and upstream–downstream water depth levels. To the best of the authors’ knowledge, for the first time, a comparative analysis of hydrodynamic loads on bridge decks was conducted using both rigid and deformable granular beds. Pressure distributions on the front, rear, and bottom faces of the deck were measured using transducers sensors. Our findings corroborate that changes in Reynolds number have minimal impact on the deck drag and lift coefficients, under identical submergence conditions, whereas both coefficients decrease with the Froude number for both bed types. More importantly, the analysis of experimental evidence unveiled some interesting aspects pertaining to the physics of the phenomenon, allowing us to provide the following, unprecedented results: (1) lift and drag coefficients significantly decrease with proximity, exhibiting much higher values than those reported in the literature for larger clearance; (2) under identical hydraulic conditions (both upstream and downstream of the deck), drag and lift coefficients are significantly amplified by the presence of rigid beds compared to granular beds; and (3) the scour evolution alters the effective deck proximity, resulting in time-dependent hydrodynamic loads acting on the deck. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

26 pages, 9400 KiB  
Article
Scour near Offshore Monopiles, Jacket-Type and Caisson-Type Structures
by Leo C. van Rijn, Nathanael Geleynse, Luitze Perk and Doke Schoonhoven
J. Mar. Sci. Eng. 2025, 13(2), 266; https://doi.org/10.3390/jmse13020266 - 30 Jan 2025
Viewed by 1004
Abstract
Scour near various offshore structures (monopile, caisson foundation and jacket structure) was studied by performing laboratory flume tests and numerical solutions with a semi-empirical model (SEDSCOUR) and a sophisticated 2DV model (SUSTIM2DV). The laboratory test results show that the maximum free scour depth [...] Read more.
Scour near various offshore structures (monopile, caisson foundation and jacket structure) was studied by performing laboratory flume tests and numerical solutions with a semi-empirical model (SEDSCOUR) and a sophisticated 2DV model (SUSTIM2DV). The laboratory test results show that the maximum free scour depth around a monopile without bed protection is slightly higher than the pile diameter. The maximum scour consisting of pile scour and global scour around an open jacket structure standing on four piles is much lower than the scour near the other structures (monopile and caisson). The maximum scour depth along a circular caisson foundation is found to be related to the base diameter of the structure. The main cause of the scour near these types of structures is the increase in the velocity along the flanks of the structure. Six cases have been used for validation: two laboratory cases (A and B) and four field cases (C, D, E and F). The measured scour values of the new physical model tests with the monopile and the open jacket structure presented in this paper are in reasonably good agreement with other laboratory and field scour data from the literature. The semi-empirical SEDSCOUR model proposed in this paper can be used for the reliable prediction of free scour and global scour near monopiles and jacket structures in a sandy bed (even with a small percentage of mud, up to 30%). The maximum scour depth along a large-scale caisson structure is more difficult to predict because the scour depth depends on the precise geometry and dimensions of the structure and the prevailing flow and sediment conditions. A detailed 2DV model with a fine horizontal grid (2 m) along a stream tube following the contour of the caisson is explored for scour predictions. The 2DV model simulates the flow and sediment transport at 50 to 100 points over the depth along the stream tube and can be run on a time-scale of 1 year. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

18 pages, 4978 KiB  
Article
Laboratory Study of Local Scour Around an Array of Pile Groups in Clear-Water Scour Conditions
by Ming Gong, Xinying Pan, Shengtao Du, Guoxiang Wu, Yingxue Lv, Yunjia Sun, Guangjia Ding and Bingchen Liang
J. Mar. Sci. Eng. 2025, 13(1), 137; https://doi.org/10.3390/jmse13010137 - 14 Jan 2025
Cited by 4 | Viewed by 975
Abstract
Current-induced local scour around pile groups weakens the capacity of structures. In this paper, experimental tests of local scour around an array of 5 × 5 pile groups were conducted in a steady current in a hydraulic flume. The pile-to-pile space was five [...] Read more.
Current-induced local scour around pile groups weakens the capacity of structures. In this paper, experimental tests of local scour around an array of 5 × 5 pile groups were conducted in a steady current in a hydraulic flume. The pile-to-pile space was five times the diameter of a single pile. All the tests were in clear-water scour conditions. The effects of upstream piles on the local scour characteristics of downstream piles, as well as the outer-arranged side piles on the inner-arranged piles, were studied within flow intensities of 0.37–1.0. Both the three-dimensional topography of bed elevation changes and the maximum temporal scour depths are discussed. The results showed that the minimum threshold of flow intensity that can induce local scour around the pile groups was 0.40. The scour holes were independent of each other, though a global scouring phenomenon occurred between piles at a flow intensity of 1.0. The temporal scour depths of the downstream piles increased slowly throughout the local scour processes. During the initial scouring stage, they accelerated rapidly. At flow intensities of 0.60, 0.80, and 1.0, the scour development then progressed gradually, resembling the behavior of a single pile. The developing scouring stage can hardly be distinguished in the case of flow intensity of 0.80. The maximum scour depths in the flow intensity of 0.60 showed irregular variations with increasing row and column numbers. The equilibrium scour depths in the central-positioned piles tended to a constant value of 0.5 times the pile diameter. In larger flow intensities of 0.80 and 1.0, they decreased linearly with pile row number, with the maximum scour depths at the piles in the first row. The local scour depths of the inner-positioned piles in the parallel arrangement showed few differences at the front and rear piles. Full article
Show Figures

Figure 1

20 pages, 4714 KiB  
Article
Investigations on Free Span Rectification for a Submarine Pipeline on Sand Wave Seabeds
by Xing Zou, Botao Xie, Xuechun Bai, Yuanyuan Guo, Qingqing Yuan and Zhipeng Zang
J. Mar. Sci. Eng. 2025, 13(1), 107; https://doi.org/10.3390/jmse13010107 - 8 Jan 2025
Viewed by 1162
Abstract
Sand waves are large-scale bed forms commonly occurring on the continental shelf seabed and can result in free spans of submarine pipelines, which may have an influence on the stability of the pipelines. Existing span rectification procedures have primarily focused on local rectification [...] Read more.
Sand waves are large-scale bed forms commonly occurring on the continental shelf seabed and can result in free spans of submarine pipelines, which may have an influence on the stability of the pipelines. Existing span rectification procedures have primarily focused on local rectification methods for free spans caused by local scour or individual spans resulting from seabed unevenness. This paper aims to present a span rectification design applicable to the pipeline crossing sand wave region, and to offer practical guidance on sand wave intervention strategies. A large-scale approach is necessary for the rectification of multiple spans across the field, which may involve the use of either a mass flow excavator (MFE) or a remotely operated vehicle (ROV) jetting tool. A comparative analysis of the estimated durations for post-lay trenching using the MFE and ROV jetting tools is also provided. In instances where the large-scale method fails to achieve span lengths suitable for long-term operation, a localized approach is necessary to address individual spans. The desired trench depth can be attained through a combination of pre-lay and/or post-lay trenching techniques. The analysis of on-bottom roughness and free span has demonstrated that, given the natural seabed profile without trenching, there are no spans surpassing the ultimate limit state (ULS) or fatigue limit state (FLS) criteria for the temporary installation scenario. Consequently, pre-lay rectification is not necessary. However, the analysis indicates that post-lay rectification is essential to meet ULS and FLS criteria under operating conditions. All spans that exceed the ULS and FLS criteria can be effectively rectified by trenching to a depth of 1 m. Full article
Show Figures

Figure 1

Back to TopTop