Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (445)

Search Parameters:
Keywords = battery energy storage units

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3154 KiB  
Article
Optimizing the Operation of Local Energy Communities Based on Two-Stage Scheduling
by Ping He, Lei Zhou, Jingwen Wang, Zhuo Yang, Guozhao Lv, Can Cai and Hongbo Zou
Processes 2025, 13(8), 2449; https://doi.org/10.3390/pr13082449 - 2 Aug 2025
Viewed by 227
Abstract
Flexible energy sources such as electric vehicles and the battery energy storage systems of intelligent distribution systems can provide system-wide auxiliary services such as frequency regulation for power systems. This paper proposes an optimal method for operating the local energy community that is [...] Read more.
Flexible energy sources such as electric vehicles and the battery energy storage systems of intelligent distribution systems can provide system-wide auxiliary services such as frequency regulation for power systems. This paper proposes an optimal method for operating the local energy community that is based on two-stage scheduling. Firstly, the basic concepts of the local energy community and flexible service are introduced in detail. Taking LEC as the reserve unit of artificial frequency recovery, an energy information interaction model among LEC, balance service providers, and the power grid is established. Then, a two-stage scheduling framework is proposed to ensure the rationality and economy of community energy scheduling. In the first stage, day-ahead scheduling uses the energy community management center to predict the up/down flexibility capacity that LEC can provide by adjusting the BESS control parameters. In the second stage, real-time scheduling aims at maximizing community profits and scheduling LEC based on the allocation and activation of standby flexibility determined in real time. Finally, the correctness of the two-stage scheduling framework is verified through a case study. The results show that the control parameters used in the day-ahead stage can significantly affect the real-time profitability of LEC, and that LEC benefits more in the case of low BESS utilization than in the case of high BESS utilization and non-participation in frequency recovery reserve. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

24 pages, 3325 KiB  
Article
Multi-Energy Flow Optimal Dispatch of a Building Integrated Energy System Based on Thermal Comfort and Network Flexibility
by Jian Sun, Bingrui Sun, Xiaolong Cai, Dingqun Liu and Yongping Yang
Energies 2025, 18(15), 4051; https://doi.org/10.3390/en18154051 - 30 Jul 2025
Viewed by 235
Abstract
An efficient integrated energy system (IES) can enhance the potential of building energy conservation and carbon mitigation. However, imbalances between user-side demand and supply side output present formidable challenges to the operational dispatch of building energy systems. To mitigate heat rejection and improve [...] Read more.
An efficient integrated energy system (IES) can enhance the potential of building energy conservation and carbon mitigation. However, imbalances between user-side demand and supply side output present formidable challenges to the operational dispatch of building energy systems. To mitigate heat rejection and improve dispatch optimization, an integrated building energy system incorporating waste heat recovery via an absorption heat pump based on the flow temperature model is adopted. A comprehensive analysis was conducted to investigate the correlation among heat pump operational strategies, thermal comfort, and the dynamic thermal storage capacity of piping network systems. The optimization calculations and comparative analyses were conducted across five cases on typical season days via the CPLEX solver with MATLAB R2018a. The simulation results indicate that the operational modes of absorption heat pump reduced the costs by 4.4–8.5%, while the absorption rate of waste heat increased from 37.02% to 51.46%. Additionally, the utilization ratio of battery and thermal storage units decreased by up to 69.82% at most after considering the pipeline thermal inertia and thermal comfort, thus increasing the system’s energy-saving ability and reducing the pressure of energy storage equipment, ultimately increasing the scheduling flexibility of the integrated building energy system. Full article
(This article belongs to the Special Issue Energy Efficiency and Thermal Performance in Buildings)
Show Figures

Figure 1

27 pages, 3602 KiB  
Article
Optimal Dispatch of a Virtual Power Plant Considering Distributed Energy Resources Under Uncertainty
by Obed N. Onsomu, Erman Terciyanlı and Bülent Yeşilata
Energies 2025, 18(15), 4012; https://doi.org/10.3390/en18154012 - 28 Jul 2025
Viewed by 315
Abstract
The varying characteristics of grid-connected energy resources necessitate a clear and effective approach for managing and scheduling generation units. Without proper control, high levels of renewable integration can pose challenges to optimal dispatch, especially as more generation sources, like wind and solar PV, [...] Read more.
The varying characteristics of grid-connected energy resources necessitate a clear and effective approach for managing and scheduling generation units. Without proper control, high levels of renewable integration can pose challenges to optimal dispatch, especially as more generation sources, like wind and solar PV, are introduced. As a result, conventional power sources require an advanced management system, for instance, a virtual power plant (VPP), capable of accurately monitoring power supply and demand. This study thoroughly explores the dispatch of battery energy storage systems (BESSs) and diesel generators (DGs) through a distributionally robust joint chance-constrained optimization (DR-JCCO) framework utilizing the conditional value at risk (CVaR) and heuristic-X (H-X) algorithm, structured as a bilevel optimization problem. Furthermore, Binomial expansion (BE) is employed to linearize the model, enabling the assessment of BESS dispatch through a mathematical program with equilibrium constraints (MPECs). The findings confirm the effectiveness of the DRO-CVaR and H-X methods in dispatching grid network resources and BE under the MPEC framework. Full article
(This article belongs to the Special Issue Review Papers in Energy Storage and Related Applications)
Show Figures

Figure 1

26 pages, 3954 KiB  
Article
Bi-Level Planning of Grid-Forming Energy Storage–Hydrogen Storage System Considering Inertia Response and Frequency Parameter Optimization
by Dongqi Huang, Pengwei Sun, Wenfeng Yao, Chang Liu, Hefeng Zhai and Yehao Gao
Energies 2025, 18(15), 3915; https://doi.org/10.3390/en18153915 - 23 Jul 2025
Viewed by 276
Abstract
Energy storage plays an essential role in stabilizing fluctuations in renewable energy sources such as wind and solar, enabling surplus electricity retention, and delivering dynamic frequency regulation. However, relying solely on a single form of storage often proves insufficient due to constraints in [...] Read more.
Energy storage plays an essential role in stabilizing fluctuations in renewable energy sources such as wind and solar, enabling surplus electricity retention, and delivering dynamic frequency regulation. However, relying solely on a single form of storage often proves insufficient due to constraints in performance, capacity, and cost-effectiveness. To tackle frequency regulation challenges in remote desert-based renewable energy hubs—where traditional power infrastructure is unavailable—this study introduces a planning framework for an electro-hydrogen energy storage system with grid-forming capabilities, designed to supply both inertia and frequency response. At the system design stage, a direct current (DC) transmission network is modeled, integrating battery and hydrogen storage technologies. Using this configuration, the capacity settings for both grid-forming batteries and hydrogen units are optimized. This study then explores how hydrogen systems—comprising electrolyzers, storage tanks, and fuel cells—and grid-forming batteries contribute to inertial support. Virtual inertia models are established for each technology, enabling precise estimation of the total synthetic inertia provided. At the operational level, this study addresses stability concerns stemming from renewable generation variability by introducing three security indices. A joint optimization is performed for virtual inertia constants, which define the virtual inertia provided by energy storage systems to assist in frequency regulation, and primary frequency response parameters within the proposed storage scheme are optimized in this model. This enhances the frequency modulation potential of both systems and confirms the robustness of the proposed approach. Lastly, a real-world case study involving a 13 GW renewable energy base in Northwest China, connected via a ±10 GW HVDC export corridor, demonstrates the practical effectiveness of the optimization strategy and system configuration. Full article
(This article belongs to the Special Issue Advanced Battery Management Strategies)
Show Figures

Figure 1

19 pages, 2017 KiB  
Article
Analysis of Grid Scale Storage Effectiveness for a West African Interconnected Transmission System
by Julius Abayateye and Daniel Zimmerle
Energies 2025, 18(14), 3741; https://doi.org/10.3390/en18143741 - 15 Jul 2025
Viewed by 246
Abstract
The West Africa Power Pool (WAPP) Interconnected Transmission System (WAPPITS) has faced challenges with frequency control due to limited primary frequency control reserves (PFRs). Battery Energy Storage Systems (BESSs) have been identified as a possible solution to address frequency control challenges and to [...] Read more.
The West Africa Power Pool (WAPP) Interconnected Transmission System (WAPPITS) has faced challenges with frequency control due to limited primary frequency control reserves (PFRs). Battery Energy Storage Systems (BESSs) have been identified as a possible solution to address frequency control challenges and to support growing levels of variable renewable energy in the WAPPITS. This paper uses a dynamic PSS/E grid simulation to evaluate the effectiveness of BESSs and conventional power plants for the maximum N-1 contingency scenario in WAPPITS—the loss of 400 MW of generation. BESSs outperform conventional power plants in fast frequency response; a BESS-only PFR mix produces the best technical performance for the metrics analyzed. However, this approach does not have the best marginal cost; a balanced mix of BESSs and conventional reserves achieves adequate performance on all metrics to meet grid requirements. This hybrid approach combines BESSs’ rapid power injection with the lower cost of conventional units, resulting in improved nadir frequencies (e.g., 49.70–49.76 Hz), faster settling times (1.00–2.20 s), and cost efficiency. The study indicates that an optimal approach to frequency control should include a combination of regulatory reforms and coordinated reserve procurement that includes BESS assets. Regulatory reforms should require or incentivize conventional plant to provide PFRs, possibly through creation of a (new to WAPPITS) market for ancillary services. While not a comprehensive analysis of all variables, these findings provide critical insights for policymakers and system operators. Full article
Show Figures

Figure 1

27 pages, 7623 KiB  
Article
A Ladder-Type Carbon Trading-Based Low-Carbon Economic Dispatch Model for Integrated Energy Systems with Flexible Load and Hybrid Energy Storage Optimization
by Liping Huang, Fanxin Zhong, Chun Sing Lai, Bang Zhong, Qijun Xiao and Weitai Hsu
Energies 2025, 18(14), 3679; https://doi.org/10.3390/en18143679 - 11 Jul 2025
Viewed by 279
Abstract
This paper proposes a ladder carbon trading-based low-carbon economic dispatch model for integrated energy systems (IESs), incorporating flexible load optimization and hybrid energy storage systems consisting of battery and thermal energy storage. First, a ladder-type carbon trading mechanism is introduced, in which the [...] Read more.
This paper proposes a ladder carbon trading-based low-carbon economic dispatch model for integrated energy systems (IESs), incorporating flexible load optimization and hybrid energy storage systems consisting of battery and thermal energy storage. First, a ladder-type carbon trading mechanism is introduced, in which the carbon trading cost increases progressively with emission levels, thereby providing stronger incentives for emission reduction. Second, flexible loads are categorized and modeled as shiftable, transferable, and reducible types, each with distinct operational constraints and compensation mechanisms. Third, both battery and thermal energy storage systems are considered to improve system flexibility by storing excess energy and supplying it when needed. Finally, a unified optimization framework is developed to coordinate the dispatch of renewable generation, gas turbines, waste heat recovery units, and multi-energy storage devices while integrating flexible load flexibility. The objective is to minimize the total system cost, which includes energy procurement, carbon trading expenditures, and demand response compensation. Three comparative case studies are conducted to evaluate system performance under different operational configurations: the proposed comprehensive model, a carbon trading-only approach, and a conventional baseline scenario. Results demonstrate that the proposed framework effectively balances economic and environmental objectives through coordinated demand-side management, hybrid storage utilization, and the ladder-type carbon trading market mechanism. It reshapes the system load profile via peak shaving and valley filling, improves renewable energy integration, and enhances overall system efficiency. Full article
(This article belongs to the Special Issue Hybrid Battery Energy Storage System)
Show Figures

Figure 1

22 pages, 2892 KiB  
Article
Optimization of Photovoltaic and Battery Storage Sizing in a DC Microgrid Using LSTM Networks Based on Load Forecasting
by Süleyman Emre Eyimaya, Necmi Altin and Adel Nasiri
Energies 2025, 18(14), 3676; https://doi.org/10.3390/en18143676 - 11 Jul 2025
Cited by 1 | Viewed by 368
Abstract
This study presents an optimization approach for sizing photovoltaic (PV) and battery energy storage systems (BESSs) within a DC microgrid, aiming to enhance cost-effectiveness, energy reliability, and environmental sustainability. PV generation is modeled based on environmental parameters such as solar irradiance and ambient [...] Read more.
This study presents an optimization approach for sizing photovoltaic (PV) and battery energy storage systems (BESSs) within a DC microgrid, aiming to enhance cost-effectiveness, energy reliability, and environmental sustainability. PV generation is modeled based on environmental parameters such as solar irradiance and ambient temperature, while battery charging and discharging operations are managed according to real-time demand. A simulation framework is developed in MATLAB 2021b to analyze PV output, battery state of charge (SOC), and grid energy exchange. For demand-side management, the Long Short-Term Memory (LSTM) deep learning model is employed to forecast future load profiles using historical consumption data. Moreover, a Multi-Layer Perceptron (MLP) neural network is designed for comparison purposes. The dynamic load prediction, provided by LSTM in particular, improves system responsiveness and efficiency compared to MLP. Simulation results indicate that optimal sizing of PV and storage units significantly reduces energy costs and dependency on the main grid for both forecasting methods; however, the LSTM-based approach consistently achieves higher annual savings, self-sufficiency, and Net Present Value (NPV) than the MLP-based approach. The proposed method supports the design of more resilient and sustainable DC microgrids through data-driven forecasting and system-level optimization, with LSTM-based forecasting offering the greatest benefits. Full article
Show Figures

Figure 1

15 pages, 1572 KiB  
Article
AI-Driven Optimization Framework for Smart EV Charging Systems Integrated with Solar PV and BESS in High-Density Residential Environments
by Md Tanjil Sarker, Marran Al Qwaid, Siow Jat Shern and Gobbi Ramasamy
World Electr. Veh. J. 2025, 16(7), 385; https://doi.org/10.3390/wevj16070385 - 9 Jul 2025
Viewed by 632
Abstract
The rapid growth of electric vehicle (EV) adoption necessitates advanced energy management strategies to ensure sustainable, reliable, and efficient operation of charging infrastructure. This study proposes a hybrid AI-based framework for optimizing residential EV charging systems through the integration of Reinforcement Learning (RL), [...] Read more.
The rapid growth of electric vehicle (EV) adoption necessitates advanced energy management strategies to ensure sustainable, reliable, and efficient operation of charging infrastructure. This study proposes a hybrid AI-based framework for optimizing residential EV charging systems through the integration of Reinforcement Learning (RL), Linear Programming (LP), and real-time grid-aware scheduling. The system architecture includes smart wall-mounted chargers, a 120 kWp rooftop solar photovoltaic (PV) array, and a 60 kWh lithium-ion battery energy storage system (BESS), simulated under realistic load conditions for 800 residential units and 50 charging points rated at 7.4 kW each. Simulation results, validated through SCADA-based performance monitoring using MATLAB/Simulink and OpenDSS, reveal substantial technical improvements: a 31.5% reduction in peak transformer load, voltage deviation minimized from ±5.8% to ±2.3%, and solar utilization increased from 48% to 66%. The AI framework dynamically predicts user demand using a non-homogeneous Poisson process and optimizes charging schedules based on a cost-voltage-user satisfaction reward function. The study underscores the critical role of intelligent optimization in improving grid reliability, minimizing operational costs, and enhancing renewable energy self-consumption. The proposed system demonstrates scalability, resilience, and cost-effectiveness, offering a practical solution for next-generation urban EV charging networks. Full article
Show Figures

Figure 1

24 pages, 14028 KiB  
Article
Heuristic-Based Scheduling of BESS for Multi-Community Large-Scale Active Distribution Network
by Ejikeme A. Amako, Ali Arzani and Satish M. Mahajan
Electricity 2025, 6(3), 36; https://doi.org/10.3390/electricity6030036 - 1 Jul 2025
Viewed by 373
Abstract
The integration of battery energy storage systems (BESSs) within active distribution networks (ADNs) entails optimized day-ahead charge/discharge scheduling to achieve effective peak shaving.The primary objective is to reduce peak demand and mitigate power deviations caused by intermittent photovoltaic (PV) output. Quasi-static time-series (QSTS) [...] Read more.
The integration of battery energy storage systems (BESSs) within active distribution networks (ADNs) entails optimized day-ahead charge/discharge scheduling to achieve effective peak shaving.The primary objective is to reduce peak demand and mitigate power deviations caused by intermittent photovoltaic (PV) output. Quasi-static time-series (QSTS) co-simulations for determining optimal heuristic solutions at each time interval are computationally intensive, particularly for large-scale systems. To address this, a two-stage intelligent BESS scheduling approach implemented in a MATLAB–OpenDSS environment with parallel processing is proposed in this paper. In the first stage, a rule-based decision tree generates initial charge/discharge setpoints for community BESS units. These setpoints are refined in the second stage using an optimization algorithm aimed at minimizing community net load power deviations and reducing peak demand. By assigning each ADN community to a dedicated CPU core, the proposed approach utilizes parallel processing to significantly reduce the execution time. Performance evaluations on an IEEE 8500-node test feeder demonstrate that the approach enhances peak shaving while reducing QSTS co-simulation execution time, utility peak demand, distribution network losses, and point of interconnection (POI) nodal voltage deviations. In addition, the use of smart inverter functions improves BESS operations by mitigating voltage violations and active power curtailment, thereby increasing the amount of energy shaved during peak demand periods. Full article
Show Figures

Figure 1

40 pages, 1622 KiB  
Review
A Review of Phase-Change Material-Based Thermal Batteries for Sustainable Energy Storage of Solar Photovoltaic Systems Coupled to Heat Pumps in the Building Sector
by Shafquat Rana and Joshua M. Pearce
Energies 2025, 18(13), 3265; https://doi.org/10.3390/en18133265 - 22 Jun 2025
Viewed by 615
Abstract
Buildings account for about a third of global energy and it is thus imperative to eliminate the use of fossil fuels to power and provide for their thermal needs. Solar photovoltaic (PV) technology can provide power and with electrification, heating/cooling, but there is [...] Read more.
Buildings account for about a third of global energy and it is thus imperative to eliminate the use of fossil fuels to power and provide for their thermal needs. Solar photovoltaic (PV) technology can provide power and with electrification, heating/cooling, but there is often a load mismatch with the intermittent solar supply. Electric batteries can overcome this challenge at high solar penetration rates but are still capital-intensive. A promising solution is thermal energy storage (TES), which has a low cost per unit of energy. This review provides an in-depth analysis of TES but specifically focuses on phase change material (PCM)-based TES, and its significance in the building sector. The classification, characterization, properties, applications, challenges, and modeling of PCM-TES are detailed. Finally, the potential for integrating TES with PV and heat pump (HP) technologies to decarbonize the residential sector is detailed. Although many studies show proof of carbon reduction for the individual and coupled systems, the integration of PV+HP+PCM-TES systems as a whole unit has not been developed to achieve carbon neutrality and facilitate net zero emission goals. Overall, there is still a lack of available literature and experimental datasets for these complex systems which are needed to develop models for global implementation as well as studies to quantify their economic and environmental performance. Full article
Show Figures

Graphical abstract

30 pages, 4198 KiB  
Article
Enabling Low-Carbon Transportation: Resilient Energy Governance via Intelligent VPP and Mobile Energy Storage-Driven V2G Solutions
by Guwon Yoon, Myeong-in Choi, Keonhee Cho, Seunghwan Kim, Ayoung Lee and Sehyun Park
Buildings 2025, 15(12), 2045; https://doi.org/10.3390/buildings15122045 - 13 Jun 2025
Viewed by 380
Abstract
Integrating Electric Vehicle (EV) charging stations into buildings is becoming increasingly important due to the rapid growth of private EV ownership and prolonged parking durations in residential areas. This paper proposes robust, building-integrated charging solutions that combine mobile energy storage systems (ESSs), station [...] Read more.
Integrating Electric Vehicle (EV) charging stations into buildings is becoming increasingly important due to the rapid growth of private EV ownership and prolonged parking durations in residential areas. This paper proposes robust, building-integrated charging solutions that combine mobile energy storage systems (ESSs), station linkage data, and traffic volume data. The proposed system promotes eco-friendly EV usage, flexible energy management, and carbon neutrality through a polyfunctional Vehicle-to-Grid (V2G) architecture that integrates decentralized energy networks. Two core strategies are implemented: (1) configuring Virtual Power Plant (VPP)-based charging packages tailored to station types, and (2) utilizing EV batteries as distributed ESS units. K-means clustering based on spatial proximity and energy demand is followed by heuristic algorithms to improve the efficiency of mobile ESS operation. A three-layer framework is used to assess improvements in energy demand distribution, with demand-oriented VPPs deployed in high-demand zones to maximize ESS utilization. This approach enhances station stability, increases the load factor to 132.7%, and reduces emissions by 271.5 kgCO2. Economically, the system yields an annual benefit of USD 47,860, a Benefit–Cost Ratio (BCR) of 6.67, and a Levelized Cost of Energy (LCOE) of USD 37.78 per MWh. These results demonstrate the system’s economic viability and resilience, contributing to the development of a flexible and sustainable energy infrastructure for cities. Full article
Show Figures

Figure 1

20 pages, 5554 KiB  
Article
The Application of BiGRU-MSTA Based on Multi-Scale Temporal Attention Mechanism in Predicting the Remaining Life of Lithium-Ion Batteries
by Luping Wang and Shanze Wang
Batteries 2025, 11(6), 223; https://doi.org/10.3390/batteries11060223 - 7 Jun 2025
Viewed by 579
Abstract
Lithium-ion batteries are an indispensable component of numerous contemporary applications, such as electric vehicles and renewable energy systems. However, accurately predicting their remaining service life is a significant challenge due to the complexity of degradation patterns and time series data. To tackle these [...] Read more.
Lithium-ion batteries are an indispensable component of numerous contemporary applications, such as electric vehicles and renewable energy systems. However, accurately predicting their remaining service life is a significant challenge due to the complexity of degradation patterns and time series data. To tackle these challenges, this study introduces a novel Multi-Scale Time Attention (MSTA) mechanism designed to enhance the modeling of both short-term fluctuations and long-term degradation trends in battery performance. This mechanism is integrated with the Bidirectional Gated Recurrent Unit (BiGRU) to develop the BiGRU-MSTA framework. This framework effectively captures multi-scale temporal features and enhances prediction accuracy, even with limited training data. The BiGRU-MSTA model is evaluated via two sets of experiments. First, using the NASA lithium-ion battery dataset, the experimental results demonstrate that the proposed model outperforms the LSTM, BiGRU, CNN-LSTM, and BiGRU-Attention models across all evaluation metrics. Second, experiments conducted on the CALCE dataset not only examine the impact of varying time scales within the MSTA mechanism but also compare the model against state-of-the-art architectures such as Transformer and LSTM–Transformer. The findings indicate that the BiGRU-MSTA model exhibits significantly superior performance in terms of prediction accuracy and stability. These experimental results underscore the potential of the BiGRU-MSTA model for application in battery management systems and sustainable energy storage solutions. Full article
Show Figures

Figure 1

25 pages, 1669 KiB  
Article
Two-Stage Collaborative Power Optimization for Off-Grid Wind–Solar Hydrogen Production Systems Considering Reserved Energy of Storage
by Yiwen Geng, Qi Liu, Hao Zheng and Shitong Yan
Energies 2025, 18(11), 2970; https://doi.org/10.3390/en18112970 - 4 Jun 2025
Viewed by 578
Abstract
Off-grid renewable energy hydrogen production is a crucial approach to enhancing renewable energy utilization and improving power system stability. However, the strong stochastic fluctuations of wind and solar power pose significant challenges to electrolyzer reliability. While hybrid energy storage systems (HESS) can mitigate [...] Read more.
Off-grid renewable energy hydrogen production is a crucial approach to enhancing renewable energy utilization and improving power system stability. However, the strong stochastic fluctuations of wind and solar power pose significant challenges to electrolyzer reliability. While hybrid energy storage systems (HESS) can mitigate power fluctuations, traditional power allocation rules based solely on electrolyzer power limits and HESS state of charge (SOC) boundaries result in insufficient energy supply capacity and unstable electrolyzer operation. To address this, this paper proposes a two-stage power optimization method integrating rule-based allocation with algorithmic optimization for wind–solar hydrogen production systems, considering reserved energy storage. In Stage I, hydrogen production power and HESS initial allocation are determined through the deep coupling of real-time electrolyzer operating conditions with reserved energy. Stage II employs an improved multi-objective particle swarm optimization (IMOPSO) algorithm to optimize HESS power allocation, minimizing unit hydrogen production cost and reducing average battery charge–discharge depth. The proposed method enhances hydrogen production stability and HESS supply capacity while reducing renewable curtailment rates and average production costs. Case studies demonstrate its superiority over three conventional rule-based power allocation methods. Full article
Show Figures

Figure 1

36 pages, 2962 KiB  
Review
Safety Methods for Mitigating Thermal Runaway of Lithium-Ion Batteries—A Review
by Jun Deng, Zhen Hu, Jian Chen, Jingyu Zhao and Zujin Bai
Fire 2025, 8(6), 223; https://doi.org/10.3390/fire8060223 - 31 May 2025
Viewed by 2732
Abstract
Lithium-ion batteries (LIBs) are widely used as energy storage units in electric vehicles, mobile phones, and other electric devices due to their high voltage, large capacity, and long cycle life. Lithium-ion batteries are prone to thermal runway (TR), resulting in fires and explosions, [...] Read more.
Lithium-ion batteries (LIBs) are widely used as energy storage units in electric vehicles, mobile phones, and other electric devices due to their high voltage, large capacity, and long cycle life. Lithium-ion batteries are prone to thermal runway (TR), resulting in fires and explosions, which can seriously hinder the commercial development of LIBs. A series of safety methods has been studied to prevent TR of LIBs. The safety methods for suppressing TR in LIBs were reviewed, including safety equipment method, material modification method, thermal management method, and cooling method. The mechanism, advantages and disadvantages, and future applications of the TR suppression method are discussed. The effectiveness of the proposed safety method was evaluated through technical analysis and experimental testing, and the inhibitory effects of different safety methods on battery TR were summarized. The future trend of suppressing TR is discussed by summarizing and generalizing existing technologies for suppressing thermal runaway. This study provides a reference for exploring more effective methods to mitigate TR in the future. Full article
(This article belongs to the Special Issue Advances in Thermal Energy Storage in Fire Prevention and Control)
Show Figures

Figure 1

24 pages, 5283 KiB  
Article
Oilfield Microgrid-Oriented Supercapacitor-Battery Hybrid Energy Storage System with Series-Parallel Compensation Topology
by Lina Wang
Processes 2025, 13(6), 1689; https://doi.org/10.3390/pr13061689 - 28 May 2025
Viewed by 491
Abstract
This paper proposes a supercapacitor-battery hybrid energy storage scheme based on a series-parallel hybrid compensation structure and model predictive control to address the increasingly severe power quality issues in oilfield microgrids. By adopting the series-parallel hybrid structure, the voltage compensation depth can be [...] Read more.
This paper proposes a supercapacitor-battery hybrid energy storage scheme based on a series-parallel hybrid compensation structure and model predictive control to address the increasingly severe power quality issues in oilfield microgrids. By adopting the series-parallel hybrid structure, the voltage compensation depth can be properly improved. The model predictive control with a current inner loop is employed for current tracking, which enhances the response speed and control performance. Applying the proposed hybrid energy storage system in an oilfield DC microgrid, the fault-ride-through ability of renewable energy generators and the reliable power supply ability for oil pumping unit loads can be improved, the dynamic response characteristics of the system can be enhanced, and the service life of energy storage devices can be extended. This paper elaborates on the series-parallel compensation topology, operational principles, and control methodology of the supercapacitor-battery hybrid energy storage. A MATLAB/Simulink model of the oilfield DC microgrid employing the proposed scheme was established for verification. The results demonstrate that the proposed scheme can effectively isolate voltage sags/swells caused by upstream grid faults, maintaining DC bus voltage fluctuations within ±5%. It achieves peak shaving of oil pumping unit load demand, recovery of reverse power generation, stabilization of photovoltaic output, and reduction of power backflow. This study presents an advanced technical solution for enhancing power supply quality in high-penetration renewable energy microgrids with numerous sensitive and critical loads. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

Back to TopTop