Safety Methods for Mitigating Thermal Runaway of Lithium-Ion Batteries—A Review
Abstract
1. Introduction
2. Safety Device for Mitigating TR
2.1. Positive Temperature Coefficient (PTC)
2.2. Current Interrupt Devices (CIDs)
2.2.1. Pressure-Responsive CIDs
2.2.2. Temperature-Responsive CIDs
2.2.3. Summary of Current Interrupt Devices
2.3. Safety Vent
3. Safety Materials for Mitigating TR
3.1. Improving Anode Materials
3.2. Cathode Material Modification
3.3. Safety Electrolytes
3.4. Thermally Protective Separators
4. Thermal Management Method for Mitigating TR
4.1. Air-Cooled Thermal Management
4.2. PCM Thermal Management
4.3. Coupled Cooling Systems
5. Spray/Jet Method for Mitigating TR
6. Conclusions and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TR | Thermal runaway |
LIBs | Lithium-ion batteries |
References
- Chen, L.; Fan, X.; Hu, E.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Li, J.; Su, D.; Yang, X.; et al. Achieving High Energy Density through Increasing the Output Voltage: A Highly Reversible 5.3 V Battery. Chem 2019, 5, 896–912. [Google Scholar] [CrossRef]
- Yang, Y.; McDowell, M.T.; Jackson, A.; Cha, J.J.; Hong, S.S.; Cui, Y. New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Lett. 2010, 10, 1486–1491. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Yan, C.; Chen, Y.; Si, W.; Deng, J. Three-Dimensionally “Curved” NiO Nanomembranes as Ultrahigh Rate Capability Anodes for Li-Ion Batteries with Long Cycle Lifetimes. Adv. Energy Mater. 2014, 4, 1300912. [Google Scholar] [CrossRef]
- Yang, C.-P.; Yin, Y.-X.; Zhang, S.-F.; Li, N.-W.; Guo, Y.-G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 6, 8058. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 Years of LIBs. Adv. Mater. 2018, 30, 1800561. [Google Scholar] [CrossRef]
- Shen, H.; Zhang, Y.; Wu, Y. A comparative study on air transport safety of LIBs with different SOCs. Appl. Therm. Eng. 2020, 179, 115679. [Google Scholar] [CrossRef]
- Cao, J.; Ju, X.; Peng, Y.; Zhou, X.; Hu, Y.; Li, L.; Wang, D.; Cao, B.; Yang, L.; Peng, F. Experimental study on fire hazard of LiCoO2-based LIBs with gel electrolyte using a cone calorimeter. J. Energy Storage 2020, 32, 101884. [Google Scholar] [CrossRef]
- Agostini, M.; Brutti, S.; Navarra, M.A.; Panero, S.; Reale, P.; Matic, A.; Scrosati, B. A high-power and fast charging Li-ion battery with outstanding cycle-life. Sci. Rep. 2017, 7, 1104. [Google Scholar] [CrossRef]
- Hu, M.; Pang, X.; Zhou, Z. Recent progress in high-voltage lithium ion batteries. J. Power Sources 2013, 237, 229–242. [Google Scholar] [CrossRef]
- Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243. [Google Scholar] [CrossRef]
- Kim, G.Y. Challenges for Rechargeable Li Batteries†. Am. Chem. Soc. 2009, 22, 587–603. [Google Scholar]
- Hendricks, C.; Williard, N.; Mathew, S.; Pecht, M. A failure modes, mechanisms, and effects analysis (FMMEA) of LIBs. J. Power Sources 2015, 297, 113–120. [Google Scholar] [CrossRef]
- Wang, Q.; Mao, B.; Stoliarov, S.I.; Sun, J. A review of lithium-ion battery failure mechanisms and fire prevention method. Prog. Energy Combust. Sci. 2019, 73, 95–131. [Google Scholar] [CrossRef]
- Baird, A.R.; Archibald, E.J.; Marr, K.C.; Ezekoye, O.A. Explosion hazards from lithium-ion battery vent gas. J. Power Sources 2020, 446, 227257. [Google Scholar] [CrossRef]
- Quintiere, J.G. On methods to measure the energetics of a lithium ion battery in TR. Fire Saf. J. 2020, 111, 102911. [Google Scholar] [CrossRef]
- Said, A.O. Dynamics and Hazards of Cascading Failure in Lithium Ion Cell Arrays: Analysis, Passive Mitigation, and Active Suppression. Doctoral Dissertation, University of Maryland, College Park, MD, USA, 2020. [Google Scholar]
- Kasnatscheew, J.; Streipert, B.; Roeser, S.; Wagner, R.; Laskovic, I.C.; Winter, M. Determining oxidative stability of battery electrolytes: Validity of common electrochemical stability window (ESW) data and alternative method. Phys. Chem. Chem. Phys. 2017, 19, 16078–16086. [Google Scholar] [CrossRef]
- Lee, C.; Said, A.O.; Stoliarov, S.I. Passive Mitigation of TR Propagation in Dense 18650 Lithium Ion Cell Assemblies. J. Electrochem. Soc. 2020, 167, 090524. [Google Scholar] [CrossRef]
- Balakrishnan, P.G.; Ramesh, R.; Kumar, T.P. Safety mechanisms in LIBs. J. Power Sources 2006, 155, 401–414. [Google Scholar] [CrossRef]
- Fraser, R. Coupled Electrochemical-Thermal Simulations and Validation of Minichannel Cold-Plate Water-Cooled Prismatic 20 Ah LiFePO4 Battery. Electrochem 2021, 2, 643–663. [Google Scholar]
- Chitta, S.D.; Akkaldevi, C.; Jaidi, J.; Panchal, S.; Fowler, M.; Fraser, R. Comparison of lumped and 1D electrochemical models for prismatic 20Ah LiFePO4 battery sandwiched between minichannel cold-plates. Appl. Therm. Eng. 2021, 199, 117586. [Google Scholar] [CrossRef]
- Li, Q.; Park, O.K.; Lee, J.H. Positive temperature coefficient behavior of HDPE/EVA blends filled with carbon black. In Advanced Materials Research; Trans Tech Publications, Ltd.: Stafa-Zurich, Switzerland, 2008. [Google Scholar]
- Asare, E.; Evans, J.; Newton, M.; Peijs, T.; Bilotti, E. Effect of particle size and shape on positive temperature coefficient (PTC) of conductive polymer composites (CPC)—A model study. Mater. Des. 2016, 97, 459–463. [Google Scholar] [CrossRef]
- Huang, W.; Feng, X.; Han, X.; Zhang, W.; Jiang, F. Questions and Answers Relating to Lithium-Ion Battery Safety Issues. Cell Rep. Phys. Sci. 2021, 2, 100285. [Google Scholar] [CrossRef]
- Faivre, A. Glassy state and Glass transition. Matér. Tech. 2015, 103, 404. [Google Scholar] [CrossRef]
- Finegan, D.P.; Darcy, E.; Keyser, M.; Tjaden, B.; Heenan, T.M.M.; Jervis, R.; Bailey, J.J.; Vo, N.T.; Magdysyuk, O.V.; Drakopoulos, M.; et al. Identifying the Cause of Rupture of Li-Ion Batteries during TR. Adv. Sci. 2018, 5, 1700369. [Google Scholar] [CrossRef]
- Abaza, A.; Ferrari, S.; Wong, H.K.; Lyness, C.; Moore, A.; Weaving, J.; Blanco-Martin, M.; Dashwood, R.; Bhagat, R. Experimental study of internal and external short circuits of commercial automotive pouch lithium-ion cells. J. Energy Storage 2018, 16, 211–217. [Google Scholar] [CrossRef]
- Kise, M.; Yoshioka, S.; Hamano, K.; Kuriki, H.; Nishimura, T.; Urushibata, H. Alternating current impedance behavior and overcharge tolerance of LIBs using positive temperature coefficient cathodes. J. Electrochem. Soc. 2006, 153, A1004–A1011. [Google Scholar] [CrossRef]
- Kise, M.; Yoshioka, S.; Kuriki, H. Relation between composition of the positive electrode and cell performance and safety of lithium-ion PTC batteries. J. Power Sources 2007, 174, 861–866. [Google Scholar] [CrossRef]
- Zhang, H.; Pang, J.; Ai, X.; Cao, Y.; Yang, H.; Lu, S. Poly(3-butylthiophene)-based positive-temperature-coefficient electrodes for safer LIBs. Electrochim. Acta 2016, 187, 173–178. [Google Scholar] [CrossRef]
- Jin, H.-Z.; Han, X.-F.; Radjenovic, P.M.; Tian, J.-H.; Li, J.-F. Facile and Effective Positive Temperature Coefficient (PTC) Layer for Safer LIBs. J. Phys. Chem. C 2021, 125, 1761–1766. [Google Scholar] [CrossRef]
- Zhong, H.; Kong, C.; Zhan, H.; Zhan, C.; Zhou, Y. Safe positive temperature coefficient composite cathode for lithium-ion battery. J. Power Sources 2012, 216, 273–280. [Google Scholar] [CrossRef]
- Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C. TR caused fire and explosion of lithium-ion battery. J. Power Sources 2012, 208, 210–224. [Google Scholar] [CrossRef]
- Feng, X.M.; Ai, X.P.; Yang, H.X. A positive-temperature-coefficient electrode with thermal cut-off mechanism for use in rechargeable lithium batteries. Electrochem. Commun. 2004, 6, 1021–1024. [Google Scholar] [CrossRef]
- Xia, L.; Li, S.L.; Ai, X.P.; Yang, H.X.; Cao, Y.L. Temperature-sensitive cathode materials for safer LIBs. Energy Environ. Sci. 2011, 4, 2845–2848. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; Lu, H.; Jia, M.; Zhang, Z. A Positive-Temperature-Coefficient Layer Based on Ni-Mixed Poly(Vinylidene Fluoride) Composites for LiFePO4 Electrode. Int. J. Electrochem. Sci. 2013, 8, 5223–5231. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, Z.; Ma, Z.; Nan, J. Positive-Temperature-Coefficient Graphite Anode as a TR Firewall to Improve the Safety of LiCoO2/Graphite Batteries under Abusive Conditions. Energy Technol. 2020, 8, 1901037. [Google Scholar] [CrossRef]
- Li, H.; Wang, F.; Zhang, C.; Ji, W.; Qian, J.; Cao, Y.; Yang, H.; Ai, X. A temperature-sensitive poly(3-octylpyrrole)/carbon composite as a conductive matrix of cathodes for building safer Li-ion batteries. Energy Storage Mater. 2019, 17, 275–283. [Google Scholar] [CrossRef]
- Beletskii, E.V.; Alekseeva, E.V.; Anishchenko, D.V.; Levin, O.V. Li-Ion Battery Short-Circuit Protection by Voltage-Driven Switchable Resistance Polymer Layer. Batteries 2022, 8, 171. [Google Scholar] [CrossRef]
- Lisbona, D.; Snee, T. A review of hazards associated with primary lithium and LIBs. Process Saf. Environ. Prot. 2011, 89, 434–442. [Google Scholar] [CrossRef]
- Manzo, M.A.; Brewer, J.C.; Bugga, R.V.; Darcy, E.C.; Jeevarajan, J.A.; Mckissock, B.I.; Schmitz, P.C. NASA Aerospace Flight Battery Program: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries; Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries; Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop); NASA: Greenbelt, MD, USA, 2010. [Google Scholar]
- Li, W.; Crompton, K.R.; Hacker, C.; Ostanek, J.K. Comparison of current interrupt device and vent design for 18650 format lithium-ion battery caps: New findings. J. Energy Storage 2022, 46, 103841. [Google Scholar] [CrossRef]
- Xu, B.; Lee, J.; Kwon, D.; Kong, L.; Pecht, M. Mitigation method for Li-ion battery TR: A review. Renew. Sustain. Energy Rev. 2021, 150, 111437. [Google Scholar] [CrossRef]
- Diao, W.; Xu, B.; Pecht, M. Charging induced electrode layer fracturing of 18650 LIBs. J. Power Sources 2021, 484, 229260. [Google Scholar] [CrossRef]
- Augeard, A.; Singo, T.; Desprez, P.; Abbaoui, M. Contribution to the Study of Electric Arcs in LIBs. IEEE Trans. Compon. Packag. Manuf. Technol. 2016, 6, 1068–1078. [Google Scholar] [CrossRef]
- Kwo-Hsiung, Y.; John, K.; Chubin, W.; Roman, D.; Volodymyr, Y. Cell Performance Comparison between C14- and C15-Predomiated AB2 Metal Hydride Alloys. Batteries 2017, 3, 29. [Google Scholar] [CrossRef]
- Xie, Z.; Wang, Z.; Liu, J.; Gao, T.; Yan, W. Influence of state of charge inconsistency on electrical performance and TR characteristics in 2 serials 1 parallel lithium-ion battery pack. Fire Mater. 2024, 48, 439–455. [Google Scholar] [CrossRef]
- Juarez-Robles, D.; Azam, S.; Jeevarajan, J.A.; Mukherjee, P.P. Degradation-Safety Analytics in Lithium-Ion Cells and Modules Part II. Overcharge and External Short Circuit Scenarios. J. Electrochem. Soc. 2021, 168, 050535. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, X.; Sahraei, E.; Wierzbicki, T. Deformation and failure mechanisms of 18650 battery cells under axial compression. J. Power Sources 2016, 336, 332–340. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, R.; He, Y.; Ma, J.; Guo, H.; Yang, Y.; Zhang, L. A Lightweight Multiscale Attention Semantic Segmentation Algorithm for Detecting Laser Welding Defects on Safety Vent of Power Battery. IEEE Access 2021, 9, 39245–39254. [Google Scholar] [CrossRef]
- Ouyang, D.; Liu, Y.; Hamam, I.; Wang, J.; Dahn, J. A comparative study on the reactivity of charged Ni-rich and Ni-poor positive electrodes with electrolyte at elevated temperatures using accelerating rate calorimetry. J. Energy Chem. 2021, 60, 523–530. [Google Scholar] [CrossRef]
- Huang, Q.; Ma, L.; Liu, A.; Ma, X.; Li, J.; Wang, J.; Dahn, J.R. The reactivity of charged positive Li1−n[NixMnyCoz]O2 electrodes with electrolyte at elevated temperatures using accelerating rate calorimetry. J. Power Sources 2018, 390, 78–86. [Google Scholar] [CrossRef]
- Jia, Z.; Min, Y.; Qin, P.; Mei, W.; Meng, X.; Jin, K.; Sun, J.; Wang, Q. Effect of safety valve types on the gas venting behavior and TR hazard severity of large-format prismatic lithium iron phosphate batteries. J. Energy Chem. 2024, 89, 195–207. [Google Scholar] [CrossRef]
- Yao, X.-Y.; Kong, L.; Pecht, M.G. Reliability of Cylindrical Li-ion Battery Safety Vents. IEEE Access 2020, 8, 101859–101866. [Google Scholar] [CrossRef]
- Zhang, N.; Li, J.; Li, H.; Liu, A.; Huang, Q.; Ma, L.; Li, Y.; Dahn, J.R. Structural, Electrochemical, and Thermal Properties of Nickel-Rich LiNixMnyCozO2 Materials. Chem. Mater. 2018, 30, 8852–8860. [Google Scholar] [CrossRef]
- Li, H.; Chen, H.; Zhong, G.; Wang, Y.; Wang, Q. Experimental study on TR risk of 18650 lithium-ion battery under side-heating condition—ScienceDirect. J. Loss Prev. Process Ind. 2019, 61, 122–129. [Google Scholar] [CrossRef]
- Robinson, J.B.; Darr, J.A.; Eastwood, D.S.; Hinds, G.; Lee, P.D.; Shearing, P.R.; Taiwo, O.O.; Brett, D.J.L. Non-uniform temperature distribution in Li-ion batteries during discharge—A combined thermal imaging, X-ray micro-tomography and electrochemical impedance approach. J. Power Sources 2014, 252, 51–57. [Google Scholar] [CrossRef]
- Duh, Y.S.; Sun, Y.; Lin, X.; Zheng, J.; Wang, M.; Wang, Y.; Lin, X.; Jiang, X.; Zheng, Z.; Zheng, S. Characterization on TR of commercial 18650 LIBs used in electric vehicles: A review. J. Energy Storage 2021, 41, 102888. [Google Scholar] [CrossRef]
- Anderson, N.; Tran, M.; Darcy, E. 18650 Cell Bottom Vent: Preliminary Evaluation into Its Merits for Preventing Side Wall Rupture; NASA: Greenbelt, MD, USA, 2016. [Google Scholar]
- Kong, L.; Li, C.; Jiang, J.; Pecht, M.G. Li-Ion Battery Fire Hazards and Safety Method. Energies 2018, 11, 2191. [Google Scholar] [CrossRef]
- Kim, J.-H.; Lee, K.-H.; Ko, D.-C.; Lee, S.-B.; Kim, B.-M. Design of integrated safety vent in prismatic lithium-ion battery. J. Mech. Sci. Technol. 2017, 31, 2505–2511. [Google Scholar] [CrossRef]
- Chombo, P.V.; Laoonual, Y. A review of safety method of a Li-ion battery. J. Power Sources 2020, 478, 228649. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, K.H.; Lim, Y.J.; Kim, B.M. Manufacturing Integral Safety Vents in Prismatic LIBs. Trans. Mater. Process. 2015, 24, 293–298. [Google Scholar] [CrossRef]
- Gao, R.; Wang, S.; Xu, Z.; Li, H.; Chen, S.; Hou, H.; Wang, J. Octahedral Fe3O4/FeS composite synthesized by one-pot hydrothermal method as a high-performance anode material for LIBs. J. Alloys Compd. 2021, 864, 158796. [Google Scholar] [CrossRef]
- Kim, H.S.; Kong, M.; Kim, K.; Kim, I.J.; Gu, H.B. Effect of carbon coating on LiNi1/3Mn1/3Co1/3O2 cathode material for lithium secondary batteries. J. Power Sources 2007, 171, 917–921. [Google Scholar] [CrossRef]
- Shen, C.; Hu, G.; Cheong, L.Z.; Huang, S.; Zhang, J.G.; Wang, D. Direct Observation of the Growth of Lithium Dendrites on Graphite Anodes by Operando EC-AFM. Small Methods 2018, 2, 1700298. [Google Scholar] [CrossRef]
- Carter, R.E.; Love, C.T. Modulation of Lithium Plating in Li-Ion Batteries with External Thermal Gradient. ACS Appl. Mater. Interfaces 2018, 10, 26328–26334. [Google Scholar] [CrossRef]
- Chen, J.; Xu, L.; Li, W.; Gou, X. α-Fe2O3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications. Adv. Mater. 2005, 17, 582–586. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Madhavi, S.; Lou, X.W. α-FeO-mediated growth and carbon nanocoating of ultrafine SnO nanorods as anode materials for Li-ion batteries. J. Mater. Chem. 2012, 22, 2526–2531. [Google Scholar] [CrossRef]
- Arie, A.A.; Lee, J.K. Nano-carbon coating layer prepared by the thermal evaporation of fullerene C60 for lithium metal anodes in rechargeable lithium batteries. J. Nanosci. Nanotechnol. 2011, 11, 6569–6574. [Google Scholar] [CrossRef] [PubMed]
- Kopuklu, B.B.; Tasdemir, A.; Gursel, S.A.; Yurum, A. High stability graphene oxide aerogel supported ultrafine Fe3O4 particles with superior performance as a Li-ion battery anode. Carbon 2021, 174, 158–172. [Google Scholar] [CrossRef]
- Hussain, M.I.S.Z.; Hussain, S.B.; Oh, W.C.; Ullah, K.; Ullah, K. A review on graphene based transition metal oxide composites and its application towards supercapacitor electrodes. SN Appl. Sci. 2020, 2, 764. [Google Scholar] [CrossRef]
- Mo, L.; Zheng, H. Solid coated Li4Ti5O12 (LTO) using polyaniline (PANI) as anode materials for improving thermal safety for lithium-ion battery. Energy Rep. 2020, 6, 2913–2918. [Google Scholar] [CrossRef]
- Park, Y.-S.; Oh, E.-S.; Lee, S.-M. Effect of polymeric binder type on the thermal stability and tolerance to roll-pressing of spherical natural graphite anodes for Li-ion batteries. J. Power Sources 2014, 248, 1191–1196. [Google Scholar] [CrossRef]
- Chen, W.; Zhan, X.; Luo, B.; Ou, Z.; Shih, P.C.; Yao, L.; Pidaparthy, S.; Patra, A.; An, H.; Braun, P.V. Effects of Particle Size on Mg2+ Ion Intercalation into lambda-MnO2 Cathode Materials. Nano Lett. 2019, 19, 4712–4720. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-H.; Okano, M.; Mukai, T.; Inoue, K.; Yanagida, M.; Sakai, T. Improvement of thermal stability and safety of lithium ion battery using SiO anode material. J. Power Sources 2016, 304, 9–14. [Google Scholar] [CrossRef]
- Gou, Q.; Liao, H.; Chen, F.; Zeng, R.; Liu, H.; Yang, N.; Hou, Y.; Xie, G. Construction and modification of germanium-based anode materials in lithium-ion batteries. J. Alloys Compd. 2025, 1013, 178520. [Google Scholar]
- Chen, C.; Shi, H.; Jiang, H.; Zhu, J. Recent Progress on Titanium Niobium Oxide as Anode Material for Lithium-Ion Batteries. J. Electron. Mater. 2025, 54, 3346–3369. [Google Scholar] [CrossRef]
- Zhai, F.Y.; Yang, P.Y.; Zhang, W.F.; Zhu, X.-Y.; Cao, G.-P.; Zhang, H.-M.; Xing, Y.-L.; Lei, Y.-P.; Xiang, Y.; Zhang, S.-C. Creative high-entropy strategy: A booster to the design of anode materials for high-energy lithium-ion batteries. Rare Met. 2025, 1–26. [Google Scholar] [CrossRef]
- Xiao, Z.; Wu, H.; Quan, L.; Zeng, F.; Guo, R.; Ma, Z.; Chen, X.; Zhan, J.; Xu, K.; Xing, L.; et al. Micro-sized CVD-derived Si–C anodes: Challenges, strategies, and prospects for next-generation high-energy lithium-ion batteries. Energy Environ. Sci. 2025, 18, 4037–4052. [Google Scholar] [CrossRef]
- Yang, J.; Li, J.; Xu, C.; Wen, B.; Si, L.; Shen, W.; Feng, Z.; Mai, W.; Lin, X.; Wu, Y.; et al. Recent Advancements in Metal-Organic Frameworks-Derived Metal Phosphides as Anode for Lithium-Ion Batteries. ChemNanoMat 2025, 11, e202400504. [Google Scholar] [CrossRef]
- Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. TR mechanism of lithium-ion battery for electric vehicles: A review. Energy Storage Mater. 2018, 10, 246–267. [Google Scholar] [CrossRef]
- Xia, Y.; Zheng, J.; Wang, C.; Gu, M. Designing principle for Ni-rich cathode materials with high energy density for practical applications. Nano Energy 2018, 49, 434–452. [Google Scholar] [CrossRef]
- Kai, L.; Yayuan, L.; Dingchang, L.; Allen, P.; Yi, C. Materials for lithium-ion battery safety. Sci. Adv. 2018, 4, eaas9820. [Google Scholar]
- Zhou, F.; Zhao, X.; Jiang, J.; Dahn, J.R. Advantages of Simultaneous Substitution of Co in Li[Ni1/3Mn1/3Co1/3]O2 by Ni and Al. Electrochem. Solid-State Lett. 2009, 12, A81. [Google Scholar] [CrossRef]
- Cho, W.; Kim, S.-M.; Song, J.H.; Yim, T.; Woo, S.-G.; Lee, K.-W.; Kim, J.-S.; Kim, Y.-J. Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating. J. Power Sources 2015, 282, 45–50. [Google Scholar] [CrossRef]
- Chen, J.; Cui, Y.; Jiang, L.; Xue, J.; Xu, H.; Nan, J. Thermal Safety and Runaway Blocking Mechanism for LIBs through Introducing Nanoscale Magnesium Hydroxide into the LiNi0.5Co0.2Mn0.3O2 Cathode. ACS Appl. Energy Mater. 2021, 4, 12780–12788. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, S.-O.; Mun, J.; Park, M.-S.; Kim, K.J.; Lee, K.Y.; Choi, W. Influence of salt, solvents, and additives on the thermal stability of delithiated cathodes in LIBs. J. Electroanal. Chem. 2017, 807, 174–180. [Google Scholar] [CrossRef]
- Li, T.; Yuan, X.-Z.; Zhang, L.; Song, D.; Shi, K.; Bock, C. Degradation Mechanisms and Mitigation Method of Nickel-Rich NMC-Based LIBs. Electrochem. Energy Rev. 2020, 3, 43–80. [Google Scholar] [CrossRef]
- Lee, S.-W.; Kim, M.-S.; Jeong, J.H.; Kim, D.-H.; Chung, K.Y.; Roh, K.C.; Kim, K.-B. Li3PO4 surface coating on Ni-rich LiNi0.6Co0.2Mn0.2O2 by a citric acid assisted sol-gel method: Improved thermal stability and high-voltage performance. J. Power Sources 2017, 360, 206–214. [Google Scholar] [CrossRef]
- Yoo, K.S.; Kang, Y.H.; Im, K.R.; Kim, C.S. Surface Modification of Li(Ni0.6Co0.2Mn0.2)O2 Cathode Materials by Nano-Al2O3 to Improve Electrochemical Performance in LIBs. Materials 2017, 10, 1273. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Ren, D.; Hsu, H.; Xu, G.-L.; Hou, J.; Wang, L.; Feng, X.; Lu, L.; Xu, W.; et al. Toward a high-voltage fast-charging pouch cell with TiO2 cathode coating and enhanced battery safety. Nano Energy 2020, 71, 104643. [Google Scholar] [CrossRef]
- Doughty, D.H. Vehicle Battery Safety Roadmap Guidance; National Renewable Energy Laboratory: Golden, CO, USA, 2012. [Google Scholar]
- Chen, Y.; Zhang, Y.; Wang, F.; Wang, Z.; Zhang, Q. Improve the structure and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material by nano-Al2O3 ultrasonic coating. J. Alloys Compd. 2014, 611, 135–141. [Google Scholar] [CrossRef]
- Dai, Z.; Liu, Y.; Lu, X.; Zhao, H.; Bai, Y. Ultra-High Temperature Operated Ni-Rich Cathode Stabilized by Thermal Barrier for High-Energy LIBs. Adv. Mater. 2024, 36, e2313500. [Google Scholar] [CrossRef]
- Lee, D.J.; Scrosati, B.; Sun, Y.K. Ni3(PO4)2-coated Li[Ni0.8Co0.15Al0.05]O2 lithium battery electrode with improved cycling performance at 55 °C. J. Power Sources 2011, 196, 7742–7746. [Google Scholar] [CrossRef]
- Andezai, A.; Iroh, J.O. Overview of Organic Cathode Materials in Lithium-Ion Batteries and Supercapacitors. Energies 2025, 18, 582. [Google Scholar] [CrossRef]
- Cai, M.; Yang, W.; Wu, Z. Modification Strategies of High-Nickel Layered Oxides Cathode for Lithium-ion Batteries. Batter. Supercaps 2025. [Google Scholar] [CrossRef]
- Belous, A.G.; Lisovskyi, I.V.; Khomenko, V.G. Surface modification of cathode materials with functional coatings for enhanced lithium-ion battery durability. J. Appl. Electrochem. 2025, 1–34. [Google Scholar] [CrossRef]
- Wen, J.; Yu, Y.; Chen, C. A Review on LIBs Safety Issues: Existing Problems and Possible Solutions. Mater. Express 2012, 2, 197–212. [Google Scholar] [CrossRef]
- Yuan, X.; Liu, H.; Zhang, J. LIBs: Advanced Materials and Technologies; Crc Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Li, Z.; Huang, J.; Liaw, B.Y.; Metzler, V.; Zhang, J. A review of lithium deposition in lithium-ion and lithium metal secondary batteries. J. Power Sources 2014, 254, 168–182. [Google Scholar] [CrossRef]
- Wang, Q.; Ping, R.; Sun, R.; Chen, R. Improved thermal stability of lithium ion battery by using cresyl diphenyl phosphate as an electrolyte additive. J. Power Sources 2010, 195, 7457–7461. [Google Scholar] [CrossRef]
- Kim, T. A facile treatment to improve safety and interfacial stability by an organophosphorus composite for lithium metal batteries. Mater. Lett. 2023, 338, 134023. [Google Scholar] [CrossRef]
- Liu, K.; Liu, C.; Hsu, P.C.; Xu, J.; Kong, B.; Wu, T.; Zhang, R.; Zhou, G.; Huang, W.; Sun, J. Core–Shell Nanofibrous Materials with High Particulate Matter Removal Efficiencies and Thermally Triggered Flame Retardant Properties. ACS Cent. Sci. 2018, 4, 894–898. [Google Scholar] [CrossRef]
- Lei, S.; Zeng, Z.; Wu, Y.; Liu, M.; Cheng, S.; Xie, J. Non-coordinating flame retardants with varied vapor pressures enabling biphasic fire-extinguishing electrolyte for high safety LIBs. Chem. Eng. J. 2023, 463, 142181. [Google Scholar] [CrossRef]
- Wu, H.-L.; Chong, Y.-H.; Ong, H.-C.; Shu, C.-M. Thermal stability of modified lithium-ion battery electrolyte by flame retardant, tris (2,2,2-trifluoroethyl) phosphite. J. Therm. Anal. Calorim. 2022, 147, 4245–4252. [Google Scholar] [CrossRef]
- Zhang, C.-Z.; Xie, L.-J.; Tang, Y.; Li, Y.; Jiang, J.-C.; Huang, A.-C. Thermal Safety Evaluation of Silane Polymer Compounds as Electrolyte Additives for Silicon-Based Anode LIBs. Processes 2022, 10, 1581. [Google Scholar] [CrossRef]
- Thanh-Ha, T.; Harmand, S.; Sahut, B. Experimental investigation on heat pipe cooling for Hybrid Electric Vehicle and Electric Vehicle lithium-ion battery. J. Power Sources 2014, 265, 262–272. [Google Scholar] [CrossRef]
- Xue, S.; Zhou, Y.; Liu, X.; He, M. A new fluorine-containing sulfone-based electrolyte for advanced performance lithium metal batteries. J. Energy Storage 2023, 64, 107137. [Google Scholar] [CrossRef]
- Li, T.; Zhang, X.-Q.; Shi, P.; Zhang, Q. Fluorinated Solid-Electrolyte Interphase in High-Voltage Lithium Metal Batteries. Joule 2019, 3, 2647–2661. [Google Scholar] [CrossRef]
- Qi, H.; Ren, Y.; Guo, S.; Wang, Y.; Li, S.; Hu, Y.; Yan, F. High-Voltage Resistant Ionic Liquids for LIBs. ACS Appl. Mater. Interfaces 2020, 12, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Hayyan, M.; Mjalli, F.S.; Hashim, M.A.; Alnashef, I.M.; Mei, T.X. Investigating the Electrochemical Windows of Ionic Liquids. J. Ind. Eng. Chem. 2013, 19, 106–112. [Google Scholar] [CrossRef]
- Bocharova, V.; Sokolov, A.P. Perspectives for Polymer Electrolytes: A View from Fundamentals of Ionic Conductivity. Macromolecules 2020, 53, 4141–4157. [Google Scholar] [CrossRef]
- Chernyshov, D.V.; Shin, W.C. Quaternary Ammonium-Based Room Temperature Ionic Liquids as Components of Carbonate Electrolytes for Li-ion Batteries: Electrochemical Performance and Thermal Properties. J. Electrochem. Sci. Technol. 2014, 5, 95–104. [Google Scholar] [CrossRef]
- Zhu, M.; Wu, J.; Wang, Y.; Song, M.; Long, L.; Siyal, S.H.; Yang, X.; Sui, G. Recent advances in gel polymer electrolyte for high-performance lithium batteries. J. Energy Chem. 2019, 37, 126–142. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, L.; Xu, H.; Zhang, X.; Chen, Z.; Gao, C.; Lu, C.; Liu, Z.; Jiang, M.; Cui, G. A polymer electrolyte with a thermally induced interfacial ion-blocking function enables safety-enhanced lithium metal batteries. eScience 2022, 2, 201–208. [Google Scholar] [CrossRef]
- Liu, K.-L.; Chao, C.-H.; Lee, H.-C.; Liao, C.-H.; Fang, J.; Wu, N.-L.; Chao, C.-Y. A single-ion conducting quasi-solid polymer electrolyte made from synthetic rubber for lithium metal batteries. Electrochem. Commun. 2023, 149, 107467. [Google Scholar] [CrossRef]
- Dong, T.; Xu, G.; Xie, B.; Liu, T.; Gong, T.; Sun, C.; Wang, J.; Zhang, S.; Zhang, X.; Zhang, H.; et al. An Electrode-Crosstalk-Suppressing Smart Polymer Electrolyte for High Safety LIBs. Adv. Mater. 2024, 36, e2400737. [Google Scholar] [CrossRef] [PubMed]
- Finegan, D.P. X-Ray Imaging of Failure and Degradation Mechanisms of LIBs. Ph.D. Thesis, University College London, London, UK, 2016. [Google Scholar]
- Zhu, J.; Zhang, J.; Zhao, R.; Zhao, Y.; Liu, J.; Xu, N.; Wan, X.; Li, C.; Ma, Y.; Zhang, H.; et al. In situ 3D crosslinked gel polymer electrolyte for ultra-long cycling, high-voltage, and high-safety lithium metal batteries. Energy Storage Mater. 2023, 57, 92–101. [Google Scholar] [CrossRef]
- Long, M.-C.; Wu, G.; Wang, X.-L.; Wang, Y.-Z. Self-adaptable gel polymer electrolytes enable high-performance and all-round safety lithium ion batteries. Energy Storage Mater. 2022, 53, 62–71. [Google Scholar] [CrossRef]
- Shi, X.; Jia, Z.; Wang, D.; Jiang, B.; Liao, Y.; Zhang, G.; Wang, Q.; He, D.; Huang, Y. Phonon Engineering in Solid Polymer Electrolyte toward High Safety for Solid-State Lithium Batteries. Adv. Mater. 2024, 36, 2405097.1–2405097.9. [Google Scholar] [CrossRef]
- Li, C.; Du, Y. Building a Better All-Solid-State Lithium-Ion Battery with Halide Solid-State Electrolyte. ACS Nano 2025, 19, 4121–4155. [Google Scholar] [CrossRef]
- Hosamane, S.; Kottam, N.; Chalil Suresh, A. Strategies to Boost the Safety and Ionic Conductivity of Lithium-Ion Batteries Using Solid State Electrolytes: A Review. Wiley Interdiscip. Rev. Energy Environ. 2025, 14, e544. [Google Scholar] [CrossRef]
- Liu, B.; Suo, L. Advanced Electrolyte Solution for Aqueous Lithium-Ion Batteries: Extending Their Lifespan. Adv. Funct. Mater. 2025. [Google Scholar] [CrossRef]
- Liu, M.; Zeng, Z.; Wu, Y.; Zhong, W.; Lei, S.; Cheng, S.; Wen, J.; Xie, J. Reviewing recent progress of liquid electrolyte chemistry for mitigating TR in LIBs. Energy Storage Mater. 2024, 65, 103133. [Google Scholar] [CrossRef]
- Lei, T.; Chen, W.; Hu, Y.; Lv, W.; Lv, X.; Yan, Y.; Huang, J.; Jiao, Y.; Chu, J.; Yan, C. A Nonflammable and Thermotolerant Separator Suppresses Polysulfide Dissolution for Safe and Long-Cycle Lithium-Sulfur Batteries; John Wiley & Sons, Ltd.: London, UK, 2018. [Google Scholar]
- Deimede, V.; Elmasides, C. Separators for LIBs: A Review on the Production Processes and Recent Developments. Energy Technol. 2015, 3, 453–468. [Google Scholar] [CrossRef]
- Tian, Y.; Zeng, G.; Rutt, A.; Shi, T.; Kim, H.; Wang, J.; Koettgen, J.; Sun, Y.; Ouyang, B.; Chen, T.; et al. Promises and Challenges of Next-Generation “Beyond Li-ion” Batteries for Electric Vehicles and Grid Decarbonization. Chem. Rev. 2021, 121, 1623–1669. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Shen, L.; Deng, S.; Cui, P.; Yao, X. 10 μm-Thick High-Strength Solid Polymer Electrolytes with Excellent Interface Compatibility for Flexible All-Solid-State Lithium-Metal Batteries. Adv. Mater. 2021, 33, e2100353. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Mu, X.; Li, Z.; Han, L.; Zhu, Y.; Wang, H.J.; Song, L.; Kan, Y.; Hu, Y. A Flame-Retardant, High Ionic-Conductivity and Eco-Friendly Separator Prepared by Papermaking Method for High-Performance and Fire Safety LIBs; Social Science Electronic Publishing: Rochester, NY, USA, 2022. [Google Scholar]
- Luo, D.; Chen, M.; Xu, J.; Yin, X.; Wu, J.; Chen, S.; Wang, L.; Wang, H. Polyphenylene sulfide nonwoven-based composite separator with superior heat-resistance and flame retardancy for high power lithium-ion battery. Compos. Sci. Technol. 2018, 157, 119–125. [Google Scholar] [CrossRef]
- Zheng, W.; Zhu, Y.; Na, B.; Lv, R.; Liu, H.; Li, W.; Zhou, H. Hybrid silica membranes with a polymer nanofiber skeleton and their application as lithium-ion battery separators. Compos. Sci. Technol. 2017, 144, 178–184. [Google Scholar] [CrossRef]
- Xie, Z.; Liu, D.; Wu, K.; Fu, Q. Improved dielectric and energy storage properties of polypropylene by adding hybrid fillers and high-speed extrusion. Polymer 2020, 214, 123348. [Google Scholar] [CrossRef]
- Zuo, X.; Wu, J.; Ma, X.; Deng, X.; Cai, J.; Chen, Q.; Liu, J.; Nan, J. A poly(vinylidene fluoride)/ethyl cellulose and amino-functionalized nano-SiO2 composite coated separator for 5 V high-voltage LIBs with enhanced performance. J. Power Sources 2018, 407, 44–52. [Google Scholar] [CrossRef]
- Lv, W.; Zhang, X. Recent advances in lithium-ion battery separators with enhanced safety. In 60 Years of the Loeb-Sourirajan Membrane; Elsevier: Amsterdam, The Netherlands, 2022; pp. 269–304. [Google Scholar]
- da Silva, G.M.; Lima, T.J.; da Silva, D.D.; Henriques, I.B. Assessment of TR propagation in lithium-ion battery modules with different separator materials. Int. J. Therm. Sci. 2024, 197, 108836. [Google Scholar] [CrossRef]
- Palanisamy, M.; Lin, K.-W.; Lo, C.-T.; Pol, V.G. In Situ Thermal Safety Aspect of the Electrospun Polyimide-Al2O3 Separator Reveals Less Exothermic Heat Energies than Polypropylene at the TR Event of LIBs. ACS Appl. Mater. Interfaces 2022, 14, 28310–28320. [Google Scholar] [CrossRef]
- Jeon, H.; Choi, J.; Ryou, M.-H.; Lee, Y.M. Comparative Study of the Adhesion Properties of Ceramic Composite Separators Using a Surface and Interfacial Cutting Analysis System for LIBs. ACS Omega 2017, 2, 2159–2164. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, J.H.; Lee, J.; Kim, S.; Cho, S.O. Safety and performance enhanced boehmite-coupled polyethylene nanocomposite separator for LIBs by synergetic effects of silane treatment and electron irradiation. J. Power Sources 2023, 560, 232718. [Google Scholar] [CrossRef]
- Liu, J.; Cao, D.; Yao, H.; Liu, D.; Zhang, X.; Zhang, Q.; Chen, L.; Wu, S.; Sun, Y.; He, D.; et al. Hexagonal Boron Nitride-Coated Polyimide Ion Track Etched Separator with Enhanced Thermal Conductivity and High-Temperature Stability for LIBs. ACS Appl. Energy Mater. 2022, 5, 8639–8649. [Google Scholar] [CrossRef]
- Tang, W.; Liu, Q.; Luo, N.; Chen, F.; Fu, Q. High safety and electrochemical performance electrospun para-aramid nanofiber composite separator for lithium-ion battery. Compos. Sci. Technol. 2022, 225, 109479. [Google Scholar] [CrossRef]
- Deng, Y.; Pan, Y.; Li, C.; Zhang, Z.; Gong, L.; Fu, Y.; Shi, L.; Zhang, H.; Cheng, X. Advanced polyimide separator via co-precursor method for LIBs with low TR risks. J. Energy Storage 2022, 56, 106100. [Google Scholar] [CrossRef]
- Yrynen, A.V.; Salminen, J. Lithium-ion battery production. J. Chem. Thermodyn. 2012, 46, 80–85. [Google Scholar] [CrossRef]
- Greco, A.; Jiang, X.; Cao, D. An investigation of lithium-ion battery thermal management using paraffin/porous-graphite-matrix composite. J. Power Sources 2015, 278, 50–68. [Google Scholar] [CrossRef]
- Pesaran, A.A. Battery Thermal Models for Hybrid Vehicle Simulations. J. Power Sources 2002, 110, 377–382. [Google Scholar] [CrossRef]
- Mohammadian, S.K.; Rassoulinejad-Mousavi, S.M.; Zhang, Y. Thermal management improvement of an air-cooled high-power lithium-ion battery by embedding metal foam. J. Power Sources 2015, 296, 305–313. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, X.; Wang, B.; Zhang, C.; Xuan, D. Multiobjective optimization of air-cooled battery thermal management system based on heat dissipation model. Ionics 2021, 27, 1307–1322. [Google Scholar] [CrossRef]
- Sabbah, R.; Kizilel, R.; Selman, J.R.; Al-Hallaj, S. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution. J. Power Sources 2015, 182, 630–638. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, X.; Li, G.; Hua, D. Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs: A comparative analysis between aligned and staggered cell arrangements. Appl. Therm. Eng. 2015, 80, 55–65. [Google Scholar] [CrossRef]
- Lopez, C.F.; Jeevarajan, J.A.; Mukherjee, P.P. Experimental Analysis of TR and Propagation in Lithium-Ion Battery Modules. J. Electrochem. Soc. 2015, 162, A1905–A1915. [Google Scholar] [CrossRef]
- Yang, T.; Yang, N.; Zhang, X.; Li, G. Investigation of the thermal performance of axial-flow air cooling for the lithium-ion battery pack. Int. J. Therm. Sci. 2016, 108, 132–144. [Google Scholar] [CrossRef]
- Daniels, R.K.; Prabhakar, A. Experimental and numerical investigation on the effect of cell arrangement on TR propagation in air cooled cylindrical Li-ion battery modules. J. Energy Storage 2023, 72, 108191. [Google Scholar] [CrossRef]
- Chen, K.; Song, M.; Wei, W.; Wang, S. Structure optimization of parallel air-cooled battery thermal management system with U-type flow for cooling efficiency improvement. Energy 2018, 145, 603–613. [Google Scholar] [CrossRef]
- Li, X.; Zhao, J.; Yuan, J.; Duan, J.; Liang, C. Simulation and analysis of air cooling configurations for a lithium-ion battery pack. J. Energy Storage 2021, 35, 102270. [Google Scholar] [CrossRef]
- Murphree, T. Advanced Climate Analysis and Long Range Forecasting; Department of Meteorology, Naval Postgraduate School (NPS): Monterey, CA, USA, 2014. [Google Scholar]
- Dong, F.; Cheng, Z.; Zhu, J.; Song, D.; Ni, J. Investigation and optimization on cooling performance of a novel double helix structure for cylindrical LIBs. Appl. Therm. Eng. 2021, 189, 116758. [Google Scholar] [CrossRef]
- Talele, V.; Patil, M.S.; Panchal, S.; Fraser, R.; Fowler, M. Battery TR propagation time delay strategy using phase change material integrated with pyro block lining: Dual functionality battery thermal design. J. Energy Storage 2023, 65, 107253. [Google Scholar] [CrossRef]
- Javani, N.; Dincer, I.; Naterer, G.F. Numerical Modeling of Submodule Heat Transfer With Phase Change Material for Thermal Management of Electric Vehicle Battery Packs. J. Therm. Sci. Eng. Appl. 2015, 7, 031005. [Google Scholar] [CrossRef]
- Wilke, S.; Schweitzer, B.; Khateeb, S.; Al-Hallaj, S. Preventing TR propagation in lithium ion battery packs using a phase change composite material: An experimental study. J. Power Sources 2017, 340, 51–59. [Google Scholar] [CrossRef]
- Atouei, S.A.; Rezania, A.; Ranjbar, A.A.; Rosendahl, L.A. Protection and thermal management of thermoelectric generator system using phase change materials: An experimental investigation. Energy 2018, 156, 311–318. [Google Scholar] [CrossRef]
- Kizilel, R.; Sabbah, R.; Selman, J.R.; Al-Hallaj, S. An alternative cooling system to enhance the safety of Li-ion battery packs. J. Power Sources 2009, 194, 1105–1112. [Google Scholar] [CrossRef]
- Anisur, M.R.; Mahfuz, M.H.; Kibria, M.A.; Saidur, R.; Metselaar, I.H.S.C.; Mahlia, T.M.I. Curbing global warming with phase change materials for energy storage. Renew. Sustain. Energy Rev. 2013, 18, 23–30. [Google Scholar] [CrossRef]
- Dai, X.; Kong, D.; Du, J.; Zhang, Y.; Ping, P. Investigation on effect of phase change material on the TR of lithium-ion battery and exploration of flame retardancy improvement. Process Saf. Environ. Prot. 2022, 159, 232–242. [Google Scholar] [CrossRef]
- Dai, X.; Ping, P.; Kong, D.; Gao, X.; Zhang, Y.; Wang, G.; Peng, R. Heat transfer enhanced inorganic phase change material compositing carbon nanotubes for battery thermal management and TR propagation mitigation. J. Energy Chem. 2024, 89, 226–238. [Google Scholar] [CrossRef]
- Ouyang, D.; Weng, J.; Hu, J.; Chen, M.; Huang, Q.; Wang, J. Experimental investigation of thermal failure propagation in typical lithium-ion battery modules. Thermochim. Acta 2019, 676, 205–213. [Google Scholar] [CrossRef]
- Jiang, Z.; Ouyang, T.; Yang, Y.; Chen, L.; Fan, X.; Chen, Y.; Li, W.; Fei, Y. Thermal conductivity enhancement of phase change materials with form-stable carbon bonded carbon fiber network. Mater. Des. 2018, 143, 177–184. [Google Scholar] [CrossRef]
- Sahan, N.; Fois, M.; Paksoy, H. Improving thermal conductivity phase change materials-A study of paraffin nanomagnetite composites. Sol. Energy Mater. Sol. Cells 2015, 137, 61–67. [Google Scholar] [CrossRef]
- Hussain, A.; Abidi, I.H.; Tso, C.Y.; Chan, K.C.; Luo, Z.; Chao, C.Y.H. Thermal management of lithium ion batteries using graphene coated nickel foam saturated with phase change materials. Int. J. Therm. Sci. 2018, 124, 23–35. [Google Scholar] [CrossRef]
- Zhao, Y.; Zou, B.; Li, C.; Ding, Y. Active cooling based battery thermal management using composite phase change materials. Energy Procedia 2019, 158, 4933–4940. [Google Scholar] [CrossRef]
- Wu, S.; Yan, T.; Kuai, Z.; Pan, W. Thermal Conductivity Enhancement on Phase Change Materials for Thermal Energy Storage: A Review; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Jiang, G.; Huang, J.; Fu, Y.; Cao, M.; Liu, M. Thermal optimization of composite phase change material/expanded graphite for Li-ion battery thermal management. Appl. Therm. Eng. 2016, 108, 1119–1125. [Google Scholar] [CrossRef]
- Li, Z.; Sun, W.G.; Wang, G.; Wu, Z.G. Experimental and numerical study on the effective thermal conductivity of paraffin/expanded graphite composite. Sol. Energy Mater. Sol. Cells 2014, 128, 447–455. [Google Scholar] [CrossRef]
- Ianniciello, L.; Biwole, P.H.; Achard, P. Electric vehicles batteries thermal management systems employing phase change materials. J. Power Sources 2018, 378, 383–403. [Google Scholar] [CrossRef]
- Babapoor, A.; Azizi, M.; Karimi, G. Thermal management of a Li-ion battery using carbon fiber-PCM composites. Appl. Therm. Eng. 2015, 82, 281–290. [Google Scholar] [CrossRef]
- Karimi, G.; Azizi, M.; Babapoor, A. Experimental study of a cylindrical lithium-ion battery thermal management using phase change material composites. J. Energy Storage 2016, 8, 168–174. [Google Scholar] [CrossRef]
- Samimi, F.; Babapoor, A.; Azizi, M.; Karimi, G. Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers. Energy 2016, 96, 355–371. [Google Scholar] [CrossRef]
- Bahiraei, F.; Fartaj, A.; Nazri, G.-A. Experimental and numerical investigation on the performance of carbon-based nanoenhanced phase change materials for thermal management applications. Energy Convers. Manag. 2017, 153, 115–128. [Google Scholar] [CrossRef]
- Bahiraei, F.; Ghalkhani, M.; Fartaj, A.; Nazri, G.-A. A pseudo 3D electrochemical-thermal modeling and analysis of a lithium-ion battery for electric vehicle thermal management applications. Appl. Therm. Eng. 2017, 125, 904–918. [Google Scholar] [CrossRef]
- Bahiraei, F.; Fartaj, A.; Nazri, G.-A. Electrochemical-thermal Modeling to Evaluate Active Thermal Management of a Lithium-ion Battery Module. Electrochim. Acta 2017, 254, 59–71. [Google Scholar] [CrossRef]
- Lin, S.; Ling, Z.; Li, S.; Cai, C.; Zhang, Z.; Fang, X. Mitigation of lithium-ion battery TR and inhibition of TR propagation using inorganic salt hydrate with integrated latent heat and thermochemical storage. Energy 2023, 266, 126481. [Google Scholar] [CrossRef]
- Weng, J.; Ouyang, D.; Yang, X.; Chen, M.; Zhang, G.; Wang, J. Alleviation of TR propagation in thermal management modules using aerogel felt coupled with flame-retarded phase change material. Energy Convers. Manag. 2019, 200, 112071. [Google Scholar] [CrossRef]
- Luo, W.; Zhao, L.; Chen, M. The effect of PCM on mitigating TR propagation in lithium-ion battery modules. Appl. Therm. Eng. 2024, 236, 121608. [Google Scholar] [CrossRef]
- Ni, R.; Zhang, D.; Wang, R.; Xie, Z.; Wang, Y. Prevention and suppression effects of phase change material on TR in batteries. Case Stud. Therm. Eng. 2023, 48, 103160. [Google Scholar] [CrossRef]
- Chen, M.; Zhu, M.; Zhang, S.; Ouyang, D.; Weng, J.; Wei, R.; Chen, Y.; Zhao, L.; Wang, J. Experimental investigation on mitigation of TR propagation of lithium-ion battery module with flame retardant phase change materials. Appl. Therm. Eng. 2023, 235, 121401. [Google Scholar] [CrossRef]
- Huang, Q.; Li, X.; Zhang, G.; Weng, J.; Wang, Y.; Deng, J. Innovative thermal management and TR suppression for battery module with flame retardant flexible composite phase change material. J. Clean. Prod. 2022, 330, 129718. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J. Investigation of external heating-induced failure propagation behaviors in large-size cell modules with different phase change materials. Energy 2020, 204, 117946. [Google Scholar] [CrossRef]
- Lv, Y.; Liu, G.; Zhang, G.; Yang, X. A novel thermal management structure using serpentine phase change material coupled with forced air convection for cylindrical battery modules. J. Power Sources 2020, 468, 228398. [Google Scholar] [CrossRef]
- Situ, W.; Zhang, G.; Li, X.; Yang, X.; Wei, C.; Rao, M.; Wang, Z.; Wang, C.; Wu, W. A thermal management system for rectangular LiFePO4 battery module using novel double copper mesh-enhanced phase change material plates. Energy 2017, 141, 613–623. [Google Scholar] [CrossRef]
- Huang, Q.; Li, X.; Zhang, G.; Zhang, J.; He, F.; Li, Y. Experimental investigation of the thermal performance of heat pipe assisted phase change material for battery thermal management system. Appl. Therm. Eng. 2018, 141, 1092–1100. [Google Scholar] [CrossRef]
- Lei, S.; Shi, Y.; Chen, G. A lithium-ion battery-thermal-management design based on phase-change-material thermal storage and spray cooling. Appl. Therm. Eng. 2020, 168, 114792. [Google Scholar] [CrossRef]
- Song, L.; Zhang, H.; Yang, C. Thermal analysis of conjugated cooling configurations using phase change material and liquid cooling techniques for a battery module. Int. J. Heat Mass Transf. 2019, 133, 827–841. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Q.; Zou, B.; Zhang, T.; Jin, L.; Qiao, G.; Nie, B.; Huang, Y.; Ding, Y. Performance of a liquid cooling-based battery thermal management system with a composite phase change material. Int. J. Energy Res. 2020, 44, 4727–4742. [Google Scholar] [CrossRef]
- Roe, C.; Feng, X.; White, G.; Li, R.; Wang, H.; Rui, X.; Li, C.; Zhang, F.; Null, V.; Parkes, M.; et al. Immersion cooling for LIBs—A review. J. Power Sources 2022, 525, 231094. [Google Scholar] [CrossRef]
- Zhao, J.; Lv, P.; Rao, Z. Experimental study on the thermal management performance of phase change material coupled with heat pipe for cylindrical power battery pack. Exp. Therm. Fluid Sci. 2017, 82, 182–188. [Google Scholar] [CrossRef]
- Khateeb, S.A.; Farid, M.M.; Selman, J.R.; Al-Hallaj, S. Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter. J. Power Sources 2004, 128, 292–307. [Google Scholar] [CrossRef]
- Zhang, W.; Liang, Z.; Yin, X.; Ling, G. Avoiding TR propagation of lithium-ion battery modules by using hybrid phase change material and liquid cooling. Appl. Therm. Eng. 2021, 184, 116380. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, L.; Zhang, Z.; Li, X.; Ma, R.; Ren, Y.; Wu, W. Non-uniform phase change material strategy for directional mitigation of battery TR propagation. Renew. Energy 2022, 200, 1338–1351. [Google Scholar] [CrossRef]
- Wu, W.; Wu, W.; Wang, S. Thermal optimization of composite PCM based large-format lithium-ion battery modules under extreme operating conditions. Energy Convers. Manag. 2017, 153, 22–33. [Google Scholar] [CrossRef]
- Wang, Q.; Rao, Z.; Huo, Y.; Wang, S. Thermal performance of phase change material/oscillating heat pipe-based battery thermal management system. Int. J. Therm. Sci. 2016, 102, 9–16. [Google Scholar] [CrossRef]
- Yin, H.; Gao, X.; Ding, J.; Zhang, Z.; Fang, Y. Thermal management of electronic components with thermal adaptation composite material. Appl. Energy 2010, 87, 3784–3791. [Google Scholar] [CrossRef]
- Mehrabi-Kermani, M.; Houshfar, E.; Ashjaee, M. A novel hybrid thermal management for Li-ion batteries using phase change materials embedded in copper foams combined with forced-air convection. Int. J. Therm. Sci. 2019, 141, 47–61. [Google Scholar] [CrossRef]
- Bai, F.; Chen, M.; Song, W.; Feng, Z.; Li, Y.; Ding, Y. Thermal management performances of PCM/water cooling-plate using for lithium-ion battery module based on non-uniform internal heat source. Appl. Therm. Eng. 2017, 126, 17–27. [Google Scholar] [CrossRef]
- Salva, N.N.; Tarzia, D.A. Explicit solution for a Stefan problem with variable latent heat and constant heat flux boundary conditions. J. Math. Anal. Appl. 2011, 379, 240–244. [Google Scholar] [CrossRef]
- Liang, G. 1. Mudawar, Review of spray cooling-Part 1: Single-phase and nucle.ate boiling regimes, and critical heat flux. Int. J. Heat Mass Transf. 2017, 115, 1174–1205. [Google Scholar] [CrossRef]
- Gao, Q.; Liu, Y.; Wang, G.; Deng, F.; Zhu, J. An experimental investigation of refrigerant emergency spray on cooling and oxygen suppression for overheating power battery. J. Power Sources 2019, 415, 33–43. [Google Scholar] [CrossRef]
- Said, A.O.; Stoliarov, S.I. Analysis of effectiveness of suppression of lithium ion battery fires with a clean agent. Fire Saf. J. 2021, 121, 103296. [Google Scholar] [CrossRef]
- Liu, Y.; Duan, Q.; Xu, J.; Chen, H.; Lu, W.; Wang, Q. Experimental study on the efficiency of dodecafluoro-2-methylpentan-3-one on suppressing lithium-ion battery fires. RSC Adv. 2018, 8, 42223–42232. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zhang, L.; Duan, Q.; Wang, S.; Sun, S.; Sun, J.; Wang, Q. Experimental study on suppressing TR propagation of LIBs in confined space by various fire extinguishing agents. Process Saf. Environ. Prot. 2022, 167, 299–307. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, P.; Duan, Q.; Zhao, C.; Wang, Q. Experimental investigation on the cooling and suppression effects of liquid nitrogen on the TR of lithium ion battery. J. Power Sources 2021, 495, 229795. [Google Scholar] [CrossRef]
- Wan, Q.; Li, K.; Wang, Y.; Chen, H.; Duan, Q.; Sun, J. The Efficiency of Dodecafluoro-2-Methylpentan-3-One on Suppressing the Lithium Ion Battery Fire. J. Electrochem. Energy Convers. Storage 2018, 15, 041001. [Google Scholar] [CrossRef]
- Zhang, L.; Duan, Q.; Liu, Y.; Xu, J.; Sun, J.; Xiao, H.; Wang, Q. Experimental investigation of water spray on suppressing lithium-ion battery fires. Fire Saf. J. 2021, 120, 103117. [Google Scholar] [CrossRef]
- Ditch, B.; Vries, J.D. Flammability Characterization of Lithium-ion Batteries in Bulk Storage. In Proceedings of the31st International Battery Seminar and Exhibit 2014 : Primary & Secondary Batteries—Other Technologies: 31st International Battery Seminar and Exhibit 2014, Ft. Lauderdale, FL, USA, 10–13 March 2014. [Google Scholar]
- Liu, T.; Hu, J.; Tang, Q.; Zhu, X.; Wang, X. Mitigating overcharge induced TR of large format lithium ion battery with water mist. Appl. Therm. Eng. 2021, 197, 117402. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, J. Research progress of water mist fire extinguishing technology and its application in battery fires. Process Saf. Environ. Prot. 2021, 149, 559–574. [Google Scholar] [CrossRef]
- Deng, J.; Hu, Z.; Chen, J.; Deng, T.; Zhang, Y.; Bai, Z.; Huang, L.; He, F. The enhanced cooling effect and critical control capability of nanofluids on suppressing thermal runaway of lithium-ion batteries. J. Energy Storage 2025, 106, 114733. [Google Scholar] [CrossRef]
- Das, L.; Pati, A.R.; Panda, A.; Munshi, B.; Sahoo, D.K.; Barik, K.; Mohapatra, S.S.; Sahoo, A. The enhancement of spray cooling at very high initial temperature by using dextrose added water. Int. J. Heat Mass Transf. 2020, 150, 119311. [Google Scholar] [CrossRef]
- Xu, J.; Duan, Q.; Zhang, L.; Liu, Y.; Sun, J.; Wang, Q. The enhanced cooling effect of water mist with additives on inhibiting lithium-ion battery TR. J. Loss Prev. Process Ind. 2022, 77, 104784. [Google Scholar] [CrossRef]
- Russoa, P.; Di Barib, C.; Mazzaroc, M.; De Rosac, A.; Morriellod, I. Effective Fire Extinguishing Systems for Lithium-ion Battery. Chem. Eng. Trans. 2018, 67, 727–732. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Duan, Q.; Chen, M.; Xu, J.; Zhao, C.; Sun, J.; Wang, Q. Experimental study on the synergistic effect of gas extinguishing agents and water mist on suppressing lithium-ion battery fires. J. Energy Storage 2020, 32, 101801. [Google Scholar] [CrossRef]
- Wang, W.; He, S.; He, T.; You, T.; Parker, T.; Wang, Q. Suppression behavior of water mist containing compound additives on LIBs fire. Process Saf. Environ. Prot. 2022, 161, 476–487. [Google Scholar] [CrossRef]
- Liu, Y.; Duan, Q.; Xu, J.; Li, H.; Sun, J.; Wang, Q. Experimental study on a novel safety strategy of lithium-ion battery integrating fire suppression and rapid cooling. J. Energy Storage 2020, 28, 101185. [Google Scholar] [CrossRef]
- Bai, Z.; Li, X.; Deng, J.; Shu, C.-M.; Zhang, Y.; Zhang, P.; Ramakrishna, S. Overview of anti-fire technology for suppressing thermal runaway of lithium battery: Material, performance, and applications. J. Power Sources 2025, 640, 236767. [Google Scholar] [CrossRef]
Mitigation Methods | Advantages | Disadvantages | Mitigation Effect on TR | Technology Maturity | Applicable Scenarios | References | |
---|---|---|---|---|---|---|---|
Positive temperature coefficient | A new PTC cathode to trigger protection mechanism at 140 °C | Prevent high battery temperature | High triggering temperature | In the early stages of TR, reducing internal short circuits in the battery can prevent further temperature increase | Commercial | Lithium battery protection board | [28,29] |
Mixed electrode could limit current until temperature of PTC over 90 °C | Low triggering temperature | Long response time | Commercial | [32] | |||
A novel PTC electrode that shows a complete current-limiting effect until the temperature reaches 100–130 °C | Excellent current limiting effect | Reduces battery storage energy | Commercial | [34] | |||
A Ni particle mixed-polymer layer | Lower electrode polarization | Will fail at the module level | Commercial | [36] | |||
Current Interrupt devices | K2 18650E and LG M36 could be activated in 100 °C with activation pressures are 1.781 ± 0.355 and 1.799 ± 0.284 MPa, respectively | Low triggering temperature | High-voltage CID could generate arc under overcharge conditions | Break the electrical connection when the pressure exceeds the threshold Protect the battery from TR during overcharging To prevent TR from occurring in the early stages of TR by cutting off the current | Commercial | Power battery and energy storage system | [42] |
The connection between the electrode terminal and the terminal of the terminal block will cut off the expansion force of the bag to prevent the expansion of the battery bag | Widely used | Increase internal resistance of battery | Commercial | [39] | |||
The fuse can cut off the internal current of the battery when the battery temperature is between 85 °C and 120 °C | Prevent internal short circuits in the battery | Reduced energy density | Commercial | [41] | |||
Safety vent | The mass losses of in the TR process were 10.2 g (21.3%) and 8.5 g (18.7%), corresponding to the battery in the presence/absence of a safety vent | Low quality loss | Uneven distribution of Ohmic resistance inside the battery | Improve the thermal safety of batteries The battery with safety vent can reduce temperature rise rate, delay ignite and explode Reduce TR hazards by releasing pressure Prevent the spread of TR at the module level | Commercial | [58] | |
Lithium iron phosphate batteries experience TR earlier and exhibit the most severe risk of TR | Early prevention and control | Releases electrolyte | Commercial | Power battery and energy storage system | [59] | ||
Compared to bottom rupture, a side wall rupture result in temperature rise to the adjacent cell in a battery package | Reduces thermal impact on adjacent cells in a battery pack. | May fail to work in series and/or parallel configurations. Increases the risk of electrolyte leakage. | Commercial | [60] | |||
An annular-shaped break groove with break-aiding was designed to promote rapid rupture of safety vent | Avoid press accumulation | Uneven press may impact emission of gas | Commercial | [62] | |||
Anode materials | Doping Ni and Mn into LiNiO2 can significantly increase the decomposition initiation temperature | Quick response Early prevention and control | Reduce battery energy storage density | Prevent electrode and electrolyte reactions and prevent TR development Enhance the thermal stability of the anode Reduce dendrites | Commercial | Power battery and energy storage system | [70] |
Adding thermally responsive polymer microspheres to the anode material | Reduce ion conduction | Reduce battery energy storage density | Commercial | [71] | |||
Coated polyaniline on the anode material, and the capacity of the composite material remained 83.2% after 80 cycles | Enhance circulate performance | Reduce battery energy storage density | Commercial | [73] | |||
SiO2 reinforced anode material to prevent any side reactions and cut off the internal current path during needling | Reduced heat generation by 35% and reduced degradation of active core materials | Reduce battery energy storage density | Reliable lab test | [76] | |||
Cathode material | Doping Ni and Mn in LiNiO2 | Increases the decomposition initiation | Reduces battery energy storage density | Not in direct contact with the electrolyte, preventing side reactions and phase transitions, reducing the disorder of cations in crystal positions Prevent side reactions and phase transitions Increase the starting temperature of decomposition Delayed the initial TR temperature of NCM by 20 °C | Reliable lab test | Power battery and energy storage system | [84] |
Replacing Co in Li (Ni1/3Mn1/3Co1/3) O2 with Ni and Al | Enhances the thermal stability | Reduces battery energy storage density | Reliable lab test | [85,86] | |||
The use of AlF3 coating | Delays TR starting temperature | Reduces battery energy storage density | Reliable lab test | [93] | |||
Safety electrolytes | Organophosphorus compounds or halogenated compounds are selected as FR additives | Reduce the risk of flammability | Environmental pollution | Reduce the risk of TR Prevent TR by reducing heat generation Avoid electrolyte combustion Form dense and uniform LiF-rich stable SEI on lithium metal anode Improve thermal stability of electrolyte and electrochemical stability Prevent electrolyte leakage and ignition Realization of thermal stop function and high-temperature flame retardant | Commercial | Power battery and energy storage system | [100,101] |
15wt% DMMP are selected as FR additives: | Strong flame retardancy | - | Commercial | [102] | |||
lithium bis (fluorosulfonyl)imide (L.FSI) group and ethyl fluorocarbonate (FEC) as additives | Inhibit the formation of lithium dendrites | Commercial | [107] | ||||
Ionic liquids | High melting point, low vapor pressure, non-volatility, and non-flammability | Increase the viscosity of electrolytes | Reliable lab test | [112,113] | |||
1-ethyl-3-methylimidazole and trifluoromethanesulfonimide | Excellent properties of flame retardant | Reduce ion conductivity | Reliable lab test | [112,113] | |||
Polymer electrolytes | Light weight, film formation, strong viscoelasticity and high stability, and avoid the risk of electrolyte leakage | The lower ionic conductivity (10−8~10−5 s/cm), poor cycling performance, and low voltage operation | Reliable lab test | [116,117] | |||
Gel electrolytes | Enhance the conductivity of solid electrolytes Reducing the leakage of liquid electrolytes Excellent cycle performance and high non-flammability | Poor cycling performance | Reliable lab test | [121,122] | |||
Thermally protective separators | Celgard LLC sandwiched the PE layer between two PP layers | Avoid internal short circuiting | Low temperature threshold and poor thermal stability | Prevent diaphragm contraction and rupture during TR | Commercial | Power battery and energy storage system | [128,129,130] |
Coating HDPE separators with ceramic nanoparticles (NPs) | Good thermally stable type | Flaking and separation | Commercial | [137], | |||
Boehmite coupled PE nanocomposite diaphragm | Avoid flaking and separation inhibits dendrite growth | - | Reliable lab test | [141] | |||
Air-cooled | Air cooling for thermal management of 18650 type batteries | Excellent economy, low power, and low system complexity | Unable to suppress TR Promotes the development of TR | It is difficult to suppress TR Relieve TR propagation | Maintainable | Electric vehicle | [148] |
Forced cooling | Low system complexity Low power | Reduces the cooling effect | Maintainable | [153] | |||
Increasing the inter-cell spacing in the module | Low power | Low space utilization | Maintainable | [156] | |||
Optimization of duct shape | Enhances cooling effectiveness | Poor temperature uniformity | Maintainable | [158] | |||
PCM thermal management | Phase change composites | Reduces the battery temperature | Increases system quality | Phase change composite materials can effectively prevent TR propagation in lithium batteries | Reliable lab test | Energy storage systems for electric vehicles and battery compartments for energy storage power stations | [159] |
Phase change materials | Good heat dissipation Controls the temperature rise | Increase system quality | Phase change materials can mitigate TR onset and inhibit TR propagation by absorbing heat | Reliable lab test | [161,162] | ||
Paraffin wax | Reduces the battery temperature | Low thermal conductivity and diffusivity Ignition | Paraffin wax delayed the onset of TR by 277 s and used its heat absorption to reduce the battery temperature | Reliable lab test | [165,166] | ||
Adding carbon fibers to the phase change material | High thermal conductivity and diffusivity | Increases system quality | Reduce the maximum battery temperature rise by 45% | Reliable lab test | [173] | ||
Added graphite to paraffin | High thermal conductivity and diffusivity | Increases system quality | Enhanced cooling effect Reduce battery temperature Reduce TR disasters | Reliable lab test | [172,173] | ||
Gas–liquid phase change materials | Reduce the dynamic viscosity | Increase system quality Ignition | Reliable lab test | [182] | |||
Aerogel with flame retardant PCM | Prevents flame burning and reduce the peak temperature | Reduces latent heat | Reliable lab test | [188] | |||
Coupled cooling | Hybrid PCM–liquid cooling system | Reduces parasitic power consumption | Increases system complexity | Reliable lab test | Energy storage systems for electric vehicles and battery compartments for energy storage power stations | [193] | |
Phase change materials–liquid cooling | Excellent cooling effect | Increase system complexity | Reliable lab test | [193] | |||
PCM–foam copper cooling | Reduces the cell surface temperature | Increases system complexity | Reliable lab test | [203] | |||
PCM-coupled water-cooling plate | Reduces the cell surface temperature | Increases system quality | Reliable lab test | [204] | |||
Spray/jet method | Dry powder and halogenated alkane | Electrical safety | Poor cooling performance | Dry powder cannot suppress TR | Prototype | Fire-extinguishing system of energy storage power station and most fire protection measures | [208,209] |
Water spraying | Excellent cooling performance Environmental Friendliness | Short-circuit risk | Water mist can effectively inhibit TR | Prototype | [217,218,219,220] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, J.; Hu, Z.; Chen, J.; Zhao, J.; Bai, Z. Safety Methods for Mitigating Thermal Runaway of Lithium-Ion Batteries—A Review. Fire 2025, 8, 223. https://doi.org/10.3390/fire8060223
Deng J, Hu Z, Chen J, Zhao J, Bai Z. Safety Methods for Mitigating Thermal Runaway of Lithium-Ion Batteries—A Review. Fire. 2025; 8(6):223. https://doi.org/10.3390/fire8060223
Chicago/Turabian StyleDeng, Jun, Zhen Hu, Jian Chen, Jingyu Zhao, and Zujin Bai. 2025. "Safety Methods for Mitigating Thermal Runaway of Lithium-Ion Batteries—A Review" Fire 8, no. 6: 223. https://doi.org/10.3390/fire8060223
APA StyleDeng, J., Hu, Z., Chen, J., Zhao, J., & Bai, Z. (2025). Safety Methods for Mitigating Thermal Runaway of Lithium-Ion Batteries—A Review. Fire, 8(6), 223. https://doi.org/10.3390/fire8060223