Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (529)

Search Parameters:
Keywords = back propagation neural networks (BPNNs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3061 KiB  
Article
Model-Agnostic Meta-Learning in Predicting Tunneling-Induced Surface Ground Deformation
by Wei He, Guan-Bin Chen, Wenlian Qian, Wen-Li Chen, Liang Tang and Xiangxun Kong
Symmetry 2025, 17(8), 1220; https://doi.org/10.3390/sym17081220 - 2 Aug 2025
Viewed by 173
Abstract
The present investigation presents the field measurement and prediction of tunneling-induced surface ground settlement in Tianjin Metro Line 7, China. The cross-section of a metro tunnel exhibits circular symmetry, thereby making it suitable for tunneling with a circular shield machine. The ground surface [...] Read more.
The present investigation presents the field measurement and prediction of tunneling-induced surface ground settlement in Tianjin Metro Line 7, China. The cross-section of a metro tunnel exhibits circular symmetry, thereby making it suitable for tunneling with a circular shield machine. The ground surface may deform during the tunneling stage. In the early stage of tunneling, few measurement data can be collected. To obtain a better usable prediction model, two kinds of neural networks according to the model-agnostic meta-learning (MAML) scheme are presented. One kind of deep learning strategy is a combination of the Back-Propagation Neural Network (BPNN) and the MAML model, named MAML-BPNN. The other prediction model is a mixture of the MAML model and the Long Short-Term Memory (LSTM) model, named MAML-LSTM. Founded on several measurement datasets, the prediction models of the MAML-BPNN and MAML-LSTM are successfully trained. The results show the present models possess good prediction ability for tunneling-induced surface ground settlement. Based on the coefficient of determination, the prediction result using MAML-LSTM is superior to that of MAML-BPNN by 0.1. Full article
Show Figures

Figure 1

17 pages, 2269 KiB  
Article
Will Road Infrastructure Become the New Engine of Urban Growth? A Consideration of the Economic Externalities
by Cheng Xue, Yiying Chao, Shangwei Xie and Kebiao Yuan
Sustainability 2025, 17(15), 6813; https://doi.org/10.3390/su17156813 - 27 Jul 2025
Viewed by 221
Abstract
Highway accessibility plays a vital role in supporting local economic development, particularly in regions lacking access to sea or river ports. Recognizing the functional transformation of road infrastructure, the Chinese government has made substantial investments in its expansion. Nevertheless, a theoretical gap remains [...] Read more.
Highway accessibility plays a vital role in supporting local economic development, particularly in regions lacking access to sea or river ports. Recognizing the functional transformation of road infrastructure, the Chinese government has made substantial investments in its expansion. Nevertheless, a theoretical gap remains in justifying whether such investments yield significant economic returns. Drawing on the theory of economic externalities, this study investigates the causal relationship between highway development and regional economic growth, and assesses whether highway construction leads to an acceleration in growth rates. Utilizing panel data from 14 Chinese cities spanning 2000 to 2014, the synthetic control method (SCM) is employed to evaluate the economic externalities of highway investment. The results indicate a positive impact on surrounding industries. Furthermore, a growth rate forecasting analysis based on Back-Propagation Neural Networks (BPNNs) is conducted using industrial enterprise data from 2005 to 2014. The growth rate in the treated city is 1.144%, which is close to the real number 1.117%, higher than the number for the weighted control group, which is 1.000%. The findings suggest that the growth rate of total industrial output improved significantly, confirming the existence of positive spillover effects. This not only enriches the empirical literature on transport infrastructure but also provides targeted enlightenment for the sustainable development of urban economy in terms of policy guidance. Full article
Show Figures

Figure 1

19 pages, 3249 KiB  
Article
Method and Optimization of Key Parameters of Soil Organic Matter Detection Based on Pyrolysis Coupled with Artificial Olfaction
by Mingwei Li, Xiao Li, Xuexun Li, Wenjun Wang, Yulong Chen, Long Zhou and Xiaomeng Xia
Agronomy 2025, 15(7), 1740; https://doi.org/10.3390/agronomy15071740 - 19 Jul 2025
Viewed by 311
Abstract
Accurate quantification of soil organic matter (SOM) is crucial for improving soil fertility and maintaining ecosystem health. The content of SOM affects soil nutrient availability and is closely linked to the global carbon cycle. The use of an electronic nose to detect SOM [...] Read more.
Accurate quantification of soil organic matter (SOM) is crucial for improving soil fertility and maintaining ecosystem health. The content of SOM affects soil nutrient availability and is closely linked to the global carbon cycle. The use of an electronic nose to detect SOM contents has the advantages of rapidity, accuracy, and low pollution to the environment. This study proposes a method for obtaining SOM contents via pyrolysis coupled with an artificial olfaction system. To improve the accuracy of SOM content determination, the effects of three parameters (pyrolysis temperature, pyrolysis time, and soil sample mass) related to the pyrolysis process on the distinguishability of pyrolysis gases were investigated. Firstly, single-factor experiments were conducted to determine the optimal values of three parameters that can improve the differentiation of pyrolysis gases. Secondly, a regression model based on the Box–Behnken experiment was established to analyze the interrelationships between the three parameters and the discrete ratio. The experimental results showed that the three parameters exerted significant influences on the discrete ratio, with pyrolysis time having the greatest impact, followed by soil sample mass and pyrolysis temperature. The optimal discrimination and minimal dispersion ratio of the pyrolysis gases were achieved at a pyrolysis temperature of 384 °C, with a pyrolysis time of 2 min 41 s and a soil sample mass of 1.68 g. Finally, the Back-Propagation Neural Network (BPNN) and Partial Least-Squares Regression (PLSR) algorithms were used to establish an SOM prediction model after obtaining soil pyrolysis gases under the optimal combination of pyrolysis parameters. The experimental results demonstrated that the SOM prediction model based on PLSR achieved the best accuracy and the highest generalization capability, with R2 > 0.85 and RMSE < 7.21. This study could provide a theoretical basis for the prediction of SOM contents via pyrolysis coupled with an artificial olfaction system. Full article
Show Figures

Figure 1

23 pages, 2859 KiB  
Article
Air Quality Prediction Using Neural Networks with Improved Particle Swarm Optimization
by Juxiang Zhu, Zhaoliang Zhang, Wei Gu, Chen Zhang, Jinghua Xu and Peng Li
Atmosphere 2025, 16(7), 870; https://doi.org/10.3390/atmos16070870 - 17 Jul 2025
Viewed by 278
Abstract
Accurate prediction of Air Quality Index (AQI) concentrations remains a critical challenge in environmental monitoring and public health management due to the complex nonlinear relationships among multiple atmospheric factors. To address this challenge, we propose a novel prediction model that integrates an adaptive-weight [...] Read more.
Accurate prediction of Air Quality Index (AQI) concentrations remains a critical challenge in environmental monitoring and public health management due to the complex nonlinear relationships among multiple atmospheric factors. To address this challenge, we propose a novel prediction model that integrates an adaptive-weight particle swarm optimization (AWPSO) algorithm with a back propagation neural network (BPNN). First, the random forest (RF) algorithm is used to scree the influencing factors of AQI concentration. Second, the inertia weights and learning factors of the standard PSO are improved to ensure the global search ability exhibited by the algorithm in the early stage and the ability to rapidly obtain the optimal solution in the later stage; we also introduce an adaptive variation algorithm in the particle search process to prevent the particles from being caught in local optima. Finally, the BPNN is optimized using the AWPSO algorithm, and the final values of the optimized particle iterations serve as the connection weights and thresholds of the BPNN. The experimental results show that the RFAWPSO-BP model reduces the root mean square error and mean absolute error by 9.17 μg/m3, 5.7 μg/m3, 2.66 μg/m3; and 9.12 μg/m3, 5.7 μg/m3, 2.68 μg/m3 compared with the BP, PSO-BP, and AWPSO-BP models, respectively; furthermore, the goodness of fit of the proposed model was 14.8%, 6.1%, and 2.3% higher than that of the aforementioned models, respectively, demonstrating good prediction accuracy. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

28 pages, 6267 KiB  
Article
Detection of Pine Wilt Disease Using a VIS-NIR Slope-Based Index from Sentinel-2 Data
by Jian Guo, Ran Kang, Tianhe Xu, Caiyun Deng, Li Zhang, Siqi Yang, Guiling Pan, Lulu Si, Yingbo Lu and Hermann Kaufmann
Forests 2025, 16(7), 1170; https://doi.org/10.3390/f16071170 - 16 Jul 2025
Viewed by 283
Abstract
Pine wilt disease (PWD), caused by Bursaphelenchus xylophilus Steiner & Buhrer (pine wood nematodes, PWN), impacts forest carbon sequestration and climate change. However, satellite-based PWD monitoring is challenging due to the limited spatial resolution of Sentinel’s MSI sensor, which reduces its sensitivity to [...] Read more.
Pine wilt disease (PWD), caused by Bursaphelenchus xylophilus Steiner & Buhrer (pine wood nematodes, PWN), impacts forest carbon sequestration and climate change. However, satellite-based PWD monitoring is challenging due to the limited spatial resolution of Sentinel’s MSI sensor, which reduces its sensitivity to subtle biochemical alterations in foliage. We have, therefore, developed a slope product index (SPI) for effective detection of PWD using single-date satellite imagery based on spectral gradients in the visible and near-infrared (VNIR) range. The SPI was compared against 15 widely used vegetation indices and demonstrated superior robustness across diverse test sites. Results show that the SPI is more sensitive to changes in chlorophyll content in the PWD detection, even under potentially confounding conditions such as drought. When integrated into Random Forest (RF) and Back-Propagation Neural Network (BPNN) models, SPI significantly improved classification accuracy, with the multivariate RF model achieving the highest performance and univariate with SPI in BPNN. The generalizability of SPI was validated across test sites in distinct climate zones, including Zhejiang (accuracyZ_Mean = 88.14%) and Shandong (accuracyS_Mean = 78.45%) provinces in China, as well as Portugal. Notably, SPI derived from Sentinel-2 imagery in October enables more accurate and timely PWD detection while reducing field investigation complexity and cost. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Graphical abstract

33 pages, 12918 KiB  
Article
Time-Dependent Fragility Functions and Post-Earthquake Residual Seismic Performance for Existing Steel Frame Columns in Offshore Atmospheric Environment
by Xiaohui Zhang, Xuran Zhao, Shansuo Zheng and Qian Yang
Buildings 2025, 15(13), 2330; https://doi.org/10.3390/buildings15132330 - 2 Jul 2025
Viewed by 417
Abstract
This paper evaluates the time-dependent fragility and post-earthquake residual seismic performance of existing steel frame columns in offshore atmospheric environments. Based on experimental research, the seismic failure mechanism and deterioration laws of the seismic behavior of corroded steel frame columns were revealed. A [...] Read more.
This paper evaluates the time-dependent fragility and post-earthquake residual seismic performance of existing steel frame columns in offshore atmospheric environments. Based on experimental research, the seismic failure mechanism and deterioration laws of the seismic behavior of corroded steel frame columns were revealed. A finite element analysis (FEA) method for steel frame columns, which considers corrosion damage and ductile metal damage criteria, is developed and validated. A parametric analysis in terms of service age and design parameters is conducted. Considering the impact of environmental erosion and aging, a classification criterion for damage states for existing steel frame columns is proposed, and the theoretical characterization of each damage state is provided based on the moment-rotation skeleton curves. Based on the test and numerical analysis results, probability distributions of the fragility function parameters (median and logarithmic standard deviation) are constructed. The evolution laws of the fragility parameters with increasing service age under each damage state are determined, and a time-dependent fragility model for existing steel frame columns in offshore atmospheric environments is presented through regression analysis. At a drift ratio of 4%, the probability of complete damage to columns with 40, 50, 60, and 70-year service ages increased by 18.1%, 45.3%, 79.2%, and 124.5%, respectively, compared with columns within a 30-year service age. Based on the developed FEA models and the damage class of existing columns, the influence of characteristic variables (service age, design parameters, and damage level) on the residual seismic capacity of earthquake-damaged columns, namely the seismic resistance that can be maintained even after suffering earthquake damage, is revealed. Using the particle swarm optimization back-propagation neural network (PSO-BPNN) model, nonlinear mapping relationships between the characteristic variables and residual seismic capacity are constructed, thereby proposing a residual seismic performance evaluation model for existing multi-aged steel frame columns in an offshore atmospheric environment. Combined with the damage probability matrix of the time-dependent fragility, the expected values of the residual seismic capacity of existing multi-aged steel frame columns at a given drift ratio are obtained directly in a probabilistic sense. The results of this study lay the foundation for resistance to sequential earthquakes and post-earthquake functional recovery and reconstruction, and provide theoretical support for the full life-cycle seismic resilience assessment of existing steel structures in earthquake-prone areas. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

26 pages, 8312 KiB  
Article
A Meteorological Data-Driven eLoran Signal Propagation Delay Prediction Model: BP Neural Network Modeling for Long-Distance Scenarios
by Tao Jin, Shiyao Liu, Baorong Yan, Wei Guo, Changjiang Huang, Yu Hua, Shougang Zhang, Xiaohui Li and Lu Xu
Remote Sens. 2025, 17(13), 2269; https://doi.org/10.3390/rs17132269 - 2 Jul 2025
Viewed by 268
Abstract
The timing accuracy of eLoran systems is susceptible to meteorological fluctuations, with medium-to-long-range propagation delay variations reaching hundreds of nanoseconds to microseconds. While conventional models have been widely adopted for short-range delay prediction, they fail to accurately characterize the coupled effects of multiple [...] Read more.
The timing accuracy of eLoran systems is susceptible to meteorological fluctuations, with medium-to-long-range propagation delay variations reaching hundreds of nanoseconds to microseconds. While conventional models have been widely adopted for short-range delay prediction, they fail to accurately characterize the coupled effects of multiple factors in long-range scenarios. This study theoretically examines the influence mechanisms of temperature, humidity, and atmospheric pressure on signal propagation delays, proposing a hybrid prediction model integrating meteorological data with a back-propagation neural network (BPNN) through path-weighted Pearson correlation coefficient analysis. Long-term observational data from multiple differential reference stations and meteorological stations reveal that short-term delay fluctuations strongly correlate with localized instantaneous humidity variations, whereas long-term trends are governed by cumulative temperature–humidity effects in regional environments. A multi-tier neural network architecture was developed, incorporating spatial analysis of propagation distance impacts on model accuracy. Experimental results demonstrate enhanced prediction stability in long-range scenarios. The proposed model provides an innovative tool for eLoran system delay correction, while establishing an interdisciplinary framework that bridges meteorological parameters with signal propagation characteristics. This methodology offers new perspectives for reliable timing solutions in global navigation satellite system (GNSS)-denied environments and advances our understanding of meteorological–electromagnetic wave interactions. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

26 pages, 7645 KiB  
Article
Prediction of Rice Chlorophyll Index (CHI) Using Nighttime Multi-Source Spectral Data
by Cong Liu, Lin Wang, Xuetong Fu, Junzhe Zhang, Ran Wang, Xiaofeng Wang, Nan Chai, Longfeng Guan, Qingshan Chen and Zhongchen Zhang
Agriculture 2025, 15(13), 1425; https://doi.org/10.3390/agriculture15131425 - 1 Jul 2025
Viewed by 459
Abstract
The chlorophyll index (CHI) is a crucial indicator for assessing the photosynthetic capacity and nutritional status of crops. However, traditional methods for measuring CHI, such as chemical extraction and handheld instruments, fall short in meeting the requirements for efficient, non-destructive, and continuous monitoring [...] Read more.
The chlorophyll index (CHI) is a crucial indicator for assessing the photosynthetic capacity and nutritional status of crops. However, traditional methods for measuring CHI, such as chemical extraction and handheld instruments, fall short in meeting the requirements for efficient, non-destructive, and continuous monitoring at the canopy level. This study aimed to explore the feasibility of predicting rice canopy CHI using nighttime multi-source spectral data combined with machine learning models. In this study, ground truth CHI values were obtained using a SPAD-502 chlorophyll meter. Canopy spectral data were acquired under nighttime conditions using a high-throughput phenotyping platform (HTTP) equipped with active light sources in a greenhouse environment. Three types of sensors—multispectral (MS), visible light (RGB), and chlorophyll fluorescence (ChlF)—were employed to collect data across different growth stages of rice, ranging from tillering to maturity. PCA and LASSO regression were applied for dimensionality reduction and feature selection of multi-source spectral variables. Subsequently, CHI prediction models were developed using four machine learning algorithms: support vector regression (SVR), random forest (RF), back-propagation neural network (BPNN), and k-nearest neighbors (KNNs). The predictive performance of individual sensors (MS, RGB, and ChlF) and sensor fusion strategies was evaluated across multiple growth stages. The results demonstrated that sensor fusion models consistently outperformed single-sensor approaches. Notably, during tillering (TI), maturity (MT), and the full growth period (GP), fused models achieved high accuracy (R2 > 0.90, RMSE < 2.0). The fusion strategy also showed substantial advantages over single-sensor models during the jointing–heading (JH) and grain-filling (GF) stages. Among the individual sensor types, MS data achieved relatively high accuracy at certain stages, while models based on RGB and ChlF features exhibited weaker performance and lower prediction stability. Overall, the highest prediction accuracy was achieved during the full growth period (GP) using fused spectral data, with an R2 of 0.96 and an RMSE of 1.99. This study provides a valuable reference for developing CHI prediction models based on nighttime multi-source spectral data. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

21 pages, 3747 KiB  
Article
An Optimized Multi-Stage Framework for Soil Organic Carbon Estimation in Citrus Orchards Based on FTIR Spectroscopy and Hybrid Machine Learning Integration
by Yingying Wei, Xiaoxiang Mo, Shengxin Yu, Saisai Wu, He Chen, Yuanyuan Qin and Zhikang Zeng
Agriculture 2025, 15(13), 1417; https://doi.org/10.3390/agriculture15131417 - 30 Jun 2025
Viewed by 396
Abstract
Soil organic carbon (SOC) is a critical indicator of soil health and carbon sequestration potential. Accurate, efficient, and scalable SOC estimation is essential for sustainable orchard management and climate-resilient agriculture. However, traditional visible–near-infrared (Vis–NIR) spectroscopy often suffers from limited chemical specificity and weak [...] Read more.
Soil organic carbon (SOC) is a critical indicator of soil health and carbon sequestration potential. Accurate, efficient, and scalable SOC estimation is essential for sustainable orchard management and climate-resilient agriculture. However, traditional visible–near-infrared (Vis–NIR) spectroscopy often suffers from limited chemical specificity and weak adaptability in heterogeneous soil environments. To overcome these limitations, this study develops a five-stage modeling framework that systematically integrates Fourier Transform Infrared (FTIR) spectroscopy with hybrid machine learning techniques for non-destructive SOC prediction in citrus orchard soils. The proposed framework includes (1) FTIR spectral acquisition; (2) a comparative evaluation of nine spectral preprocessing techniques; (3) dimensionality reduction via three representative feature selection algorithms, namely the Successive Projections Algorithm (SPA), Competitive Adaptive Reweighted Sampling (CARS), and Principal Component Analysis (PCA); (4) regression modeling using six machine learning algorithms, namely the Random Forest (RF), Support Vector Regression (SVR), Gray Wolf Optimized SVR (SVR-GWO), Partial Least Squares Regression (PLSR), Principal Component Regression (PCR), and the Back-propagation Neural Network (BPNN); and (5) comprehensive performance assessments and the identification of the optimal modeling pathway. The results showed that second-derivative (SD) preprocessing significantly enhanced the spectral signal-to-noise ratio. Among feature selection methods, the SPA reduced over 300 spectral bands to 10 informative wavelengths, enabling efficient modeling with minimal information loss. The SD + SPA + RF pipeline achieved the highest prediction performance (R2 = 0.84, RMSE = 4.67 g/kg, and RPD = 2.51), outperforming the PLSR and BPNN models. This study presents a reproducible and scalable FTIR-based modeling strategy for SOC estimation in orchard soils. Its adaptive preprocessing, effective variable selection, and ensemble learning integration offer a robust solution for real-time, cost-effective, and transferable carbon monitoring, advancing precision soil sensing in orchard ecosystems. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

26 pages, 2479 KiB  
Article
UAV-Based Yield Prediction Based on LAI Estimation in Winter Wheat (Triticum aestivum L.) Under Different Nitrogen Fertilizer Types and Rates
by Jinjin Guo, Xiangtong Zeng, Qichang Ma, Yong Yuan, Nv Zhang, Zhizhao Lin, Pengzhou Yin, Hanran Yang, Xiaogang Liu and Fucang Zhang
Plants 2025, 14(13), 1986; https://doi.org/10.3390/plants14131986 - 29 Jun 2025
Viewed by 405
Abstract
The rapid and accurate prediction of crop yield and the construction of optimal yield prediction models are important for guiding field-scale agronomic management practices in precision agriculture. This study selected the leaf area index (LAI) of winter wheat (Triticum aestivum L.) at [...] Read more.
The rapid and accurate prediction of crop yield and the construction of optimal yield prediction models are important for guiding field-scale agronomic management practices in precision agriculture. This study selected the leaf area index (LAI) of winter wheat (Triticum aestivum L.) at four different stages, and collected canopy spectral information and extracted vegetation indexes through unmanned aerial vehicle (UAV) multi-spectral sensors to establish the yield prediction model under the condition of slow-release nitrogen fertilizer and proposed optimal fertilization strategies for sustainable yield increase in wheat. The prediction results were evaluated using random forest (RF), support vector machine (SVM) and back propagation neural network (BPNN) methods to select the optimal spectral index and establish yield prediction models. The results showed that LAI has a significantly positive correlation with yield across four growth stages of winter wheat, and the correlation coefficient at the anthesis stage reached 0.96 in 2018–2019 and 0.83 in 2019–2020. Therefore, yield prediction for winter wheat could be achieved through a remote sensing estimation of LAI at the anthesis stage. Six vegetation indexes calculated from UAV-derived reflectance data were modeled against LAI, demonstrating that the red-edge vegetation index (CIred edge) achieved superior accuracy in estimating LAI for winter wheat yield prediction. RF, SVM and BPNN models were used to evaluate the accuracy and precision of CIred edge in predicting yield, respectively. It was found that RF outperformed both SVM and BPNN in predicting yield accuracy. The CIred edge of the anthesis stage was the best vegetation index and stage for estimating yield of winter wheat based on UAV remote sensing. Under different N application rates, both predicted and measured yields exhibited a consistent trend that followed the order of SRF (slow-release N fertilizer) > SRFU1 (mixed TU and SRF at a ratio of 2:8) > SRFU2 (mixed TU and SRF at a ratio of 3:7) > TU (traditional urea). The optimum N fertilizer rate and N fertilizer type for winter wheat in this study were 220 kg ha−1 and SRF, respectively. The results of this study will provide significant technical support for regional crop growth monitoring and yield prediction. Full article
Show Figures

Figure 1

20 pages, 2734 KiB  
Article
An Intelligent Optimization System Using Neural Networks and Soft Computing for the FMM Etching Process
by Wen-Chin Chen, An-Xuan Ngo and Jun-Fu Zhong
Mathematics 2025, 13(13), 2050; https://doi.org/10.3390/math13132050 - 20 Jun 2025
Viewed by 261
Abstract
The rapid rise of flexible AMOLED displays has prompted manufacturers to advance technologies to meet growing global demand. However, high costs and quality inconsistencies hinder industry competitiveness and sustainability. This study addresses these challenges by developing an intelligent optimization system for the fine [...] Read more.
The rapid rise of flexible AMOLED displays has prompted manufacturers to advance technologies to meet growing global demand. However, high costs and quality inconsistencies hinder industry competitiveness and sustainability. This study addresses these challenges by developing an intelligent optimization system for the fine metal mask (FMM) etching process, a critical step in producing high-resolution AMOLED panels. The system integrates advanced optimization techniques, including the Taguchi method, analysis of variance (ANOVA), back-propagation neural network (BPNN), and a hybrid particle swarm optimization–genetic algorithm (PSO-GA) approach to identify optimal process parameters. Experimental results demonstrate a marked improvement in product yield and process stability while reducing manufacturing costs. By ensuring consistent quality and efficiency, this system overcomes limitations of traditional process control; strengthens the AMOLED industry’s global competitiveness; and provides a scalable, sustainable solution for smart manufacturing in next-generation display technologies. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

14 pages, 264 KiB  
Article
A CPSO-BPNN-Based Analysis of Factors Influencing the Mental Health of Urban Youth
by Hu Xiang and Yong-Hong Lan
Information 2025, 16(6), 505; https://doi.org/10.3390/info16060505 - 17 Jun 2025
Viewed by 285
Abstract
The fast-paced lifestyle, high-pressure work environment, crowded traffic, and polluted air of urban environments often have a negative impact on urban youth’s mental health.Understanding the factors in urban environments that influence the mental health of young people and the differences among groups can [...] Read more.
The fast-paced lifestyle, high-pressure work environment, crowded traffic, and polluted air of urban environments often have a negative impact on urban youth’s mental health.Understanding the factors in urban environments that influence the mental health of young people and the differences among groups can help improve the adaptability and mental health of urban youth. Based on the 2024 report on the health status of urban youth in China, this paper first analyzes this through a combination of multiple linear regression and automated machine learning methods. The key influencing factors of different living styles and environments on the mental health of urban youth and the priority of influencing factors are evaluated. The results are obtained by using the chaos particle swarm optimization-based back propagation neural network (CPSO-BPNN) model. Then, the heterogeneity of the different types of urban youth groups is analyzed. Finally, the conclusions and recommendations of this article are presented. This study provides theoretical support and a scientific decision-making reference for improving the adaptability and health of urban youth. Full article
(This article belongs to the Special Issue Information Systems in Healthcare)
Show Figures

Figure 1

22 pages, 5407 KiB  
Article
Low-Power Constant Current Driver for Stepper Motors in Aerospace Applications
by Leijie Jiang, Lixun Zhu and Chuande Liu
Energies 2025, 18(12), 3173; https://doi.org/10.3390/en18123173 - 17 Jun 2025
Viewed by 316
Abstract
Stepper motors are used in satellites for various drive operations that are achieved by custom designs. This paper presents a stepper motor driver for satellite systems. It takes rotor position and phase current as inputs and employs a current subdivision method with back-propagation [...] Read more.
Stepper motors are used in satellites for various drive operations that are achieved by custom designs. This paper presents a stepper motor driver for satellite systems. It takes rotor position and phase current as inputs and employs a current subdivision method with back-propagation neural network (BPNN) to achieve constant current control of the motor. The driver can ensure the smooth operation and the positioning accuracy of the motor with a filter wheel that is 0.1944 kg·m2 in the moment of inertia and satisfy self-adaption of the load without system parameter identification. Compared to the previous scheme, the proposed scheme can reduce the power consumption by about 21.15% when the motor runs at 2 r/s, which is beneficial to the reduction in the size and the mass of some power supply modules. The performances of the developed driver are implemented on a field programmable gate array (FPGA) circuit board. The experimental results are conducted to verify the claims presented. The proposed scheme can be extended to other stepper motor systems with large moment of inertia loads within spacecraft. Full article
Show Figures

Figure 1

13 pages, 2693 KiB  
Communication
Prediction of Aluminum Alloy Surface Roughness Through Nanosecond Pulse Laser Assisted by Continuous Laser Paint Removal
by Jingyi Li, Rongfan Liang, Han Li, Junjie Liu and Jingdong Sun
Photonics 2025, 12(6), 575; https://doi.org/10.3390/photonics12060575 - 6 Jun 2025
Viewed by 389
Abstract
Reducing surface roughness can enhance the mechanical properties of processed materials. The variation law of the aluminum alloy surface roughness induced by continuous-nanosecond combined laser (CL) with different continuous laser power densities and laser delay is investigated experimentally. A back propagation neural network [...] Read more.
Reducing surface roughness can enhance the mechanical properties of processed materials. The variation law of the aluminum alloy surface roughness induced by continuous-nanosecond combined laser (CL) with different continuous laser power densities and laser delay is investigated experimentally. A back propagation neural network (BPNN) coupled with a sparrow search algorithm (SSA) is employed to predict surface roughness. The nanosecond laser energy density, continuous laser power density and laser delay are input parameters, while the surface roughness is output parameter. The lowest surface roughness is achieved with completely paint film removed by the CL while the nanosecond laser energy density is 1.99 J/cm2, the continuous laser power density is 2118 W/cm2 and the laser delay is 1 ms. Compared to the original target and the target irradiated by nanosecond pulse laser (ns laser), the reductions in the surface roughness are 20.62% and 12.00%, respectively. The SSA-BPNN model demonstrates high prediction accuracy, with a correlation coefficient (R2) of 0.98628, root mean square error (RMSE) of 0.024, mean absolute error (MAE) of 0.020 and mean absolute percentage error (MAPE) of 1.30% on the test set. These results indicate that the SSA-BPNN demonstrates higher-precision surface roughness prediction with limited experimental data than BPNN. Furthermore, the findings confirm that the CL can effectively reduce surface roughness. Full article
Show Figures

Figure 1

20 pages, 9342 KiB  
Article
Total Precipitable Water Retrieval from FY-3D MWHS-II Data
by Yifan Zhang and Geng-Ming Jiang
Remote Sens. 2025, 17(11), 1850; https://doi.org/10.3390/rs17111850 - 26 May 2025
Viewed by 466
Abstract
The Total Precipitable Water (TPW) is a key variable of atmospheres, and its spatiotemporal distribution is of great importance in global climate change. This paper addresses the TPW retrieval over both sea and land surfaces from the data acquired by the Microwave Humidity [...] Read more.
The Total Precipitable Water (TPW) is a key variable of atmospheres, and its spatiotemporal distribution is of great importance in global climate change. This paper addresses the TPW retrieval over both sea and land surfaces from the data acquired by the Microwave Humidity Sounder II (MWHS-II) on Fengyun 3D (FY-3D) satellite. First, the Back Propagation Neural Network (BPNN) algorithms are developed with the spatiotemporal matching samples of the MWHS-II data with the fifth-generation European Centre for Medium-Range Weather Forecast (ECMWF) atmospheric reanalysis (ERA5) data. Then, the TPWs at spatial resolutions of 0.25° in longitude and latitude between 65°S and 65°N over both sea and land surfaces are retrieved from the pixel-aggregated FY-3D MWHS-II data in 2022. Finally, the TPWs retrieved in this work are validated with the radiosonde TPWs over both sea and land surfaces, and they are also compared to the F18 Special Sensor Microwave Imager Sounder (SSMIS) TPWs over sea surfaces. The results indicate that the BPNN algorithms developed in this work are valid and superior to the D-matrix method, the Ridge method, the Lasso method, the physical method, the random forest (RF) method, the support vector machine (SVM) method, and the eXtreme Gradient Boosting (XGBoost) method. Against the radiosonde TPWs, the mean error (ME), the root mean square error (RMSE), and mean absolute error (MAE) of the TPWs retrieved in this work are −1.17 mm, 3.46 mm, and 2.63 mm over sea surfaces, respectively, and they are −0.80 mm, 4.04 mm, and 3.13 mm over land surfaces, respectively. The TPWs retrieved in this work are much more accurate than the F18 SSMIS TPWs. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

Back to TopTop