Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (551)

Search Parameters:
Keywords = asphalt composites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 9135 KiB  
Article
A Study on the Characterization of Asphalt Plant Reclaimed Powder Using Fourier Transform Infrared Spectroscopy
by Hao Wu, Daoan Yu, Wentao Wang, Chuanqi Yan, Rui Xiao, Rong Chen, Peng Zhang and Hengji Zhang
Materials 2025, 18(15), 3660; https://doi.org/10.3390/ma18153660 - 4 Aug 2025
Viewed by 57
Abstract
Asphalt plant reclaimed powder is a common solid waste in road engineering. Reusing reclaimed powder as filler holds significant importance for environmental protection and resource conservation. The key factors affecting the feasibility of reclaimed powder reuse are its acidity/alkalinity and cleanliness. Traditional evaluation [...] Read more.
Asphalt plant reclaimed powder is a common solid waste in road engineering. Reusing reclaimed powder as filler holds significant importance for environmental protection and resource conservation. The key factors affecting the feasibility of reclaimed powder reuse are its acidity/alkalinity and cleanliness. Traditional evaluation methods, such as the methylene blue test and plasticity index, can assess reclaimed powder properties to guide its recycling. However, these methods suffer from inefficiency, strong empirical dependence, and high variability. To address these limitations, this study proposes a rapid and precise evaluation method for reclaimed powder properties based on Fourier transform infrared spectroscopy (FTIR). To do so, five field-collected reclaimed powder samples and four artificial samples were evaluated. Scanning electron microscopy (SEM), X-ray fluorescence spectroscopy (XRF), and X-ray diffraction (XRD) were employed to characterize their microphase morphology, chemical composition, and crystal structure, respectively. Subsequently, FTIR was used to establish correlations between key acidity/alkalinity, cleanliness, and multiple characteristic peak intensities. Representative infrared characteristic peaks were selected, and a quantitative functional group index (Is) was proposed to simultaneously evaluate acidity/alkalinity and cleanliness. The results indicate that reclaimed powder primarily consists of tiny, crushed stone particles and dust, with significant variations in crystal structure and chemical composition, including calcium carbonate, silicon oxide, iron oxide, and aluminum oxide. Some samples also contained clay, which critically influenced the reclaimed powder properties. Since both filler acidity/alkalinity and cleanliness are affected by clay (silicon/carbon ratio determining acidity/alkalinity and aluminosilicate content affecting cleanliness), this study calculated four functional group indices based on FTIR absorption peaks, namely the Si-O-Si stretching vibration (1000 cm−1) and the CO32− asymmetric stretching vibration (1400 cm−1). These indices were correlated with conventional testing results (XRF for acidity/alkalinity, methylene blue value, and pull-off strength for cleanliness). The results show that the Is index exhibited strong correlations (R2 = 0.89 with XRF, R2 = 0.80 with methylene blue value, and R2 = 0.96 with pull-off strength), demonstrating its effectiveness in predicting both acidity/alkalinity and cleanliness. The developed method enhances reclaimed powder detection efficiency and facilitates high-value recycling in road engineering applications. Full article
(This article belongs to the Special Issue Innovative Approaches in Asphalt Binder Modification and Performance)
Show Figures

Figure 1

16 pages, 2050 KiB  
Article
Effects of Activated Cold Regenerant on Pavement Properties of Emulsified Asphalt Cold Recycled Mixture
by Fuda Chen, Jiangmiao Yu, Yuan Zhang, Zengyao Lin and Anxiong Liu
Materials 2025, 18(15), 3529; https://doi.org/10.3390/ma18153529 - 28 Jul 2025
Viewed by 274
Abstract
Limited recovery of the viscoelastic properties of aged asphalt on RAP surfaces at ambient temperature reduces interface fusion and bonding with new emulsified asphalt, degrading pavement performance and limiting large-scale promotion and high-value applications of the emulsified asphalt cold recycled mixture (EACRM). Therefore, [...] Read more.
Limited recovery of the viscoelastic properties of aged asphalt on RAP surfaces at ambient temperature reduces interface fusion and bonding with new emulsified asphalt, degrading pavement performance and limiting large-scale promotion and high-value applications of the emulsified asphalt cold recycled mixture (EACRM). Therefore, a cold regenerant was independently prepared to rapidly penetrate, soften, and activate aged asphalt at ambient temperature in this paper, and its effects on the volumetric composition, mechanical strength, and pavement performance of EACRM were systematically investigated. The results showed that as the cold regenerant content increased, the air voids, indirect tensile strength (ITS), and high-temperature deformation resistance of EACRM decreased, while the dry–wet ITS ratio, cracking resistance, and fatigue resistance increased. Considering the comprehensive pavement performance requirements of cold recycled pavements, the optimal content of the activated cold regenerant for EACRM was determined to be approximately 0.6%. Full article
Show Figures

Figure 1

31 pages, 10339 KiB  
Review
Performance of Asphalt Materials Based on Molecular Dynamics Simulation: A Review
by Chengwei Xing, Zhihang Xiong, Tong Lu, Haozongyang Li, Weichao Zhou and Chen Li
Polymers 2025, 17(15), 2051; https://doi.org/10.3390/polym17152051 - 27 Jul 2025
Viewed by 439
Abstract
With the rising performance demands in road engineering, traditional experiments often fail to reveal the microscopic mechanisms behind asphalt behavior. Molecular dynamics (MD) simulation has emerged as a valuable complement, enabling molecular-level insights into asphalt’s composition, structure, and aging mechanisms. This review summarizes [...] Read more.
With the rising performance demands in road engineering, traditional experiments often fail to reveal the microscopic mechanisms behind asphalt behavior. Molecular dynamics (MD) simulation has emerged as a valuable complement, enabling molecular-level insights into asphalt’s composition, structure, and aging mechanisms. This review summarizes the recent advances in applying MD to asphalt research. It first outlines molecular model construction approaches, including average models, three- and four-component systems, and modified models incorporating SBS, SBR, PU, PE, and asphalt–aggregate interfaces. It then analyzes how MD reveals the key performance aspects—such as high-temperature stability, low-temperature flexibility, self-healing behavior, aging processes, and interfacial adhesion—by capturing the molecular interactions. While MD offers significant advantages, challenges remain: idealized modeling, high computational demands, limited chemical reaction simulation, and difficulties in multi-scale coupling. This paper aims to provide theoretical insights and methodological support for future studies on asphalt performance and highlights MD simulation as a promising tool in pavement material science. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

20 pages, 14936 KiB  
Article
Viscosity, Morphology, and Thermomechanical Performance of Attapulgite-Reinforced Bio-Based Polyurethane Asphalt Composites
by Haocheng Yang, Suzhou Cao, Xinpeng Cui, Zhonghua Xi, Jun Cai, Zuanru Yuan, Junsheng Zhang and Hongfeng Xie
Polymers 2025, 17(15), 2045; https://doi.org/10.3390/polym17152045 - 26 Jul 2025
Viewed by 393
Abstract
Bio-based polyurethane asphalt binder (PUAB) derived from castor oil (CO) is environmentally friendly and exhibits extended allowable construction time. However, CO imparts inherently poor mechanical performance to bio-based PUAB. To address this limitation, attapulgite (ATT) with fibrous nanostructures was incorporated. The effects of [...] Read more.
Bio-based polyurethane asphalt binder (PUAB) derived from castor oil (CO) is environmentally friendly and exhibits extended allowable construction time. However, CO imparts inherently poor mechanical performance to bio-based PUAB. To address this limitation, attapulgite (ATT) with fibrous nanostructures was incorporated. The effects of ATT on bio-based PUAB were systematically investigated, including cure kinetics, rotational viscosity (RV) evolution, phase-separation microstructures, dynamic mechanical properties, thermal stability, and mechanical performance. Experimental characterization employed Fourier transform infrared spectroscopy, Brookfield viscometry, laser scanning confocal microscopy, dynamic mechanical analysis, thermogravimetry, and tensile testing. ATT incorporation accelerated the polyaddition reaction conversion between isocyanate groups in polyurethane (PU) and hydroxyl groups in ATT. Paradoxically, it reduced RV during curing, prolonging allowable construction time proportionally with clay content. Additionally, ATT’s compatibilizing effect decreased bitumen particle size in PUAB, with scaling proportionally with clay loading. While enhancing thermal stability, ATT lowered the glass transition temperature and damping properties. Crucially, 1 wt% ATT increased tensile strength by 71% and toughness by 62%, while maintaining high elongation at break (>400%). The cost-effectiveness and significant reinforcement capability of ATT make it a promising candidate for producing high-performance bio-based PUAB composites. Full article
Show Figures

Figure 1

15 pages, 1076 KiB  
Article
Eco-Friendly Bitumen Composites with Polymer and Rubber Waste for Sustainable Construction
by Gaini Zhumagalievna Seitenova, Rizagul Muslimovna Dyussova, Daulet Abaykhanovich Aspanbetov, Assel Yermekovna Jexembayeva, Kinga Korniejenko, Lyazat Aruova and Darkhan Kuandykovich Sakanov
Buildings 2025, 15(15), 2608; https://doi.org/10.3390/buildings15152608 - 23 Jul 2025
Viewed by 306
Abstract
The modern road industry requires a more effective solution according to efficiency and minimizing environmental burden. This article discusses the use of recycled materials to modify bitumen binders within the concept of the circular economy. The main aim of this article was to [...] Read more.
The modern road industry requires a more effective solution according to efficiency and minimizing environmental burden. This article discusses the use of recycled materials to modify bitumen binders within the concept of the circular economy. The main aim of this article was to create a new composite based on waste materials, including polymer waste and rubber crumb. The important element is the usage of locally available waste that has not been investigated previously as a material for asphalt modification. The prepared composition was preliminarily assessed according to chemical composition. Next, research dedicated to road application was conducted, including the following: determination of the resistance to hardening, aging under the influence of high temperature and air, as well as oxidation processes, assessment of penetration, and evaluation of the softening point. The conducted studies showed that the new composites with the addition of polymer waste and rubber crumb improve the thermal stability, elasticity, and resistance of bitumen to aging. Optimum concentrations of modifiers were determined that provide an increase in the performance characteristics of bitumen, including a decrease in the brittleness temperature and an increase in the softening temperature. The obtained results demonstrate the potential for the introduction of new composites based on recycled materials in road construction, contributing to increased environmental sustainability and economic efficiency. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 7033 KiB  
Article
A Study on the Low-Intensity Cracking Resistance of Drainage Asphalt Mixtures by Graphene/Rubber Powder Compound Modified Asphalt
by Jingcheng Chen, Yongqiang Cheng, Ke Liang, Xiaojian Cao, Yanchao Wang and Qiangru Shen
Materials 2025, 18(15), 3451; https://doi.org/10.3390/ma18153451 - 23 Jul 2025
Viewed by 252
Abstract
In order to investigate the influence of graphene/rubber powder compound modified asphalt on the low-temperature cracking resistance of drainage asphalt mixtures, graphene/rubber powder compound modified asphalt mixtures were prepared using graphene/rubber powder compound modified asphalt for drainage asphalt mixtures, and compared with SBS-modified [...] Read more.
In order to investigate the influence of graphene/rubber powder compound modified asphalt on the low-temperature cracking resistance of drainage asphalt mixtures, graphene/rubber powder compound modified asphalt mixtures were prepared using graphene/rubber powder compound modified asphalt for drainage asphalt mixtures, and compared with SBS-modified asphalt and rubber powder-modified asphalt, and the low-temperature cracking resistance of graphene/rubber powder compound modification asphalt mixtures was investigated through the Marshall Stability Test, Semi-circular Bending Test (SCB), and Freeze–Thaw Split Test. Research was carried out. At the same time, a scanning electric microscope (SEM) was adopted to analyze the micro-mechanism of the graphene/rubber powder compound modified asphalt mixtures under the microscopic condition. The findings showed that graphene dispersed the aggregation of rubber powder effectively in the microscopic state and improved the stability of the composite modified asphalt. The addition of graphene improved the fracture energy of rubber powder composite modified asphalt by 15.68% under the condition of −15 °C to 0 °C, which effectively slowed down the decrease of fracture energy; at −15 °C and −10 °C, the largest stresses were improved by 7.50% and 26.71%, respectively, compared to the drainage asphalt mixtures prepared as rubber powder-modified asphalt and SBS-modified asphalt. After a freeze–thaw cycle, the maximum stress decrease of graphene/rubber powder compound modified asphalt was 21.51% and 10.37% at −15 °C and 0 °C, respectively. When compared to rubber powder-modified asphalt, graphene/rubber powder compound modified asphalt significantly improved the low-intensity cracking resistance of drainage asphalt mixtures at low temperatures, slowed down the decrease of the maximum stress, and its low-temperature cracking resistance was more stable. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

27 pages, 6279 KiB  
Article
Investigation of the Performance and Fuel Oil Corrosion Resistance of Semi-Flexible Pavement with the Incorporation of Recycled Glass Waste
by Ayman Hassan AL-Qudah, Suhana Koting, Mohd Rasdan Ibrahim and Muna M. Alibrahim
Materials 2025, 18(15), 3442; https://doi.org/10.3390/ma18153442 - 22 Jul 2025
Viewed by 294
Abstract
Semi-flexible pavement (SFP) is a durable and cost-effective alternative to conventional rigid and flexible pavement and is formed by permeating an open-graded asphalt (OGA) layer with high-fluidity cement grout. The degradation of SFP mattresses due to fuel oil spills can result in significant [...] Read more.
Semi-flexible pavement (SFP) is a durable and cost-effective alternative to conventional rigid and flexible pavement and is formed by permeating an open-graded asphalt (OGA) layer with high-fluidity cement grout. The degradation of SFP mattresses due to fuel oil spills can result in significant maintenance costs. Incorporating glass waste (GW) into the construction of SFPs offers an eco-friendly solution, helping to reduce repair costs and environmental impact by conserving natural resources and minimizing landfill waste. The main objective of this research is to investigate the mechanical performance and fuel oil resistance of SFP composites containing different levels of glass aggregate (GlaSFlex composites). Fine glass aggregate (FGA) was replaced with fine virgin aggregate at levels of 0%, 20%, 40%, 60%, 80%, and 100% by mass. The results indicated the feasibility of utilizing FGA as a total replacement (100%) for fine aggregate in the OGA structural layer of SFPs. At 100% FGA, the composite exhibited excellent mechanical performance and durability, including a compressive strength of 8.93 MPa, a Marshall stability exceeding 38 kN, and a stiffness modulus of 19,091 MPa. Furthermore, the composite demonstrated minimal permanent deformation (0.04 mm), a high residual stability of 94.7%, a residual compressive strength of 83.3%, and strong resistance to fuel spillage with a mass loss rate of less than 1%, indicating excellent durability. Full article
(This article belongs to the Special Issue Advanced Materials for Pavement and Road Infrastructure)
Show Figures

Graphical abstract

24 pages, 5801 KiB  
Article
A Study on the Performance of Gel-Based Polyurethane Prepolymer/Ceramic Fiber Composite-Modified Asphalt
by Tengteng Guo, Xu Guo, Yuanzhao Chen, Chenze Fang, Jingyu Yang, Zhenxia Li, Jiajie Feng, Hao Huang, Zhi Li, Haijun Chen and Jiachen Wang
Gels 2025, 11(7), 558; https://doi.org/10.3390/gels11070558 - 20 Jul 2025
Viewed by 256
Abstract
In order to solve various problems in traditional roads and extend their service life, new road materials have become a research hotspot. Polyurethane prepolymers (PUPs) and ceramic fibers (CFs), as materials with unique properties, were chosen due to their synergistic effect: PUPs provide [...] Read more.
In order to solve various problems in traditional roads and extend their service life, new road materials have become a research hotspot. Polyurethane prepolymers (PUPs) and ceramic fibers (CFs), as materials with unique properties, were chosen due to their synergistic effect: PUPs provide elasticity and gel-like behavior, while CFs contribute to structural stability and high-temperature resistance, making them ideal for enhancing asphalt performance. PUPs, a thermoplastic and elastic polyurethane gel material, not only enhance the flexibility and adhesion properties of asphalt but also significantly improve the structural stability of composite materials when synergistically combined with CF. Using response surface methodology, an optimized preparation scheme for PUP/CF composite-modified asphalt was investigated. Through aging tests, dynamic shear rate (DSR) testing, bending rate (BBR) testing, microstructure scanning (MSCR), scanning electron microscopy (SEM), atomic force microscopy (AFM), and infrared spectroscopy (IR), the aging performance, rheological properties, permanent deformation resistance, microstructure, and modification mechanism of PUP/CF composite-modified asphalt were investigated. The results indicate that the optimal preparation scheme is a PUP content of 7.4%, a CF content of 2.1%, and a shear time of 40 min. The addition of the PUP and CF significantly enhances the asphalt’s aging resistance, and compared with single-CF-modified asphalt and base asphalt, the PUP/CF composite-modified asphalt exhibits superior high- and low-temperature rheological properties, demonstrating stronger strain recovery capability. The PUP forms a gel network structure in the material, effectively filling the gaps between CF and asphalt, enhancing interfacial bonding strength, and making the overall performance more stable. AFM microscopic morphology shows that PUP/CF composite-modified asphalt has more “honeycomb structures” than matrix asphalt and CF-modified asphalt, forming more structural asphalt and enhancing overall structural stability. This study indicates that the synergistic effect of PUP gel and CF significantly improves the macro and micro properties of asphalt. The PUP forms a three-dimensional elastic gel network in asphalt, improving adhesion and deformation resistance. Using response surface methodology, the optimal formulation (7.4% PUP, 2.1% CF) improves penetration (↓41.5%), softening point (↑6.7 °C), and ductility (↑9%), demonstrating the relevance of gel-based composites for asphalt modification. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

15 pages, 2854 KiB  
Review
A Review on the Applications of Basalt Fibers and Their Composites in Infrastructures
by Wenlong Yan, Jianzhe Shi, Xuyang Cao, Meng Zhang, Lei Li and Jingyi Jiang
Buildings 2025, 15(14), 2525; https://doi.org/10.3390/buildings15142525 - 18 Jul 2025
Viewed by 351
Abstract
This article presents a review on the applications of basalt fibers and their composites in infrastructures. The characteristics and advantages of high-performance basalt fibers and their composites are firstly introduced. Then, the article discusses strengthening using basalt fiber sheets and BFRP bars or [...] Read more.
This article presents a review on the applications of basalt fibers and their composites in infrastructures. The characteristics and advantages of high-performance basalt fibers and their composites are firstly introduced. Then, the article discusses strengthening using basalt fiber sheets and BFRP bars or grids, followed by concrete structures reinforced with BFRP bars, asphalt pavements, and cementitious composites reinforced with chopped basalt fibers in terms of mechanical behaviors and application examples. The load-bearing capacity of the strengthened structures can be increased by up to 60%, compared with those without strengthening. The lifespan of the concrete structures reinforced with BFRP can be extended by up to 50 years at least in harsh environments, which is much longer than that of ordinary reinforced concrete structures. In addition, the fatigue cracking resistance of asphalt can be increased by up to 600% with basalt fiber. The newly developed technologies including anchor bolts using BFRPs, self-sensing BFRPs, and BFRP–concrete composite structures are introduced in detail. Furthermore, suggestions are proposed for the forward-looking technologies, such as long-span bridges with BFRP cables, BFRP truss structures, BFRP with thermoplastic resin matrix, and BFRP composite piles. Full article
Show Figures

Figure 1

21 pages, 875 KiB  
Review
Sustainable Utilisation of Mining Waste in Road Construction: A Review
by Nuha S. Mashaan, Sammy Kibutu, Chathurika Dassanayake and Ali Ghodrati
J. Exp. Theor. Anal. 2025, 3(3), 19; https://doi.org/10.3390/jeta3030019 - 15 Jul 2025
Viewed by 335
Abstract
Mining by-products present both an environmental challenge and a resource opportunity. This review investigates their potential application in road pavement construction, focusing on materials such as fly ash, slag, sulphur, red mud, tailings, and silica fume. Drawing from laboratory and field studies, the [...] Read more.
Mining by-products present both an environmental challenge and a resource opportunity. This review investigates their potential application in road pavement construction, focusing on materials such as fly ash, slag, sulphur, red mud, tailings, and silica fume. Drawing from laboratory and field studies, the review examines their roles across pavement layers—subgrade, base, subbase, asphalt mixtures, and rigid pavements—emphasising mechanical properties, durability, moisture resistance, and ageing performance. When properly processed or stabilised, many of these wastes meet or exceed conventional performance standards, contributing to reduced use of virgin materials and greenhouse gas emissions. However, issues such as variability in composition, leaching risks, and a lack of standardised design protocols remain barriers to adoption. This review aims to consolidate current research, evaluate practical feasibility, and identify directions for future studies that would enable the responsible and effective reuse of mining waste in transportation infrastructure. Full article
Show Figures

Figure 1

21 pages, 5109 KiB  
Article
Influence Mechanism of Waterborne Polyurethane on the Properties of Emulsified Asphalt
by Jian Tan, Shuguang Hou, Rui Jin, Xiao Zhong and Xiaoxi Zou
Materials 2025, 18(14), 3280; https://doi.org/10.3390/ma18143280 - 11 Jul 2025
Viewed by 293
Abstract
To elucidate the modification mechanism of waterborne polyurethane (WPU) on emulsified asphalt, anionic and cationic WPUs are utilized as modifiers. As well, their effects on physical properties, microstructure, and compatibility are characterized using basic performance tests, Fourier transform infrared spectroscopy (FTIR), and atomic [...] Read more.
To elucidate the modification mechanism of waterborne polyurethane (WPU) on emulsified asphalt, anionic and cationic WPUs are utilized as modifiers. As well, their effects on physical properties, microstructure, and compatibility are characterized using basic performance tests, Fourier transform infrared spectroscopy (FTIR), and atomic force microscopy (AFM). The results show that WPU-modified emulsified asphalt exhibited a higher softening point, reduced penetration, and decreased ductility, suggesting enhanced high-temperature stability but diminished low-temperature flexibility. Among all samples, the combination of cationic WPU with cationic emulsified asphalt shows the highest softening point (54.1 °C), whereas cationic emulsified asphalt alone exhibits the lowest one (52.9 °C). Anionic emulsified asphalt demonstrates the highest penetration (79 mm), while non-ionic WPU combined with cationic emulsified asphalt shows the lowest one (59.3 mm). The ductility decreases from 90.3 cm to 28.7 cm. The storage stability varies with WPU ion type. Cationic WPU-modified samples showed the poorest storage stability (0.7% residue), while anionic-modified samples exhibit the best one (0.4% residue). FTIR analysis confirms the presence of characteristic WPU absorption peaks, indicating that physical blending occurs, and chemical interaction is limited. AFM observations reveal that anionic WPUs provide superior compatibility, forming fine, uniformly distributed particles with the lowest surface roughness (5.655 nm). In contrast, cationic WPUs form chain-like structures that cure effectively but exhibit poor dispersion. This study provides a basis for the development of high-performance WPU-modified emulsified asphalt. Full article
Show Figures

Figure 1

49 pages, 11671 KiB  
Review
Fatigue Failure Criteria of Asphalt Binders and Asphalt Mixtures: A Comprehensive Review
by Shizhan Xu, Zhigang Zhao, Honglei Wang, Chenguang Wan, Xiaofeng Wang, Zhenjun Wang and Xuanrui Zhang
Materials 2025, 18(14), 3267; https://doi.org/10.3390/ma18143267 - 10 Jul 2025
Viewed by 352
Abstract
This study presents a systematic review of fatigue analysis methodologies and failure criteria for asphalt binders and mixtures employed in various cyclic fatigue testing configurations. The investigation focuses on two principal predictive approaches: phenomenological models and mechanistic frameworks, which are commonly utilized to [...] Read more.
This study presents a systematic review of fatigue analysis methodologies and failure criteria for asphalt binders and mixtures employed in various cyclic fatigue testing configurations. The investigation focuses on two principal predictive approaches: phenomenological models and mechanistic frameworks, which are commonly utilized to forecast asphalt pavement fatigue life based on experimental data from different fatigue tests. A critical evaluation is conducted on the diverse failure criteria integrated within these analytical approaches, with particular emphasis on their respective merits and limitations. The current research findings reveal a notable absence of consensus regarding the precise definition of the fatigue failure criteria for asphalt materials. Furthermore, critical parameters including accuracy assessment, reliability verification, and sensitivity analysis of these failure criteria are identified as requiring enhanced research attention. This review recommends specific fatigue failure criteria classified according to fatigue testing methods and material types. This comprehensive analysis of fatigue failure mechanisms in asphalt composites aims to inform strategic refinements for future research trajectories and enhance durability-oriented pavement design practices. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 1363 KiB  
Article
A Three-Dimensional Optimization Framework for Asphalt Mixture Design: Balancing Skeleton Stability, Segregation Control, and Mechanical Strength
by Jinfei Su, Linhao Fan, Lei Zhang, Shenduo Hu, Jicong Xu, Guanxian Li and Shihao Dong
Coatings 2025, 15(7), 807; https://doi.org/10.3390/coatings15070807 - 9 Jul 2025
Viewed by 354
Abstract
The composition design of asphalt mixtures plays a pivotal role in determining pavement performance and durability. To improve skeleton stability, paving uniformity, and mechanical strength, this research proposes a three-dimensional optimization framework for asphalt mixture design, focusing on aggregate gradation and optimum asphalt [...] Read more.
The composition design of asphalt mixtures plays a pivotal role in determining pavement performance and durability. To improve skeleton stability, paving uniformity, and mechanical strength, this research proposes a three-dimensional optimization framework for asphalt mixture design, focusing on aggregate gradation and optimum asphalt content. A skeleton-dense and anti-segregation gradation optimization method was developed by integrating a previously established skeleton-dense model with a segregation tendency prediction approach. In parallel, a mechanically driven method for determining optimum asphalt content was proposed by introducing the maximum migration shear stress as a performance-based alternative to the conventional Marshall stability parameter. Research results show that asphalt mixtures designed and compacted with the optimized gradation exhibit significantly enhanced high-temperature stability, while maintaining satisfactory low-temperature cracking resistance and moisture susceptibility. Field validation was conducted through the construction of a trial pavement section using the optimized gradation under recommended mixing and compaction temperatures. The resulting pavement demonstrated excellent compaction, strong resistance to segregation, and a highly stable spatial structure. These findings confirm the effectiveness of the proposed methodology in enhancing the high-temperature deformation resistance and overall structural integrity of asphalt mixtures. Full article
Show Figures

Figure 1

25 pages, 11157 KiB  
Review
Reuse of Retired Wind Turbine Blades in Civil Engineering
by Xuemei Yu, Changbao Zhang, Jing Li, Xue Bai, Lilin Yang, Jihao Han and Guoxiang Zhou
Buildings 2025, 15(14), 2414; https://doi.org/10.3390/buildings15142414 - 9 Jul 2025
Viewed by 380
Abstract
The rapid growth of the wind energy sector has led to a rising number of retired wind turbine blades (RWTBs) globally, posing significant environmental and logistical challenges for sustainable waste management. Handling enormous RWTBs at their end of life (EoL) has a significant [...] Read more.
The rapid growth of the wind energy sector has led to a rising number of retired wind turbine blades (RWTBs) globally, posing significant environmental and logistical challenges for sustainable waste management. Handling enormous RWTBs at their end of life (EoL) has a significant negative impact on resource conservation and the environment. Conventional disposal methods, such as landfilling and incineration, raise environmental concerns due to the non-recyclable composite material used in blade manufacturing. This study explores the upcycling potential of RWTBs as innovative construction materials, addressing both waste reduction and resource efficiency in the construction industry. By exploring recent advancements in recycling techniques, this research highlights applications such as structural components, lightweight aggregates for concrete, and reinforcement elements in asphalt pavements. The key findings demonstrate that repurposing blade-derived materials not only reduces landfill dependency but also lowers carbon emissions associated with conventional construction practices. However, challenges including material compatibility, economic feasibility, and standardization require further investigation. This study concludes that upcycling wind turbine blades into construction materials offers a promising pathway toward circular economy goals. To improve technical methods and policy support for large-scale implementation, it recommends collaboration among different fields, such as those related to cementitious and asphalt materials. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

28 pages, 1259 KiB  
Review
Perspective on Sustainable Solutions for Mitigating Off-Gassing of Volatile Organic Compounds in Asphalt Composites
by Masoumeh Mousavi, Vajiheh Akbarzadeh, Mohammadjavad Kazemi, Shuguang Deng and Elham H. Fini
J. Compos. Sci. 2025, 9(7), 353; https://doi.org/10.3390/jcs9070353 - 8 Jul 2025
Viewed by 442
Abstract
This perspective explores the use of biochar, a carbon-rich material derived from biomass, as a sustainable solution for mitigating volatile organic compounds (VOCs) emitted during asphalt production and use. VOCs from asphalt contribute to ozone formation and harmful secondary organic aerosols (SOAs), which [...] Read more.
This perspective explores the use of biochar, a carbon-rich material derived from biomass, as a sustainable solution for mitigating volatile organic compounds (VOCs) emitted during asphalt production and use. VOCs from asphalt contribute to ozone formation and harmful secondary organic aerosols (SOAs), which negatively impact air quality and public health. Biochar, with its high surface area and capacity to adsorb VOCs, provides an effective means of addressing these challenges. By tailoring biochar’s surface chemistry, it can efficiently capture VOCs, while also offering long-term carbon sequestration benefits. Additionally, biochar enhances the durability of asphalt, extending road lifespan and reducing maintenance needs, making it a promising material for sustainable infrastructure. Despite these promising benefits, several challenges remain. Variations in biochar properties, driven by differences in feedstock and production methods, can affect its performance in asphalt. Moreover, the integration of biochar into existing plant operations requires the further development of methods to streamline the process and ensure consistency in biochar’s quality and cost-effectiveness. Standardizing production methods and addressing logistical hurdles will be crucial for biochar’s widespread adoption. Research into improving its long-term stability in asphalt is also needed to ensure sustained efficacy over time. Overcoming these challenges will be essential for fully realizing biochar’s potential in sustainable infrastructure development Full article
(This article belongs to the Special Issue Composites: A Sustainable Material Solution)
Show Figures

Figure 1

Back to TopTop