A Three-Dimensional Optimization Framework for Asphalt Mixture Design: Balancing Skeleton Stability, Segregation Control, and Mechanical Strength
Abstract
1. Introduction
2. Materials
2.1. Aggregate
2.2. Gradation
2.3. Asphalt
3. Experiment Methods
3.1. Multi-Dimensional Geometric Fusion Characteristics
3.2. Three-Dimensional Dynamic Compaction Model
3.3. Shear-Slip Test
4. Optimization Gradation Design Method for Skeleton Stability and Segregation Resistance
4.1. Evaluation Method for Skeleton Compactness and Anti-Segregation Gradation
4.1.1. Prediction Method for Skeleton Compactness Strength
4.1.2. Prediction Method for Gradation Segregation
4.2. Optimization Design Method for Skeleton Compactness and Anti-Segregation Gradation
5. Method for Determining the Optimum Asphalt Content Based on Mechanical Parameters
5.1. The Applicability of Mechanical Parameters
5.2. The Design Procedure for Asphalt Mixture Based on Mechanical Parameters
5.3. Example of Asphalt Mixture Design Based on Mechanical Parameters
6. Performance Evaluation
6.1. Laboratory Evaluation of Pavement Performance
6.2. Evaluation of Pavement Non-Uniformity
7. Conclusions
- The skeleton-dense index (SDI), calculated using the skeleton-dense structure prediction model, is utilized to optimize gradations with stronger skeleton effects and higher densification capacity. Furthermore, the segregation tendency index (STI) is calculated to further select gradations with low segregation tendency or weak segregation potential. This ensures that the asphalt mixture maintains good high-temperature deformation resistance throughout different construction stages.
- A design method was proposed in which mechanical parameters are used to replace Marshall stability for determining the optimum asphalt content. A comparative analysis of the pavement performance between asphalt mixtures designed by the proposed method and those designed using the Marshall method revealed that the mixture prepared with the optimized gradation exhibited superior high-temperature stability, while its low-temperature cracking resistance and moisture stability still met specification requirements. These findings demonstrate that the proposed gradation design method effectively enhances the high-temperature deformation resistance of asphalt mixtures.
- A trial pavement section was constructed using the optimized gradation under the recommended mixing and compaction temperatures. The anti-segregation capability of the selected gradation was validated by evaluating the paving uniformity of the trial section. The results showed that the pavement exhibited a high degree of compaction with a low coefficient of variation, indicating that the optimized gradation not only possesses strong resistance to segregation but also forms a highly stable spatial structure.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Abbreviation | Definition | Unit |
CISP | Composite shape index | -- |
CITX | Composite texture index | -- |
CIGA | Composite angularity index | -- |
MGI | Multi-dimensional geometric fusion characteristic | -- |
SCI | Skeleton contact index | -- |
FCITX | Bonding-filling index | -- |
SDI | Skeleton-dense index | -- |
STI | Segregation tendency index of aggregates | -- |
VV | Volume of Air voids | % |
VMA | Voids in mineral aggregate | % |
VFA | Voids filled with asphalt | % |
Ꚍsl | Maximum shear-slip stress | Mpa |
References
- Yang, J.J.; Huang, W.; Lü, S.T.; Qian, G.P.; Zheng, J.L. Strength theory and structural failure characteristics of asphalt pavement. J. Traffic Transp. Eng. 2024, 24, 131–143. [Google Scholar]
- Zhang, K.; Zhang, Z.Q.; Luo, Y.F.; Huang, S.Y. Accurate detection and evaluation method for aggregate distribution uniformity of asphalt pavement. Constr. Build. Materials. 2017, 152, 715–730. [Google Scholar]
- Gao, J.F.; Wang, H.N.; Bu, Y.; You, Z.P.; Zhang, X.; Irfan, M. Influence of Coarse-Aggregate Angularity on Asphalt Mixture Macroperformance: Skid Resistance, High-Temperature, and Compaction Performance. J. Mater. Civ. Eng. 2020, 32, 655–693. [Google Scholar]
- Liu, Z.Y.; Dong, Z.J.; Zhou, T.; Shan, L.Y.; Ma, X.Y. Review and prospects of performance enhancement of asphalt mixtures based on material informatics. China J. Highw. Transp. 2024, 37, 98–120. [Google Scholar]
- Coase, R.H. Marshall on method. J. Law Econ. 1975, 18, 25–31. [Google Scholar]
- Wang, X.; Zhou, Y.T.; Lan, J.R.; Cao, T.W.; Tang, N.; Ma, T.L. Study on gradation characteristics of Superpave asphalt concrete. J. Wuhan Univ. Technol. 2007, 29, 12–14. [Google Scholar]
- McGennis, R.B.; Anderson, R.M.; Kennedy, T.W.; Solaimanian, M. Background of SUPERPAVE Asphalt Mixture Design and Analysis; Federal Highway Administration, Office of Technology Applications: Washington, DC, USA, 1995. [Google Scholar]
- Rocha, M.L.; Aragao, F.T.S.; Nascimento, L.; Underwood, S. Balanced Mixture Design Framework for Asphalt Mixtures Based on Index-and Performance-Volumetrics Relationships. Transp. Res. Record. 2023, 2677, 233–245. [Google Scholar]
- Lü, W.J.; Chen, A.W.; Hao, P.W.; Dai, J.L. Influence of the parameter CA in the Bailey method on the performance of asphalt mixture. J. Chang’an Univ. Nat. Sci. Ed. 2005, 25, 5–8. [Google Scholar]
- Sha, Q.L. Design and Construction of Multi-Fractured Aggregate Asphalt Concrete (SAC) Series; People’s Traffic Press: Beijing, China, 2005; 272. [Google Scholar]
- Sha, Q.L. Aggregate gradation design methods of SAC and other coarse aggregate gap-graded mixtures. Highway 2005, 1, 143–150. [Google Scholar]
- Zhang, X.N.; Guo, Z.X.; Wu, K.H. Volume-based design method of asphalt mixtures. J. Harbin Univ. Civ. Eng. Archit 1995, 28, 28–36. [Google Scholar]
- Zhang, X.N.; Wang, S.H.; Wu, K.H.; Wang, D.Y. CAVF method for composition design of asphalt mixture. Highway 2001, 12, 17–21. [Google Scholar]
- Sun, X.; Qin, X.; Liu, Z.; Yin, Y.M. Damaging effect of fine grinding treatment on the microstructure of polyurea elastomer modifier used in asphalt binder. Measurement 2025, 242, 115984. [Google Scholar]
- Sun, X.; Xu, H.; Zheng, X.; Qin, X.; Guo, T.; Gao, J. Microscopic effect and mechanism of spray polyurea modifier on the asphalt binder: Experimental characterization and molecular dynamics simulations. Polymer 2025, 316, 127807. [Google Scholar]
- Sun, S.F.; Li, P.L.; Cheng, L.D.; Xiao, W.; Zhang, W.Q. Analysis of skeleton contact stability of graded aggregates system and its effect on slip creep properties of asphalt mixture. Constr. Build. Mater. 2022, 316, 125911. [Google Scholar]
- Husain, S.F.; Nazzal, M.D.; Manasreh, D.; Abbas, A.; Quasem, T.; Mansour, M. Using artificial neural networks to predict the cracking resistance change due to asphalt binder content variation. J. Mater. Civ. Eng. 2023, 35, 306–308. [Google Scholar]
- Yan, X.L.; Jing, H.J.; You, Q.L.; Ai, T. Mixing flow characteristics and workability index of asphalt mixtures. China Civ. Eng. J. 2019, 52, 120–128. [Google Scholar]
- Wu, K.H.; Wu, C.H.; Nie, G.H.; Cai, X.; Xu, X.Q.; Zheng, Y.Q.; Huang, W.K.; Wang, Z.X.; Huang, J.D. Theory and design method of flowable mastic asphalt mixture (FMA). China J. Highw. Transport. 2025, 38, 102–113. [Google Scholar]
- Zhang, F.L.; Yao, P.F.; Guo, X.X.; Zhang, L.; Huang, K. Study on the performance of epoxy asphalt with different matrix asphalt contents. J. Mater. Civ. Eng. 2023, 35. [Google Scholar] [CrossRef]
- Li, Z.X.; Guo, T.T.; Chen, Y.Z.; Bian, X.W. Study on rheological properties of warm mix large proportion recycled asphalt. Mater. Res. Express 2022, 9, 105101. [Google Scholar]
- Kumar, J.K.R.; Archilla, A.R. Simple Analytical Procedure to Estimate Optimum Asphalt Content. J. Test. Eval. 2025, 53, 414–429. [Google Scholar]
- Li, Y.M.; Ma, R.; Wang, X.; Cheng, P.; Chen, Y. Improvement effect of different modifiers on storage stability of high content SBS modified asphalt. Case Stud. Constr. Mater. 2024, 20, e02820. [Google Scholar]
- Hamzah, M.O.; Golchin, B.; Tye, C.T. Determination of the optimum binder content of warm mix asphalt incorporating Rediset using response surface method. Constr. Build. Mater. 2013, 47, 1328–1336. [Google Scholar]
- JTG E42-2005; Test Methods of Aggregate for Highway Engineering. Ministry of Transport of the People’s Republic of China: Beijing, China, 2005.
- JTG F40-2004; Technical Specifications for Construction of Highway Asphalt Pavements. Ministry of Transport of the People’s Republic of China: Beijing, China, 2004.
- JTJ 052-2000; Test Methods of Asphalt and Asphalt Mixtures for Highway Engineering. Ministry of Transport of the People’s Republic of China: Beijing, China, 2000.
- Su, J.F.; Li, P.L.; Sun, S.F.; Cheng, L.D.; Bi, J.Y.; Zhu, D.J. Effects of Composite Geometric Characteristics of coarse particles on Interface Interactions of Aggregate-asphalt System. Constr. Build. Mater. 2021, 287, 122750. [Google Scholar]
- Su, J.F.; Li, P.L.; Dong, S.H.; Su, H.F. Accurately Tracking Migration of Particles Based on Discrete-Element Simulation during Compaction Process. J. Mater. Civ. Eng. 2024, 36, 181–184. [Google Scholar]
- Su, J.F.; Li, P.L.; Wei, X.F.; Sun, S.F.; Zhu, L.; Dong, C. Analysis of interface interaction of aggregate-asphalt system and its effect on shear-slip behavior of asphalt mixture. Constr. Build. Mater. 2020, 264, 120680. [Google Scholar]
- Su, J.F.; Li, P.L.; Zhang, Y.L.; Dong, S.H.; Sun, S.F.; Jin, L. Aggregate migration and self-organisation properties of asphalt mixtures during compaction process. Road Mater. Pavement Des. 2024, 25, 1245–1264. [Google Scholar]
Mesh Aperture/mm | 19.0 | 16.0 | 13.2 | 9.5 | 4.75 | Test Method |
---|---|---|---|---|---|---|
Bulk specific gravity /(g/cm3) | 2.689 | 2.690 | 2.697 | 2.697 | 2.710 | T0304-2005 |
Mesh Aperture/mm | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 | Test Method |
---|---|---|---|---|---|---|---|
apparent specific gravity /(g/cm3) | 2.735 | 2.773 | 2.775 | 2.771 | 2.720 | 2.719 | T0330-2005 |
Test Item | Apparent Density (g/cm3) | Water Content (%) | Plasticity Index | Appearance |
---|---|---|---|---|
Technical requirements | >2.50 | <1 | <4 | No aggregate clumping |
Test results | 2.731 | 0.2 | 2.1 | No aggregate clumping |
Test Items | Technical Requirements | Test Result | Test Method | |
---|---|---|---|---|
Penetration (25 °C, 5 s, 100 g)/0.1 mm | 90~100 | 88.6 | T0604 | |
Penetration index (PI) | 1.0~+1.0 | 0.6 | T0604 | |
Ductility (5 cm/min, 10 °C)/cm | ≥25 | 79.5 | T0605 | |
Ductility (5 cm/min, 15 °C)/cm | ≥100 | >100 | T0605 | |
Softening point (Ring-and-Ball Method)/°C | ≥45 | 46 | T0606 | |
Flash point (Cleveland Open Cup Method)/°C | ≥245 | 292 | T0611 | |
Solubility (Trichloroethene)/% | ≥99.5 | 99.88 | T0607 | |
Density (15 °C) g/cm3 | ≥1.01 | 1.034 | T0603 | |
RTFOT (163 °C, 85 min) | Quality change/%, not more than | ±0.8 | 0.065 | T0609 |
Penetration retention ratio (25 °C)/% | ≥57 | 61.2 | T0604 | |
Retained ductility (10 °C)/cm | ≥8 | 10 | T0605 | |
Retained ductility (15 °C)/cm | ≥8 | 47.3 | T0605 |
Evaluation Index | Degree of Aggregate Segregation | ||||
---|---|---|---|---|---|
F | N | L | M | H | |
STI | (0, 0.6) | (0.6~0.7) | (0.7~0.8) | (0.8~0.9) | (0.9~1) |
Gradation Type | Gradation 1 | Gradation 2 | Gradation 3 | Gradation 4 | Gradation Range | |
---|---|---|---|---|---|---|
Passing rate (%) | 19 | 100 | 100 | 100 | 100 | 100 |
16 | 96.9 | 96.1 | 96 | 98 | 90~100 | |
13.2 | 90.2 | 89.3 | 88 | 86 | 65~85 | |
9.5 | 63.3 | 57.8 | 59 | 61 | 45~65 | |
4.75 | 32.6 | 28.7 | 28 | 30 | 20~32 | |
2.36 | 30.8 | 26.4 | 26 | 28 | 15~24 | |
1.18 | 18.7 | 21.7 | 20 | 18 | 14~22 | |
0.6 | 15 | 16 | 14 | 14 | 12~18 | |
0.3 | 11.03 | 11.6 | 13 | 13 | 10~15 | |
0.15 | 9 | 10.3 | 9.9 | 11 | 9~14 | |
0.075 | 4.9 | 5.3 | 7 | 7 | 8~12 |
Gradation Type | Gradation 1 | Gradation 2 | Gradation 3 | Gradation 4 | Median Gradation |
---|---|---|---|---|---|
SDI | 0.198784 | 0.18771 | 0.168057 | 0.162239 | 0.177714 |
STI | 0.642907 | 0.698584 | 0.71056 | 0.689808 | 0.525193 |
Gradation | Theoretical Maximum Density | Bulk Density | VV/% | VMA/% | VCAmin/% | VCADRC/% |
---|---|---|---|---|---|---|
Gradation 1 | 2.641 | 2.542 | 3.47 | 18.42 | 36.12 | 43.35 |
Gradation 2 | 2.637 | 2.548 | 3.86 | 18.87 | 33.70 | 45.06 |
Gradation 3 | 2.632 | 2.556 | 2.94 | 17.92 | 39.16 | 41.93 |
Gradation 4 | 2.628 | 2.549 | 2.87 | 17.32 | 39.83 | 40.27 |
Gradation | AC13U | AC13M | AC13L | AC16M | AC20M |
---|---|---|---|---|---|
Asphalt content | 4.2 | 3.90 | 3.70 | 3.75 | 3.60 |
Asphalt Content (%) | 3 | 3.5 | 4 | 4.5 | 5 | Technical Requirements |
---|---|---|---|---|---|---|
Theoretical maximum density γt | 2.478 | 2.481 | 2.46 | 2.434 | 2.405 | . |
Bulk density γf | 2.297 | 2.35 | 2.387 | 2.386 | 2.37 | . |
Volume of air voids VV | 7.043 | 5.116 | 3.098 | 1.867 | 1.415 | 4% |
Voids in mineral aggregate VMA | 15.462 | 14.055 | 13.181 | 13.66 | 14.673 | ≥13.5 |
Voids filled with asphalt VFA | 53.526 | 62.769 | 76.368 | 86.01 | 90.144 | 65~75 |
Maximum shear-slip stress Ꚍsl (MPa) | 0.438 | 0.492 | 0.488 | 0.387 | 0.374 | ≥0.3 |
Gradation Type | Dynamic Stability (Cycles/mm) | Maximum Shear-Slip Stress (MPa) |
---|---|---|
Gradation 1 | 1649.215 | 0.504 |
Gradation 2 | 1337.579 | 0.472 |
Technical requirements | ≥800 | —— |
Gradation Type | Maximum Load (KN) | Maximum Deflection (mm) | Failure Flexural Strain/10.6 (με) |
---|---|---|---|
Gradation 1 | 1.506 | 0.409 | 2147.25 |
Gradation 2 | 1.642 | 0.433 | 2273.25 |
Technical requirements | με ≥ 2000 |
Gradation Type | Immersed Retained Stability | Freeze–Thaw Splitting Strength | ||||
---|---|---|---|---|---|---|
MS (KN) | MS1 (KN) | MS0 (%) | σ1 (MPa) | σ2 (MPa) | TSR (%) | |
Gradation 1 | 10.96 | 9.28 | 84.5% | 1.306 | 1.018 | 77.9% |
Gradation 2 | 11.61 | 10.42 | 89.8% | 1.344 | 1.157 | 86.1% |
Technical requirements | MS0 ≥ 80% | TSR ≥ 70% |
Station | Cross Section 1 | Cross Section 2 | Cross Section 3 | Cross Section 4 | Cross Section 5 | Cross Section 6 | Cross Section 7 |
---|---|---|---|---|---|---|---|
k71+915 | 2377 | 2380 | 2383 | 2400 | 2390 | 2411 | 2371 |
k71+917 | 2401 | 2375 | 2380 | 2401 | 2402 | 2423 | 2364 |
k71+919 | 2391 | 2374 | 2378 | 2390 | 2392 | 2399 | 2368 |
k71+921 | 2375 | 2382 | 2396 | 2384 | 2393 | 2391 | 2382 |
k71+923 | 2383 | 2392 | 2412 | 2394 | 2384 | 2402 | 2376 |
k71+925 | 2360 | 2383 | 2400 | 2399 | 2382 | 2417 | 2348 |
k71+927 | 2373 | 2384 | 2411 | 2393 | 2386 | 2387 | 2359 |
k71+929 | 2352 | 2398 | 2414 | 2383 | 2400 | 2399 | 2362 |
k71+931 | 2355 | 2400 | 2394 | 2371 | 2391 | 2384 | 2361 |
k71+933 | 2375 | 2395 | 2389 | 2385 | 2389 | 2393 | 2347 |
Station | Cross Section 1 | Cross Section 2 | Cross Section 3 | Cross Section 4 | Cross Section 5 | Cross Section 6 | Cross Section 7 |
---|---|---|---|---|---|---|---|
k71+915 | 95.35 | 95.47 | 95.59 | 96.27 | 95.87 | 96.71 | 95.11 |
k71+917 | 96.31 | 95.27 | 95.47 | 96.31 | 96.35 | 97.19 | 94.83 |
k71+919 | 95.91 | 95.23 | 95.39 | 95.87 | 95.95 | 96.23 | 94.99 |
k71+921 | 95.27 | 95.55 | 96.11 | 95.63 | 95.99 | 95.91 | 95.55 |
k71+923 | 95.59 | 95.95 | 96.75 | 96.03 | 95.63 | 96.35 | 95.31 |
k71+925 | 94.67 | 95.59 | 96.27 | 96.23 | 95.55 | 96.95 | 94.18 |
k71+927 | 95.19 | 95.63 | 96.71 | 95.99 | 95.71 | 95.75 | 94.62 |
k71+929 | 94.34 | 96.19 | 96.83 | 95.59 | 96.27 | 96.23 | 94.75 |
k71+931 | 94.46 | 96.27 | 96.03 | 95.11 | 95.91 | 95.63 | 94.71 |
k71+933 | 95.27 | 96.07 | 95.83 | 95.67 | 95.83 | 95.99 | 94.14 |
Statistical Parameters | Mean (%) | Standard Deviation (%) | Coefficient of Variation (%) |
---|---|---|---|
Data | 95.71 | 0. 65 | 0. 67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, J.; Fan, L.; Zhang, L.; Hu, S.; Xu, J.; Li, G.; Dong, S. A Three-Dimensional Optimization Framework for Asphalt Mixture Design: Balancing Skeleton Stability, Segregation Control, and Mechanical Strength. Coatings 2025, 15, 807. https://doi.org/10.3390/coatings15070807
Su J, Fan L, Zhang L, Hu S, Xu J, Li G, Dong S. A Three-Dimensional Optimization Framework for Asphalt Mixture Design: Balancing Skeleton Stability, Segregation Control, and Mechanical Strength. Coatings. 2025; 15(7):807. https://doi.org/10.3390/coatings15070807
Chicago/Turabian StyleSu, Jinfei, Linhao Fan, Lei Zhang, Shenduo Hu, Jicong Xu, Guanxian Li, and Shihao Dong. 2025. "A Three-Dimensional Optimization Framework for Asphalt Mixture Design: Balancing Skeleton Stability, Segregation Control, and Mechanical Strength" Coatings 15, no. 7: 807. https://doi.org/10.3390/coatings15070807
APA StyleSu, J., Fan, L., Zhang, L., Hu, S., Xu, J., Li, G., & Dong, S. (2025). A Three-Dimensional Optimization Framework for Asphalt Mixture Design: Balancing Skeleton Stability, Segregation Control, and Mechanical Strength. Coatings, 15(7), 807. https://doi.org/10.3390/coatings15070807