Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (984)

Search Parameters:
Keywords = anti-icing properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1747 KiB  
Article
Rasagiline Inhibits Human Melanoma Cell Viability and Interacts Synergistically with Mitoxantrone and Antagonistically with Cisplatin—In Vitro Isobolographic Studies
by Danuta Krasowska, Paula Wróblewska-Łuczka, Michał Chojnacki, Katarzyna Załuska-Ogryzek, Jacek Kurzepa and Jarogniew J. Łuszczki
Cancers 2025, 17(15), 2563; https://doi.org/10.3390/cancers17152563 - 3 Aug 2025
Viewed by 303
Abstract
Background: The increased incidence of malignant melanoma is observed in patients with Parkinson’s disease. Methods: The anti-proliferative effects of carbidopa and rasagiline on four human malignant melanoma cell lines (A375, SK-MEL28, FM55P and FM55M2) were determined in MTT assay. The interaction profiles of [...] Read more.
Background: The increased incidence of malignant melanoma is observed in patients with Parkinson’s disease. Methods: The anti-proliferative effects of carbidopa and rasagiline on four human malignant melanoma cell lines (A375, SK-MEL28, FM55P and FM55M2) were determined in MTT assay. The interaction profiles of rasagiline in combinations with cisplatin (CDDP) and mitoxantrone (MTX) in four human melanoma cell lines (A375, SK-MEL28, FM55P and FM55M2) were assessed by means of the isobolographic analysis in the MTT test; Results: Rasagiline, but not carbidopa, produced clear-cut anti-proliferative effects on various melanoma cell lines. The median inhibitory concentrations (IC50 values) of rasagiline in the MTT were 280.69 µM for A375, 402.89 µM for SK-MEL28, 349.44 µM for FM55P, and 117.45 µM for FM55M2, respectively. The experimentally-derived selectivity index for rasagiline ranged from 8.22 to 28.18. Flow cytometry assay revealed, in two melanoma cell lines (FM55P and A375), a significant increase in the number of cells in the G0/G1 (up to 76.48% and 75.46% for cell lines, respectively), accompanied by a decrease in the percentage of cells in the S phase (decrease to 9.91% and 10.83% for cell lines, respectively), which may indicate potential cytostatic properties of rasagiline. The combinations of rasagiline with CDDP (at the fixed-ratio of 1:1) exerted either antagonistic interactions (p < 0.05) in the A375 and SK-MEL28, or additive interactions, with a tendency toward antagonism in the FM55P and FM55M2 cell lines in the MTT test. In contrast, the combinations of rasagiline with MTX (ratio of 1:1) produced either synergistic interaction (p < 0.05) in the FM55P cell line or additive interactions with a tendency toward synergy in the FM55M2, SK-MEL28, and A375 cell lines in the MTT test. Conclusions: Rasagiline combined with MTX exerted the most desirable synergistic interactions in relation to the anti-proliferative effects in four malignant melanoma cell lines, as assessed isobolographically. In contrast, rasagiline should not be combined with CDDP during the treatment of malignant melanoma due to the antagonistic interactions in the MTT assay. Full article
(This article belongs to the Special Issue Research on New Drugs and Drug Targets in Melanoma)
Show Figures

Figure 1

25 pages, 3359 KiB  
Article
In Vitro and In Silico Evaluation of the Anti-Aging Potential of Eugenia uniflora UAE Extracts
by Desy Muliana Wenas, Berna Elya, Sutriyo Sutriyo, Heri Setiawan, Rozana Othman, Syamsu Nur, Nita Triadisti, Fenny Yunita and Erwi Putri Setyaningsih
Molecules 2025, 30(15), 3168; https://doi.org/10.3390/molecules30153168 - 29 Jul 2025
Viewed by 437
Abstract
Skin aging is a natural biological process that can be accelerated by free radical induction, leading to a reduction in skin elasticity and the formation of wrinkles due to the depletion of elastin. Eugenia uniflora (dewandaru) is a promising plant believed to possess [...] Read more.
Skin aging is a natural biological process that can be accelerated by free radical induction, leading to a reduction in skin elasticity and the formation of wrinkles due to the depletion of elastin. Eugenia uniflora (dewandaru) is a promising plant believed to possess anti-aging properties, primarily attributed to its major constituents, myricitrin and quercetin. This study aimed to investigate the anti-elastase and antioxidant properties of Eugenia uniflora stem bark, ripe fruit, and seed extracts. Extracts were obtained using an ultrasound-assisted extraction (UAE) method with 70% ethanol. Quantitative phytochemical analysis involved measuring the total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity. Bioactive constituents were identified using LC-MS analysis, and their interactions with target enzymes were further evaluated through in silico molecular docking. The results demonstrated that the E. uniflora seed extract exhibited the highest antioxidant activity, with an IC50 of 5.23 µg/mL (DPPH assay) and a FRAP value of 3233.32 µmol FeSO4/g. Furthermore, the ethanolic seed extract showed significant anti-elastase activity with an IC50 of 114.14 µg/mL. Molecular docking predicted strong potential for several compounds as pancreatic elastase inhibitors, including 5-phenylvaleric acid, 2-(3-phenylpropyl)phenol, n-amylbenzene, 2-aminoadipic acid, and traumatin, each showing a prediction activity (PA) value exceeding 0.6. Notably, these compounds also exhibited inhibitory activity against tyrosinase. These findings collectively underscore the significant promise of E. uniflora seed extract as a novel and natural candidate for pharmacocosmeceutical product development, particularly for anti-aging applications. Full article
Show Figures

Graphical abstract

27 pages, 4348 KiB  
Article
Valorization of Riceberry Broken Rice and Soybean Meal for Optimized Production of Multifunctional Exopolysaccharide by Bacillus tequilensis PS21 with Potent Bioactivities Using Response Surface Methodology
by Thipphiya Karirat, Worachot Saengha, Nantaporn Sutthi, Pheeraya Chottanom, Sirirat Deeseenthum, Nyuk Ling Ma and Vijitra Luang-In
Polymers 2025, 17(15), 2029; https://doi.org/10.3390/polym17152029 - 25 Jul 2025
Viewed by 350
Abstract
This study explores the valorization of agro-industrial by-products—riceberry broken rice (RBR) and soybean meal (SBM)—as cost-effective substrates for enhancing exopolysaccharide (EPS) production by Bacillus tequilensis PS21. Eight Bacillus strains were screened, and B. tequilensis PS21 demonstrated the highest EPS yield (2.54 g/100 mL [...] Read more.
This study explores the valorization of agro-industrial by-products—riceberry broken rice (RBR) and soybean meal (SBM)—as cost-effective substrates for enhancing exopolysaccharide (EPS) production by Bacillus tequilensis PS21. Eight Bacillus strains were screened, and B. tequilensis PS21 demonstrated the highest EPS yield (2.54 g/100 mL DW). The EPS displayed a strong antioxidant capacity with 65.5% DPPH and 80.5% hydroxyl radical scavenging, and a FRAP value of 6.51 mg Fe2+/g DW. Antimicrobial testing showed inhibition zones up to 10.07 mm against Streptococcus agalactiae and 7.83 mm against Staphylococcus aureus. Optimization using central composite design (CCD) and the response surface methodology (RSM) revealed the best production at 5% (w/v) RBR, 3% (w/v) SBM, pH 6.66, and 39.51 °C, yielding 39.82 g/L EPS. This EPS is a moderate-molecular-weight (11,282 Da) homopolysaccharide with glucose monomers. X-ray diffraction (XRD) showed an amorphous pattern, favorable for solubility in biological applications. Thermogravimetric analysis (TGA) demonstrated thermal stability up to ~250 °C, supporting its suitability for high-temperature processing. EPS also exhibited anticancer activity with IC50 values of 226.60 µg/mL (MCF-7) and 224.30 µg/mL (HeLa) at 72 h, reduced colony formation, inhibited cell migration, and demonstrated anti-tyrosinase, anti-collagenase, and anti-elastase effects. This study demonstrates the successful valorization of agro-industrial by-products—RBR and SBM—for the high-yield production of multifunctional EPS with potent antioxidant, antimicrobial, and anticancer properties. The findings highlight the sustainable potential of these low-cost substrates in supporting the development of green and value-added bioproducts, with promising utilizations across the food, pharmaceutical, and cosmetic sectors. Full article
(This article belongs to the Topic Microbes and Their Products for Sustainable Human Life)
Show Figures

Figure 1

20 pages, 1092 KiB  
Article
Design and Synthesis of Boronic Chalcones with Dual Anticancer and Anti-Inflammatory Activity
by Juliana Romano Lopes, Freddy Humberto Marin-Dett, Rita Alexandra Machado Silva, Rafael Consolin Chelucci, Lucília Saraiva, Maria Emília Sousa, Leonardo Luiz Gomes Ferreira, Adriano Defini Andricopulo, Paula Aboud Barbugli and Jean Leandro Dos Santos
Molecules 2025, 30(14), 3032; https://doi.org/10.3390/molecules30143032 - 19 Jul 2025
Viewed by 435
Abstract
Head and neck cancer (HNC) is a highly aggressive malignancy with limited treatment options and poor prognosis. Inflammation plays a critical role in HNC progression, with elevated levels of pro-inflammatory cytokines such as TNF, IL-6, IL-8, and IL-1β contributing to tumor development. In [...] Read more.
Head and neck cancer (HNC) is a highly aggressive malignancy with limited treatment options and poor prognosis. Inflammation plays a critical role in HNC progression, with elevated levels of pro-inflammatory cytokines such as TNF, IL-6, IL-8, and IL-1β contributing to tumor development. In this study, a novel series of boronic chalcones was designed and synthesized as potential dual-action anticancer and anti-inflammatory agents. The most potent compounds were evaluated for their cytotoxicity against Squamous Cell Carcinoma (SCC-25), and their selectivity index (SI) was determined. Compound 5 emerged as the most promising, displaying cytotoxicity against cancer cells, with IC50 values of 17.9 µM and a favorable SI (>3). Mechanistic studies revealed that its anticancer activity was independent of p53 status, and annexin V/PI staining indicated cell death via necrosis. Interestingly, compound 5 also significantly reduced pro-inflammatory cytokine levels, as TNF and IL-6. Furthermore, drug metabolism and pharmacokinetics (DMPK) studies demonstrated that compound 5 exhibited moderate solubility and high permeability. These findings underscore the crucial role of the boronic acid moiety in enhancing both anticancer and anti-inflammatory properties. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Organic Chemistry)
Show Figures

Graphical abstract

16 pages, 2272 KiB  
Article
A Rapid Method for Heat Transfer Coefficient Prediction on the Icing Surfaces of Aircraft Wings Based on a Partitioned Boundary Layer Integral Model
by Liu Wang, Dexin Zhang, Zikang Cheng, Jiaxin Feng, Bo Sun, Jianye Chen and Junlong Xie
Aerospace 2025, 12(7), 634; https://doi.org/10.3390/aerospace12070634 - 16 Jul 2025
Viewed by 273
Abstract
Aircraft wing surface icing compromises flight safety, where accurate calculation of heat transfer coefficient on airfoil surfaces serves as a prerequisite for designing thermal anti-icing systems. However, during icing conditions, ice morphology changes wall roughness and transition properties, making it difficult to accurately [...] Read more.
Aircraft wing surface icing compromises flight safety, where accurate calculation of heat transfer coefficient on airfoil surfaces serves as a prerequisite for designing thermal anti-icing systems. However, during icing conditions, ice morphology changes wall roughness and transition properties, making it difficult to accurately determine the heat transfer coefficient. The current study develops a partitioned rough-wall boundary layer integral methodology in order to overcome this issue, extending the conventional boundary layer integral method. The technique generates a convective heat transfer coefficient formulation for aircraft icing surfaces while accounting for roughness differences brought on by water droplet shape. The results show that the partitioned rough-wall boundary layer integral method divides the wing surface into three distinct zones based on water droplet dynamics—a smooth zone, rough zone, and runback zone—each associated with specific roughness values. The NACA0012 airfoil was used for numerical validation, which showed that computational and experimental data concur well. Additionally, the suggested approach predicts transition locations with a high degree of agreement with experimental results. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

23 pages, 2078 KiB  
Article
Antioxidant and Anti-Inflammatory Activities of Thai Traditional Hand and Foot Soaking Formulary and Its Bioactive Compounds
by Jaenjira Angsusing, Weerasak Samee, Supachoke Mangmool, Usma Dortae, Pranot Keawthip, Surakameth Mahasirimongkol, Somsak Kreechai, Kulthanit Wanaratna, Chuda Chittasupho and Nopparut Toolmal
Pharmaceutics 2025, 17(7), 907; https://doi.org/10.3390/pharmaceutics17070907 - 13 Jul 2025
Viewed by 533
Abstract
Background/Objectives: This study aimed to investigate the antioxidant and anti-inflammatory properties of a Hand and Foot Soaking Formulary composed of ten medicinal plants, with curcumin as a major bioactive marker, to provide scientific validation for its traditional use. Methods: The formulation was [...] Read more.
Background/Objectives: This study aimed to investigate the antioxidant and anti-inflammatory properties of a Hand and Foot Soaking Formulary composed of ten medicinal plants, with curcumin as a major bioactive marker, to provide scientific validation for its traditional use. Methods: The formulation was evaluated for total phenolic and flavonoid contents, with curcumin quantified using HPLC. Antioxidant activity was assessed using DPPH, ABTS, and FRAP assays. Cytotoxicity was evaluated in RAW264.7 cells using the MTT assay. Anti-inflammatory activity was determined by measuring nitric oxide (NO), PGE2, TNF-α, IL-1β, and IL-6 levels in LPS-stimulated RAW264.7 macrophages using ELISA. Results: The Hand and Foot Soaking Formulary exhibited promising antioxidant and anti-inflammatory properties, consistent with its traditional use. Phytochemical analysis confirmed the presence of bioactive compounds, with measurable levels of total phenolics, flavonoids, and significant curcumin content. Antioxidant activity was demonstrated through free radical scavenging and ferric-reducing assays, while cytotoxicity testing in RAW264.7 macrophages indicated low toxicity (IC50 = 48.61 ± 3.80 µg/mL). The formulary significantly reduced LPS-induced nitric oxide, PGE2, TNF-α, IL-1β, and IL-6 production. These effects were comparable to turmeric extract and curcumin, though curcumin displayed higher potency. Conclusions: The Hand and Foot Soaking Formulary demonstrates antioxidant and anti-inflammatory properties in vitro, supporting its traditional use. Its polyherbal composition may offer synergistic effects and holds promise as a safe, natural topical remedy. Full article
(This article belongs to the Special Issue Natural Compounds in Drug Delivery Systems)
Show Figures

Figure 1

17 pages, 2136 KiB  
Article
Charged Thienobenzo-1,2,3-Triazoles as Especially Potent Non-Selective Cholinesterase Inhibitors: Design, Anti-Inflammatory Activity, and Computational Study
by Antonija Jelčić, Anamarija Raspudić, Danijela Barić, Ana Ratković, Ivana Šagud, Paula Pongrac, Dora Štefok, Martina Bosnar, Sunčica Roca, Zlata Lasić, Ilijana Odak and Irena Škorić
Pharmaceuticals 2025, 18(7), 1032; https://doi.org/10.3390/ph18071032 - 11 Jul 2025
Viewed by 416
Abstract
Background/Objectives: This research reports the synthesis and evaluation of novel charged thienobenzo-triazoles as non-selective cholinesterase inhibitors (AChEs and BChEs), their anti-inflammatory properties, and a computational study. Methods: Fifteen derivatives were created through photochemical cyclization and quaternization of the triazole core. The [...] Read more.
Background/Objectives: This research reports the synthesis and evaluation of novel charged thienobenzo-triazoles as non-selective cholinesterase inhibitors (AChEs and BChEs), their anti-inflammatory properties, and a computational study. Methods: Fifteen derivatives were created through photochemical cyclization and quaternization of the triazole core. The compounds were tested for AChE and BChE inhibition. They showed greater potency and selectivity toward BChE. Results: The most potent compound, derivative 14, inhibited BChE with an IC50 of 98 nM, while derivative 9 also displayed significant anti-inflammatory activity by inhibiting LPS-induced TNF-α production (IC50 = 0.66 µM). Molecular docking revealed that triazolinium salts form key π-π and electrostatic interactions within enzyme active sites. In silico predictions indicated favorable ADME-Tox properties for compounds 9 and 11, including low mutagenicity and moderate CNS permeability. Conclusions: These findings highlight the potential of new charged triazolinium salts as peripherally selective cholinesterase inhibitors with additional anti-inflammatory potential. Full article
(This article belongs to the Special Issue Computational Methods in Drug Development)
Show Figures

Graphical abstract

21 pages, 2264 KiB  
Article
Stability, Bioactivity, and Skin Penetration of Prunus Leaf Extracts in Cream Formulations: A Clinical Study on Skin Irritation
by Lapatrada Mungmai, Eakkaluk Wongwad, Patcharawan Tanamatayarat, Tammanoon Rungsang, Pattavet Vivattanaseth, Nattapol Aunsri and Weeraya Preedalikit
Cosmetics 2025, 12(4), 146; https://doi.org/10.3390/cosmetics12040146 - 10 Jul 2025
Cited by 1 | Viewed by 609
Abstract
Prunus leaf extracts are rich in phenolic and flavonoid compounds like rutin, and they are known for their antioxidant potential. This study compares the bioactivity and stability of leaf extracts from Prunus domestica L. (EL), Prunus salicina Lindl. (JL), and Prunus cerasifera Ehrh. [...] Read more.
Prunus leaf extracts are rich in phenolic and flavonoid compounds like rutin, and they are known for their antioxidant potential. This study compares the bioactivity and stability of leaf extracts from Prunus domestica L. (EL), Prunus salicina Lindl. (JL), and Prunus cerasifera Ehrh. (CL) and evaluates the dermal safety of a cream containing the extract with the most favorable in vitro properties for potential cosmetic use. Ethanolic extracts were assessed for total phenolic and condensed tannin contents, as well as antioxidants, using DPPH assay and lipid peroxidation inhibitory activities. The CL extract exhibited moderate total phenolic content, the highest condensed tannin content, and strong antioxidant (IC50 = 22.1 ± 3.1 µg/mL) and anti-lipid peroxidation (62.3 ± 1.0%) activities. Based on these results, CL was incorporated into a cream formulation (CCL), which was then evaluated for physicochemical properties, antioxidant retention, and in vitro skin permeation using Franz diffusion cells. The formulation remained physically stable under ambient conditions and retained antioxidant activity above 74.5% under thermal cycling conditions. Rutin from the CCL formulation was retained within the Strat-M™ membrane (4.0 ± 1.1%), which was 5.7-fold higher than that of the control (0.7 ± 0.6%) over 8 h; however, it was not detected in the receptor chamber under these in vitro conditions. A semi-open patch test conducted on 26 healthy volunteers under double-blind conditions revealed no signs of irritation, confirming the formulation’s dermal safety. Overall, the findings support the feasibility of using P. cerasifera extract as a stable antioxidant component in topical skincare formulations. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

17 pages, 1639 KiB  
Article
Tricyclic Isatin Derivatives as Anti-Inflammatory Compounds with High Kinase Binding Affinity
by Alexander V. Uvarov, Igor A. Schepetkin, Mark T. Quinn and Andrei I. Khlebnikov
Molecules 2025, 30(14), 2914; https://doi.org/10.3390/molecules30142914 - 10 Jul 2025
Viewed by 355
Abstract
Oximes have been reported to exhibit useful pharmaceutical properties, including compounds with anticancer, anti-arthritis, antibacterial, and neuroprotective activities. Many oximes are kinase inhibitors and have been shown to inhibit various kinases. Herein, a panel of oxime derivatives of tricyclic isatins was synthesized and [...] Read more.
Oximes have been reported to exhibit useful pharmaceutical properties, including compounds with anticancer, anti-arthritis, antibacterial, and neuroprotective activities. Many oximes are kinase inhibitors and have been shown to inhibit various kinases. Herein, a panel of oxime derivatives of tricyclic isatins was synthesized and evaluated for inhibition of cellular inflammatory responses and binding affinity to several kinases. Compounds 5a and 5d (a.k.a. NS-102), which have an unsubstituted oxime group, inhibited lipopolysaccharide (LPS)-induced nuclear factor-κB/activating protein 1 (NF-κB/AP-1) transcriptional activity in human THP-1Blue monocytic cells and interleukin-6 (IL-6) production in human MonoMac-6 monocytic cells, with IC50 values in the micromolar range. These compounds also inhibited LPS-induced production of several other proinflammatory cytokines, including IL-1α, IL-1β, monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor (TNF) in MonoMac-6 cells. Compounds 5a and 5d exhibited nanomolar/submicromolar binding affinity toward several kinase targets. The most potent inhibitor, 5d (3-(hydroxyimino)-5-nitro-1,3,6,7,8,9-hexahydro-2H-benzo[g]indol-2-one), demonstrated high binding affinity for 12 kinases, including DYRK1A, DYRK1B, PIM1, Haspin, HIPK1-3, IRAK1, NEK10, and DAPK1-3. Molecular modeling suggested modes of binding interaction of selected compounds in the DYRK1A and PIM1 catalytic sites that agreed with the experimental binding data. Our results demonstrate that tricyclic isatin oximes could be potential candidates for developing anti-inflammatory drugs with neuroprotective effects for treating neurodegenerative diseases. Full article
Show Figures

Figure 1

20 pages, 338 KiB  
Article
LC-MS Analysis of the Polyphenolic Composition and Assessment of the Antioxidant, Anti-Inflammatory and Cardioprotective Activities of Agastache mexicana and Agastache scrophulariifolia Extracts
by Mihaela-Ancuța Nechita, Alina Elena Pârvu, Ana Uifălean, Sonia Iurian, Neli-Kinga Olah, Timea Henrietta Bab, Rodica Vârban, Vlad-Ionuț Nechita, Anca Toiu, Ovidiu Oniga, Daniela Benedec, Daniela Hanganu and Ilioara Oniga
Plants 2025, 14(14), 2122; https://doi.org/10.3390/plants14142122 - 9 Jul 2025
Viewed by 477
Abstract
This study offers a detailed assessment of the polyphenolic composition and antioxidant, anti-inflammatory, and cardioprotective properties of lyophilized extracts derived from the aerial parts of Agastache mexicana and Agastache scrophulariifolia. The polyphenolic content was determined through the quantification of total polyphenols, flavonoids, [...] Read more.
This study offers a detailed assessment of the polyphenolic composition and antioxidant, anti-inflammatory, and cardioprotective properties of lyophilized extracts derived from the aerial parts of Agastache mexicana and Agastache scrophulariifolia. The polyphenolic content was determined through the quantification of total polyphenols, flavonoids, and caffeic acid derivatives, complemented by LC-MS profiling. The antioxidant activity was evaluated in vitro using DPPH and FRAP assays, while the in vivo antioxidant and anti-inflammatory effects were investigated in a rat model of turpentine-oil-induced acute inflammation. Cardioprotective potential was assessed in a separate rat model of isoprenaline-induced myocardial infarction. Phytochemical analysis revealed a complex polyphenolic profile for both species, with tilianin and rosmarinic acid identified as predominant compounds. In the DPPH assay, both extracts exhibited marked radical scavenging activity (IC50: 65.91 ± 1.21 μg/mL for A. mexicana; 68.64 ± 2.48 μg/mL for A. scrophulariifolia). In the in vivo assays, the administration of the extracts significantly decreased pro-oxidant biomarkers (TOS, OSI, MDA, NO) and enhanced antioxidant markers (TAC, SH groups). Furthermore, the extracts led to a significant reduction in serum levels of GOT, GPT, and CK-MB in rats subjected to myocardial injury, supporting their cardioprotective efficacy. Overall, the results suggest that A. mexicana and A. scrophulariifolia represent promising natural sources of polyphenolic compounds with potential therapeutic value in oxidative-stress-related inflammatory and cardiovascular disorders. Full article
19 pages, 9060 KiB  
Article
Targeting CDK4/6 in Cancer: Molecular Docking and Cytotoxic Evaluation of Thottea siliquosa Root Extract
by Maruthamuthu Rathinam Elakkiya, Mohandas Krishnasreya, Sureshkumar Tharani, Muthukrishnan Arun, L. Vijayalakshmi, Jiseok Lim, Ayman A. Ghfar and Balasundaramsaraswathy Chithradevi
Biomedicines 2025, 13(7), 1658; https://doi.org/10.3390/biomedicines13071658 - 7 Jul 2025
Viewed by 441
Abstract
Background: Cyclin-dependent kinases 4 and 6 (CDK4/6) are pivotal regulators of the cell cycle, whose dysregulation is closely linked to cancer progression. While synthetic CDK4/6 inhibitors such as Palbociclib and Ribociclib are clinically effective, their use is limited by significant adverse effects. [...] Read more.
Background: Cyclin-dependent kinases 4 and 6 (CDK4/6) are pivotal regulators of the cell cycle, whose dysregulation is closely linked to cancer progression. While synthetic CDK4/6 inhibitors such as Palbociclib and Ribociclib are clinically effective, their use is limited by significant adverse effects. Methods: In this study, the aqueous root extract of Thottea siliquosa, a traditionally used medicinal plant, was evaluated for its potential as a natural CDK4/6 inhibitor. Phytochemical profiling using GC-MS identified bioactive compounds, which were subsequently subjected to molecular docking, ADME prediction, and in vitro cell-based assays using HCT116 and L929 cells. Results: The docking results revealed that Isocorydine (−7.4 kcal/mol for CDK4 and −7.2 kcal/mol for CDK6) and Thunbergol (−6.5 kcal/mol for CDK4 and −7.0 kcal/mol for CDK6) exhibited promising binding affinities comparable to standard CDK inhibitors, Palbociclib (−7.2, −8.3 kcal/mol) and Ribociclib (−7.1, −8.1 kcal/mol). Among the other tested natural compounds, Squalene (−7.1 kcal/mol for CDK4) and 2-palmitoylglycerol (−5.2 kcal/mol for CDK4, −4.9 kcal/mol for CDK6) demonstrated moderate binding affinities. ADME analysis confirmed favorable drug-like properties with minimal toxicity alerts. The extract displayed dose-dependent cytotoxicity with an IC50 of 140 μg/mL and reduced cell migration in HCT116 cells, indicating potential anti-proliferative effects. These findings suggest that T. siliquosa root extract, through synergistic phytochemical interactions, holds promise as a multi-targeted, plant-based therapeutic candidate for CDK4/6-associated cancers, warranting further in vitro and in vivo validation. Full article
(This article belongs to the Special Issue Progress in Cytotoxicity of Biomaterials)
Show Figures

Figure 1

14 pages, 712 KiB  
Article
Unveiling the Chemical Composition, Enantiomeric Profile, Antibacterial, Anticholinesterase and Antioxidant Activity of the Essential Oil of Aloysia triphylla Royle
by Cinthia Mejia-Ramos, Julio Reynaldo Ruiz-Quiroz, Maria Elena Salazar-Salvatierra, James Calva, Eddie Loyola-Gonzales, Haydee Chávez, Javier Hernán Chavez-Espinoza, Josefa Bertha Pari-Olarte, José Santiago Almeida-Galindo and Oscar Herrera-Calderon
Molecules 2025, 30(13), 2849; https://doi.org/10.3390/molecules30132849 - 3 Jul 2025
Viewed by 468
Abstract
Aloysia triphylla is widely used in traditional medicine from Peru for its sedative, digestive and anti-inflammatory properties. However, comprehensive studies on the biological activities of its essential oil (EO), particularly from Peruvian sources, remain limited. This study aimed to analyze the chemical composition [...] Read more.
Aloysia triphylla is widely used in traditional medicine from Peru for its sedative, digestive and anti-inflammatory properties. However, comprehensive studies on the biological activities of its essential oil (EO), particularly from Peruvian sources, remain limited. This study aimed to analyze the chemical composition and enantiomeric profile of A. triphylla EO and evaluate its antibacterial, antioxidant, anticholinesterase, and cytotoxic activities. The EO was obtained by steam distillation and analyzed using gas chromatography–mass spectrometry (GC-MS). A total of 62 compounds were identified, with (E)-caryophyllene (16.80%), β-pinene (9.96%), and germacrene D (10.00%) being the major components. Enantiomeric analysis revealed specific chiral signatures, including (−)-α-pinene, (+)-limonene, and (R)-(−)-linalool. The EO exhibited significant antibacterial activity, particularly against Bacillus subtilis (MIC = 5 µg/mL), and weak antioxidant activity (IC50 = 7720 and 4648 µg/mL for DPPH and ABTS, respectively). Additionally, the EO demonstrated moderate acetylcholinesterase inhibition (IC50 = 87.8 µg/mL) and cytotoxicity in the Artemia salina assay (LC50 = 964 µg/mL). These findings suggest that A. triphylla EO possesses promising bioactivities with potential applications in pharmaceutical and cosmetic fields. Full article
(This article belongs to the Special Issue Essential Oils—Third Edition)
Show Figures

Figure 1

11 pages, 1841 KiB  
Article
Construction of Silane-Modified Diatomite-Magnetic Nanocomposite Superhydrophobic Coatings Using Multi-Scale Composite Principle
by Dan Li, Mei Wu, Rongjun Xia, Jiwen Hu and Fangzhi Huang
Coatings 2025, 15(7), 786; https://doi.org/10.3390/coatings15070786 - 3 Jul 2025
Viewed by 425
Abstract
To address the challenges of cotton cellulose materials being susceptible to environmental humidity and pollutant erosion, a strategy for constructing superhydrophobic functional coatings with biomimetic micro–nano composite structures was proposed. Through surface silanization modification, diatomite (DEM) and Fe3O4 nanoparticles were [...] Read more.
To address the challenges of cotton cellulose materials being susceptible to environmental humidity and pollutant erosion, a strategy for constructing superhydrophobic functional coatings with biomimetic micro–nano composite structures was proposed. Through surface silanization modification, diatomite (DEM) and Fe3O4 nanoparticles were functionalized with octyltriethoxysilane (OTS) to prepare superhydrophobic diatomite flakes (ODEM) and OFe3O4 nanoparticles. Following the multi-scale composite principle, ODEM and OFe3O4 nanoparticles were blended and crosslinked via the hydroxyl-initiated ring-opening polymerization of epoxy resin (EP), resulting in an EP/ODEM@OFe3O4 composite coating with hierarchical roughness. Microstructural characterization revealed that the micrometer-scale porous structure of ODEM and the nanoscale protrusions of OFe3O4 form a hierarchical micro–nano topography. The special topography combined with the low surface energy property leads to a contact angle of 158°. Additionally, the narrow bandgap semiconductor characteristic of OFe3O4 induces the localized surface plasmon resonance effect. This enables the coating to attain 80% light absorption across the 350–2500 nm spectrum, and rapidly heat to 45.8 °C within 60 s under 0.5 sun, thereby demonstrating excellent deicing performance. This work provides a theoretical foundation for developing environmentally tolerant superhydrophobic photothermal coatings, which exhibit significant application potential in the field of anti-icing and anti-fouling. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Graphical abstract

21 pages, 5721 KiB  
Article
Macroalgae-Inspired Brominated Chalcones as Cosmetic Ingredients with the Potential to Target Skin Inflammaging
by Ana Jesus, Sara Gimondi, Sónia A. Pinho, Helena Ferreira, Nuno M. Neves, Andreia Palmeira, Emília Sousa, Isabel F. Almeida, Maria T. Cruz and Honorina Cidade
Mar. Drugs 2025, 23(7), 278; https://doi.org/10.3390/md23070278 - 2 Jul 2025
Viewed by 558
Abstract
Skin aging is mainly caused by external factors like sunlight, which triggers oxidative stress and chronic inflammation. Natural halogenated flavonoids have demonstrated anti-inflammatory properties. Inspired by the macroalgae-derived bromophenol BDDE, we investigated the anti-inflammatory potential of structure-related chalcones (17 [...] Read more.
Skin aging is mainly caused by external factors like sunlight, which triggers oxidative stress and chronic inflammation. Natural halogenated flavonoids have demonstrated anti-inflammatory properties. Inspired by the macroalgae-derived bromophenol BDDE, we investigated the anti-inflammatory potential of structure-related chalcones (17). Chalcones 1 and 7 showed the least cytotoxicity in keratinocyte and macrophage cells. Chalcones 1, 2, 4, and 5 exhibited the most significant anti-inflammatory effects in murine macrophages after lipopolysaccharide stimulation, with chalcone 1 having the lowest IC50 value (≈0.58 μM). A SNAP assay confirmed that chalcones do not exert their effects through direct NO scavenging. Symmetrical bromine atoms and 3,4-dimethoxy groups on both aromatic rings improved the anti-inflammatory activity, indicating a relevant structure–activity relationship. Chalcones 1 and 2 were selected for study to clarify their mechanisms of action. At a concentration of 7.5 μM, chalcone 2 demonstrated a rapid and effective inhibitory action on the protein levels of inducible nitric oxide synthase (iNOS), while chalcone 1 exhibited a gradual inhibitory action. Moreover, chalcone 1 effectively activated the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway with around a 3.5-fold increase at the end of 24 h at 7.5 μM, highlighting its potential as a modulator of oxidative stress responses. These findings place chalcone 1 as a promising candidate for skincare products targeting inflammation and skin aging. Full article
Show Figures

Graphical abstract

24 pages, 3509 KiB  
Article
Spray-Dried Celtis iguanaea (Jacq.) Planch (Cannabaceae) Extract: Building Evidence for Its Therapeutic Potential in Pain and Inflammation Management
by Kátia Regina Ribeiro, Rúbia Bellard e Silva, João Paulo Costa Rodrigues, Mairon César Coimbra, Laura Jéssica Pereira, Emmilly de Oliveira Alves, Flávio Martins de Oliveira, Marx Osório Araújo Pereira, Eric de Souza Gil, Carlos Alexandre Carollo, Nadla Soares Cassemiro, Camile Aparecida da Silva, Pablinny Moreira Galdino de Carvalho, Flávia Carmo Horta Pinto, Renan Diniz Ferreira, Zakariyya Muhammad Bello, Edilene Santos Alves de Melo, Marina Andrade Rocha, Ana Gabriela Silva, Rosy Iara Maciel Azambuja Ribeiro, Adriana Cristina Soares and Renê Oliveira do Coutoadd Show full author list remove Hide full author list
Plants 2025, 14(13), 2008; https://doi.org/10.3390/plants14132008 - 30 Jun 2025
Viewed by 407
Abstract
Celtis iguanaea, widely used in Brazilian folk medicine, is known for its analgesic and anti-inflammatory properties. This study evaluated the in vitro antioxidant capacity and the in vivo antinociceptive and anti-inflammatory mechanisms of the standardized spray-dried Celtis iguanaea hydroethanolic leaf extract (SDCi). Phytochemical [...] Read more.
Celtis iguanaea, widely used in Brazilian folk medicine, is known for its analgesic and anti-inflammatory properties. This study evaluated the in vitro antioxidant capacity and the in vivo antinociceptive and anti-inflammatory mechanisms of the standardized spray-dried Celtis iguanaea hydroethanolic leaf extract (SDCi). Phytochemical analysis showed that SDCi contains 21.78 ± 0.82 mg/g polyphenols, 49.69 ± 0.57 mg/g flavonoids, and 518.81 ± 18.02 mg/g phytosterols. UFLC-DAD-MS identified iridoid glycosides, p-coumaric acid glycosides, flavones, and unsaturated fatty acids. Antioxidant assays revealed an IC50 of 301.6 ± 38.8 µg/mL for DPPH scavenging and an electrochemical index of 6.1 μA/V. In vivo, SDCi (100–1000 mg/kg, p.o) did not impair locomotor function (rotarod test) but significantly reduced acetic acid-induced abdominal writhing and both phases of the formalin test at higher doses (300 and 1000 mg/kg). The antinociceptive effects were independent of α-2 adrenergic receptors. SDCi also increased latency in the hot-plate test and reduced paw edema in the carrageenan model, accompanied by decreased IL-1β and increased IL-10 levels. Histological analysis showed a 50% reduction in inflammatory cell infiltration. These findings support SDCi as an effective anti-inflammatory and antinociceptive phytopharmaceutical intermediate, with potential applications in managing pain and inflammation. Full article
Show Figures

Figure 1

Back to TopTop