LC-MS Analysis of the Polyphenolic Composition and Assessment of the Antioxidant, Anti-Inflammatory and Cardioprotective Activities of Agastache mexicana and Agastache scrophulariifolia Extracts
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Extraction Procedure
2.2. Freeze-Drying of Extracts
2.3. Determination of Total Polyphenolic, Flavonoid and Caffeic Acid Derivatives Content
2.4. LC-MS Analysis
2.5. Evaluation of In Vitro Antioxidant Activity
2.5.1. DPPH Radical Scavenging Activity
2.5.2. Ferric-Reducing Antioxidant Power (FRAP) Assay
2.6. In Vivo Studies
2.6.1. Experimental Animals
2.6.2. Investigation of In Vivo Anti-Inflammatory Activity
2.6.3. Evaluation of In Vivo Cardioprotective Activity
2.6.4. Measurement of Oxidative Stress Parameters
2.7. Statistical Analysis
3. Results and Discussion
3.1. Phytochemical Analysis by LC-MS
3.2. Quantification of Total Polyphenols, Flavonoids, and Caffeic Acid Derivatives in Agastache sp. Extracts
3.3. Assessment of In Vitro Antioxidant Activity
3.4. Investigation of In Vivo Antioxidant and Anti-Inflammatory Effects
3.5. Investigation of In Vivo Cardioprotective Activity
4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| HPLC-MS | High-Performance Liquid Chromatography–Mass Spectrometry | 
| DPPH | 2,2-Diphenyl-1-picrylhydrazyl | 
| FRAP | Ferric Reducing Antioxidant Power | 
| IC50 | Half Maximal Inhibitory Concentration | 
| TOS | Total Oxidant Status | 
| OSI | Oxidative Stress Index | 
| TAC | Total Antioxidant Capacity | 
| MDA | Malondialdehyde | 
| NO | Nitric Oxide | 
| SH | Sulfhydryl Groups | 
| GOT | Glutamate Oxaloacetate Transaminase | 
| GPT | Glutamate Pyruvate Transaminase | 
| CK-MB | Creatine Kinase-MB Isoenzyme | 
| CVD | Cardiovascular Disease | 
| LDL | Low-Density Lipoprotein | 
| CRP | C-Reactive Protein | 
| ROS | Reactive Oxygen Species | 
| LDH | Lactate Dehydrogenase | 
| ATP | Adenosine Triphosphate | 
| NAD | Nicotinamide Adenine Dinucleotide | 
| SOD | Superoxide Dismutase | 
| AM | Agastache mexicana | 
| AS | Agastache scrophulariifolia | 
| TPC | Total Phenolic Content | 
| GAE | Gallic Acid Equivalents | 
| TFC | Total Flavonoids Content | 
| RE | Rutoside Equivalents | 
| TCADC | Total Caffeic Acid Derivatives Content | 
| CAE | Caffeic Acid Equivalents | 
| TPTZ | 2,4,6-Tripyridyl-s-triazine | 
| ISO | Isoprenaline | 
| MAPK | Mitogen-Activated Protein Kinase | 
| NF-KB | Nuclear Factor Kappa B | 
| TE | Trolox Equivalents | 
| INFL | Inflammation | 
| CAT | Catalase | 
| GPx | Glutathione Peroxidase | 
| MMP-9 | Matrix Metalloproteinase-9 | 
| TRPA1 | Transient Receptor Potential Ankyrin 1 | 
| TRPV1 | Transient Receptor Potential Vanilloid 1 | 
| TNF-alfa | Tumor Necrosis Factor-alpha | 
| IL-6 | Interleukin-6 | 
| MI | Myocardial Infarction | 
References
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2017, 9, 7204–7218. [Google Scholar] [CrossRef]
 - Moore, K.J. Targeting inflammation in CVD: Advances and challenges. Nat. Rev. Cardiol. 2019, 16, 74–75. [Google Scholar] [CrossRef] [PubMed]
 - Ridker, P.M.; Bhatt, D.L.; Pradhan, A.D.; Glynn, R.J.; MacFadyen, J.G.; Nissen, S.E.; PROMINENT, REDUCE-IT, and STRENGTH Investigators. Inflammation and cholesterol as predictors of cardiovascular events among patients receiving statin therapy: A collaborative analysis of three randomised trials. Lancet 2023, 401, 1293–1301. [Google Scholar] [CrossRef] [PubMed]
 - Bucci, T.; Sagris, D.; Harrison, S.L.; Underhill, P.; Pastori, D.; Ntaios, G.; McDowell, G.; Buckley, B.J.R.; Lip, G.Y.H. C-reactive protein levels are associated with early cardiac complications or death in patients with acute ischemic stroke: A propensity-matched analysis of a global federated health from the TriNetX network. Intern. Emerg. Med. 2023, 18, 1329–1336. [Google Scholar] [CrossRef]
 - Świątkiewicz, I.; Magielski, P.; Kubica, J. C-reactive protein as a risk marker for post-infarct heart failure over a multi-year period. Int. J. Mol. Sci. 2021, 22, 3169. [Google Scholar] [CrossRef]
 - Iso, H.; Noda, H.; Ikeda, A.; Yamagishi, K.; Inoue, M.; Iwasaki, M.; Tsugane, S. The impact of C-reactive protein on risk of stroke, stroke subtypes, and ischemic heart disease in middle-aged Japanese: The Japan Public Health Center-based Study. J. Atheroscler. Thromb. 2012, 19, 756–766. [Google Scholar]
 - Xu, T.; Ke, K. C-reactive protein and ischemic stroke risk in general population: A dose-response meta-analysis of prospective studies. Int. J. Cardiol. 2015, 190, 264–267. [Google Scholar] [CrossRef] [PubMed]
 - Wilkinson, M.J.; Shapiro, M.D. Immune-mediated inflammatory diseases, dyslipidemia, and cardiovascular risk: A complex interplay. Arterioscler. Thromb. Vasc. Biol. 2024, 44, 2396–2406. [Google Scholar] [CrossRef]
 - Jensen, R.V.; Hjortbak, M.V.; Bøtker, H.E. Ischemic heart disease: An update. Semin. Nucl. Med. 2020, 50, 195–207. [Google Scholar] [CrossRef]
 - Severino, P.; D’Amato, A.; Pucci, M.; Infusino, F.; Adamo, F.; Birtolo, L.I.; Netti, L.; Montefusco, G.; Chimenti, C.; Lavalle, C.; et al. Ischemic heart disease pathophysiology paradigms overview: From plaque activation to microvascular dysfunction. Int. J. Mol. Sci. 2020, 21, 8118. [Google Scholar] [CrossRef]
 - Alum, E.U. Role of phytochemicals in cardiovascular disease management: Insights into mechanisms, efficacy, and clinical application. Phytomed. Plus 2025, 5, 100695. [Google Scholar] [CrossRef]
 - Adegbola, P.; Aderibigbe, I.; Hammed, W.; Omotayo, T. Antioxidant and anti-inflammatory medicinal plants have potential role in the treatment of cardiovascular disease: A review. Am. J. Cardiovasc. Dis. 2017, 7, 19–32. [Google Scholar]
 - Ullah, A.; Mostafa, N.; Halim, S.; Elhawary, E.A.; Ali, A.; Bhatti, R.; Shareef, U.; Naeem, W.; Khalid, A.; Kashtoh, H.; et al. Phytoconstituents with cardioprotective properties: A pharmacological overview on their efficacy against myocardial infarction. Phytother. Res. 2024, 38, 4467–4501. [Google Scholar] [CrossRef] [PubMed]
 - Khattulanuar, F.S.; Sekar, M.; Fuloria, S.; Gan, S.H.; Rani, N.N.I.M.; Ravi, S.; Chidambaram, K.; Begum, M.Y.; Azad, A.K.; Jeyabalan, S.; et al. Tilianin: A potential natural lead molecule for new drug design and development for the treatment of cardiovascular disorders. Molecules 2022, 27, 673. [Google Scholar] [CrossRef]
 - Tian, L.; Cao, W.; Yue, R.; Yuan, Y.; Guo, X.; Qin, D.; Xing, J.; Wang, X. Pretreatment with tilianin improves mitochondrial energy metabolism and oxidative stress in rats with myocardial ischemia/reperfusion injury via AMPK/SIRT1/PGC-1α signaling pathway. J. Pharmacol. Sci. 2019, 139, 352–360. [Google Scholar] [CrossRef] [PubMed]
 - Zeng, C.; Jiang, W.; Zheng, R.; He, C.; Li, J.; Xing, J. Cardioprotection of Tilianin Ameliorates Myocardial Ischemia-Reperfusion Injury: Role of the Apoptotic Signaling Pathway. PLoS ONE 2018, 13, e0193845. [Google Scholar] [CrossRef] [PubMed]
 - Nam, H.-H.; Kim, J.S.; Lee, J.; Seo, Y.H.; Kim, H.S.; Ryu, S.M.; Choi, G.; Moon, B.C.; Lee, A.Y. Pharmacological effects of Agastache rugosa against gastritis using a network pharmacology approach. Biomolecules 2020, 10, 1298. [Google Scholar] [CrossRef]
 - Cao, P.; Xie, P.; Wang, X.; Wang, J.; Wei, J.; Kang, W.-Y. Chemical constituents and coagulation activity of Agastache rugosa. BMC Complement. Altern. Med. 2017, 17, 93. [Google Scholar]
 - Yuk, H.J.; Ryu, H.W.; Kim, D.-S. Potent xanthine oxidase inhibitory activity of constituents of Agastache rugosa (Fisch. and C.A.Mey.) Kuntze. Foods 2023, 12, 573. [Google Scholar] [CrossRef]
 - Lee, H.W.; Ryu, H.W.; Baek, S.C.; Kang, M.-G.; Park, D.; Han, H.-Y.; An, J.H.; Oh, S.-R.; Kim, H. Potent inhibitions of monoamine oxidase A and B by acacetin and its 7-O-(6-O-malonylglucoside) derivative from Agastache rugosa. Int. J. Biol. Macromol. 2017, 104, 547–553. [Google Scholar] [CrossRef]
 - Nechita, M.-A.; Toiu, A.; Benedec, D.; Hanganu, D.; Ielciu, I.; Oniga, O.; Nechita, V.-I.; Oniga, I. Agastache species: A comprehensive review on phytochemical composition and therapeutic properties. Plants 2023, 12, 2937. [Google Scholar] [CrossRef]
 - Zielińska, S.; Matkowski, A. Phytochemistry and bioactivity of aromatic and medicinal plants from the genus Agastache (Lamiaceae). Phytochem. Rev. 2014, 13, 391–416. [Google Scholar] [CrossRef]
 - Palma-Tenango, M.; Sánchez-Fernández, R.E.; Soto-Hernández, M. A systematic approach to Agastache mexicana research: Biology, agronomy, phytochemistry, and bioactivity. Molecules 2021, 26, 3751. [Google Scholar] [CrossRef]
 - Vârban, R.; Ona, A.; Stoie, A.; Vârban, D.; Crișan, I. Phenological Assessment for Agronomic Suitability of Some Agastache Species Based on Standardized BBCH Scale. Agronomy 2021, 11, 2280. [Google Scholar] [CrossRef]
 - Benedec, D.; Oniga, I.; Hanganu, D.; Vlase, A.-M.; Ielciu, I.; Crișan, G.; Fiţ, N.; Niculae, M.; Bab, T.; Pall, E.; et al. Revealing the phenolic composition and the antioxidant, antimicrobial and antiproliferative activities of two Euphrasia sp. extracts. Plants 2024, 13, 1790. [Google Scholar] [CrossRef] [PubMed]
 - Ielciu, I.; Filip, G.A.; Sevastre-Berghian, A.C.; Bâldea, I.; Olah, N.-K.; Burtescu, R.F.; Toma, V.A.; Moldovan, R.; Oniga, I.; Hanganu, D. Effects of a Rosmarinus officinalis L. extract and rosmarinic acid in improving streptozotocin-induced aortic tissue damages in rats. Nutrients 2025, 17, 158. [Google Scholar] [CrossRef]
 - Țicolea, M.; Pop, R.M.; Pârvu, M.; Usatiuc, L.-O.; Uifălean, A.; Pop, D.D.; Fischer-Fodor, E.; Ranga, F.; Rusu, C.C.; Cătoi, A.F.; et al. Flowers and leaves of Artemisia absinthium and Artemisia annua: Phytochemical characterization, anti-inflammatory, antioxidant, and anti-proliferative activities evaluation. Plants 2025, 14, 1029. [Google Scholar] [CrossRef] [PubMed]
 - Epure, A.; Pârvu, A.E.; Vlase, L.; Benedec, D.; Hanganu, D.; Oniga, O.; Vlase, A.-M.; Ielciu, I.; Toiu, A.; Oniga, I. New approaches on the anti-inflammatory and cardioprotective properties of Taraxacum officinale tincture. Pharmaceuticals 2023, 16, 358. [Google Scholar] [CrossRef]
 - Pop, R.M.; Boarescu, P.-M.; Bocsan, C.I.; Gherman, M.L.; Chedea, V.S.; Jianu, E.-M.; Roșian, Ș.H.; Boarescu, I.; Ranga, F.; Tomoiagă, L.L.; et al. Anti-inflammatory and antioxidant effects of white grape pomace polyphenols on isoproterenol-induced myocardial infarction. Int. J. Mol. Sci. 2025, 26, 2035. [Google Scholar] [CrossRef]
 - Cavalcante, M.; Oliveira, J.; Barreto, M.; Pinheiro, L.; Cantuária, P.; Borges, W.; da Silva, G.; de Souza, T. An HPLC Method to Determine Phenolic Compounds of Plant Extracts: Application to Byrsonima Crassifolia and Senna Alata Leaves. Pharmacogn. Res. 2022, 14, 395–404. [Google Scholar] [CrossRef]
 - Estrada-Reyes, R.; Aguirre Hernández, E.; García-Argáez, A.; Soto Hernández, M.; Linares, E.; Bye, R.; Heinze, G.; Martínez-Vázquez, M. Comparative Chemical Composition of Agastache mexicana subsp. mexicana and A. mexicana subsp. xolocotziana. Biochem. Syst. Ecol. 2004, 32, 685–694. [Google Scholar]
 - Hwang, J.M.; Lee, M.-H.; Lee, J.-H.; Lee, J.H. Agastache rugosa Extract and Its Bioactive Compound Tilianin Suppress Adipogenesis and Lipogenesis on 3T3-L1 Cells. Appl. Sci. 2021, 11, 7679. [Google Scholar]
 - Hong, S.; Cha, K.H.; Kwon, D.Y.; Son, Y.J.; Kim, S.M.; Choi, J.-H.; Yoo, G.; Nho, C.W. Agastache rugosa Ethanol Extract Suppresses Bone Loss via Induction of Osteoblast Differentiation with Alteration of Gut Microbiota. Phytomedicine 2021, 84, 153517. [Google Scholar] [PubMed]
 - Nechita, M.-A.; Olah, N.-K.; Bab, T.H.; Vârban, R.; Hanganu, D.; Benedec, D.; Toiu, A.; Nechita, V.-I.; Oniga, I. Polyphenolic Compounds Analysis and Antioxidant Activity of Two Romanian Cultivated Agastache Species. Farmacia 2023, 71, 704–709. [Google Scholar]
 - Lee, J.-J.; Lee, J.; Gu, M.; Han, J.-H.; Cho, W.-K.; Ma, J. Agastache rugosa Kuntze extract, containing the active component rosmarinic acid, prevents atherosclerosis through up-regulation of the cyclin-dependent kinase inhibitors p21WAF1/CIP1 and p27KIP1. J. Funct. Foods 2017, 30, 30–38. [Google Scholar]
 - Bielecka, M.; Zielińska, S.; Pencakowski, B.; Stafiniak, M.; Ślusarczyk, S.; Prescha, A.; Matkowski, A. Age-Related Variation of Polyphenol Content and Expression of Phenylpropanoid Biosynthetic Genes in Agastache rugosa. Ind. Crops Prod. 2019, 141, 111743. [Google Scholar]
 - Tuan, P.A.; Park, W.T.; Xu, H.; Park, N.I.; Park, S.U. Accumulation of Tilianin and Rosmarinic Acid and Expression of Phenylpropanoid Biosynthetic Genes in Agastache Rugosa. J. Agric. Food Chem. 2012, 60, 5945–5951. [Google Scholar] [CrossRef]
 - Yin, S.; Han, K.; Wu, D.; Wang, Z.; Zheng, R.; Fang, L.; Wang, S.; Xing, J.; Du, G. Tilianin Suppresses NLRP3 Inflammasome Activation in Myocardial Ischemia/Reperfusion Injury via Inhibition of TLR4/NF-κB and NEK7/NLRP3. Front. Pharmacol. 2024, 15, 1423053. [Google Scholar] [CrossRef]
 - Guan, H.; Luo, W.; Bao, B.; Cao, Y.; Cheng, F.; Yu, S.; Fan, Q.; Zhang, L.; Wu, Q.; Shan, M. A Comprehensive Review of Rosmarinic Acid: From Phytochemistry to Pharmacology and Its New Insight. Molecules 2022, 27, 3292. [Google Scholar] [CrossRef]
 - Chen, C.-P.; Lin, Y.-C.; Peng, Y.-H.; Chen, H.-M.; Lin, J.-T.; Kao, S.-H. Rosmarinic Acid Attenuates the Lipopolysaccharide-Provoked Inflammatory Response of Vascular Smooth Muscle Cell via Inhibition of MAPK/NF-κB Cascade. Pharmaceuticals 2022, 15, 437. [Google Scholar] [CrossRef]
 - Jiang, K.; Ma, X.; Guo, S.; Zhang, T.; Zhao, G.; Wu, H.; Wang, X.; Deng, G. Anti-Inflammatory Effects of Rosmarinic Acid in Lipopolysaccharide-Induced Mastitis in Mice. Inflammation 2018, 41, 437–448. [Google Scholar] [CrossRef] [PubMed]
 - Ahmadi-Zohan, A.; Hassanzadeh-Taheri, M.; Hosseini, M. The Effects of Rosmarinic Acid on Hippocampal Oxidative Stress Markers in LPS-Induced Neuroinflammation Rats: Rosmarinic Acid and Hippocampal Oxidative Stress. Iran. J. Pharm. Sci. 2021, 17, 117–128. [Google Scholar] [CrossRef]
 - Estrada-Reyes, R.; López-Rubalcava, C.; Ferreyra-Cruz, O.A.; Dorantes-Barrón, A.M.; Heinze, G.; Moreno Aguilar, J.; Martínez-Vázquez, M. Central Nervous System Effects and Chemical Composition of Two Subspecies of Agastache Mexicana; an Ethnomedicine of Mexico. J. Ethnopharmacol. 2014, 153, 98–110. [Google Scholar] [CrossRef]
 - Lee, Y.; Lim, H.-W.; Ryu, I.W.; Huang, Y.-H.; Park, M.; Chi, Y.M.; Lim, C.-J. Anti-Inflammatory, Barrier-Protective, and Antiwrinkle Properties of Agastache rugosa Kuntze in Human Epidermal Keratinocytes. Biomed. Res. Int. 2020, 2020, 1759067. [Google Scholar] [PubMed]
 - Oh, Y.; Lim, H.-W.; Huang, Y.-H.; Kwon, H.-S.; Jin, C.D.; Kim, K.; Lim, C.-J. Attenuating Properties of Agastache rugosa Leaf Extract against Ultraviolet-B-Induced Photoaging via up-Regulating Glutathione and Superoxide Dismutase in a Human Keratinocyte Cell Line. J. Photochem. Photobiol. B 2016, 163, 170–176. [Google Scholar]
 - Muscolo, A.; Oppedisano, M.; Taviano, G.; Ragusa, M. Oxidative stress: The role of antioxidant phytochemicals in the prevention and treatment of diseases. Int. J. Mol. Sci. 2024, 25, 3264. [Google Scholar] [CrossRef]
 - Yeo, H.J.; Park, C.H.; Park, Y.E.; Hyeon, H.; Kim, J.K.; Lee, S.Y.; Park, S.U. Metabolic Profiling and Antioxidant Activity during Flower Development in Agastache rugosa. Physiol. Mol. Biol. Plants 2021, 27, 445–455. [Google Scholar] [CrossRef] [PubMed]
 - Desta, K.T.; Kim, G.-S.; Kim, Y.-H.; Lee, W.S.; Lee, S.J.; Jin, J.S.; Abd El-Aty, A.M.; Shin, H.-C.; Shim, J.-H.; Shin, S.C. The polyphenolic profiles and antioxidant effects of Agastache rugosa Kuntze (Banga) flower, leaf, stem and root. Biomed. Chromatogr. 2016, 30, 225–231. [Google Scholar] [CrossRef]
 - Anand, S.; Pang, E.; Livanos, G.; Mantri, N. Characterization of physico-chemical properties and antioxidant capacities of bioactive honey produced from Australian grown Agastache rugosa and its correlation with colour and polyphenol content. Molecules 2018, 23, 108. [Google Scholar] [CrossRef]
 - Skroza, D.; Šimat, V.; Vrdoljak, L.; Jolić, N.; Skelin, A.; Čagalj, M.; Frleta, R.; Generalić Mekinić, I. Investigation of Antioxidant Synergisms and Antagonisms among Phenolic Acids in the Model Matrices Using FRAP and ORAC Methods. Antioxidants 2022, 11, 1784. [Google Scholar] [CrossRef]
 - Alfaro, R.A.; Davis, D.D. Diclofenac. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
 - Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive Oxygen Species, Toxicity, Oxidative Stress, and Antioxidants: Chronic Diseases and Aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef]
 - Li, S.; Hong, M.; Tan, H.-Y.; Wang, N.; Feng, Y. Insights into the role and interdependence of oxidative stress and inflammation in liver diseases. Oxid. Med. Cell. Longev. 2016, 2016, 4234061. [Google Scholar] [CrossRef]
 - Hamad, I.; Arda, N.; Pekmez, M.; Karaer, S.; Temizkan, G. Intracellular Scavenging Activity of Trolox (6-Hydroxy-2,5,7,8-Tetramethylchromane-2-Carboxylic Acid) in the Fission Yeast, Schizosaccharomyces Pombe. J. Nat. Sci. Biol. Med. 2010, 1, 16–21. [Google Scholar] [CrossRef] [PubMed]
 - Zhang, R.; Lu, M.; Zhang, S.; Liu, J. Renoprotective effects of tilianin in diabetic rats through modulation of oxidative stress via Nrf2-Keap1 pathway and inflammation via TLR4/MAPK/NF-κB pathways. Int. Immunopharmacol. 2020, 88, 106967. [Google Scholar] [CrossRef] [PubMed]
 - Li, J.; Xu, S. Tilianin attenuates MPP+-induced oxidative stress and apoptosis of dopaminergic neurons in a cellular model of Parkinson’s disease. Exp. Ther. Med. 2022, 23, 293. [Google Scholar] [CrossRef] [PubMed]
 - Luo, C.; Zou, L.; Sun, H.; Peng, J.; Gao, C.; Bao, L.; Ji, R.; Jin, Y.; Sun, S. A Review of the Anti-Inflammatory Effects of Rosmarinic Acid on Inflammatory Diseases. Front. Pharmacol. 2020, 11, 153. [Google Scholar] [CrossRef]
 - Moon, H.; Kim, M.J.; Son, H.J.; Kweon, H.-J.; Kim, J.T.; Kim, Y.; Shim, J.; Suh, B.-C.; Rhyu, M.-R. Five HTRPA1 Agonists Found in Indigenous Korean Mint, Agastache rugosa. PLoS ONE 2015, 10, e0127060. [Google Scholar]
 - Sun, J.; Sun, P.; Kang, C.; Zhang, L.; Guo, L.; Kou, Y. Chemical Composition and Biological Activities of Essential Oils from Six Lamiaceae Folk Medicinal Plants. Front. Plant Sci. 2022, 13, 919294. [Google Scholar]
 - Jiang, H.; Xing, J.; Fang, J.; Wang, L.; Wang, Y.; Zeng, L.; Li, Z.; Liu, R. Tilianin Protects against Ischemia/Reperfusion-Induced Myocardial Injury through the Inhibition of the Ca2+/Calmodulin-Dependent Protein Kinase II-Dependent Apoptotic and Inflammatory Signaling Pathways. Biomed. Res. Int. 2020, 2020, 5939715. [Google Scholar] [CrossRef]
 - Wang, Y.; Yuan, Y.; Wang, X.; Wang, Y.; Cheng, J.; Tian, L.; Guo, X.; Qin, D.; Cao, W. Tilianin Post-Conditioning Attenuates Myocardial Ischemia/Reperfusion Injury via Mitochondrial Protection and Inhibition of Apoptosis. Med. Sci. Monit. 2017, 23, 4490–4499. [Google Scholar] [CrossRef]
 - Zhang, X.; Zhu, J.-X.; Ma, Z.-G.; Wu, H.-M.; Xu, S.-C.; Song, P.; Kong, C.-Y.; Yuan, Y.-P.; Deng, W.; Tang, Q.-Z. Rosmarinic Acid Alleviates Cardiomyocyte Apoptosis via Cardiac Fibroblast in Doxorubicin-Induced Cardiotoxicity. Int. J. Biol. Sci. 2019, 15, 556–567. [Google Scholar] [CrossRef] [PubMed]
 - Han, J.; Wang, D.; Ye, L.; Li, P.; Hao, W.; Chen, X.; Ma, J.; Wang, B.; Shang, J.; Li, D.; et al. Rosmarinic Acid Protects against Inflammation and Cardiomyocyte Apoptosis during Myocardial Ischemia/Reperfusion Injury by Activating Peroxisome Proliferator-Activated Receptor Gamma. Front. Pharmacol. 2017, 8, 456. [Google Scholar] [CrossRef] [PubMed]
 - Flores-Flores, A.; Hernández-Abreu, O.; Rios, M.Y.; León-Rivera, I.; Aguilar-Guadarrama, B.; Castillo-España, P.; Perea-Arango, I.; Estrada-Soto, S. Vasorelaxant mode of action of dichloromethane-soluble extract from Agastache mexicana and its main bioactive compounds. Pharm. Biol. 2016, 54, 2807–2813. [Google Scholar] [CrossRef] [PubMed]
 - Cruz-Torres, K.C.; Estrada-Soto, S.; Arias-Durán, L.; Navarrete-Vázquez, G.; Almanza-Pérez, J.C.; Mora-Ramiro, B.; Perea-Arango, I.; Hernández-Núñez, E.; Villalobos-Molina, R.; Carmona-Castro, G.; et al. LC-MS fingerprinting development for standardized precipitate from Agastache mexicana, which induces antihypertensive effect through NO production and calcium channel blockade. Pharmaceutics 2023, 15, 2346. [Google Scholar] [CrossRef]
 - Hernández-Abreu, O.; Torres-Piedra, M.; García-Jiménez, S.; Ibarra-Barajas, M.; Villalobos-Molina, R.; Montes, S.; Rembao, D.; Estrada-Soto, S. Dose-dependent antihypertensive determination and toxicological studies of tilianin isolated from Agastache mexicana. J. Ethnopharmacol. 2013, 146, 187–191. [Google Scholar] [CrossRef]
 
| Time (min) | Methanol (%) | Water (%) | 2%Formic Acid in Water (%) | 
|---|---|---|---|
| 0.00 | 5 | 90 | 5 | 
| 3.00 | 15 | 70 | 15 | 
| 6.00 | 15 | 70 | 15 | 
| 9.00 | 21 | 58 | 21 | 
| 13.00 | 21 | 58 | 21 | 
| 18.00 | 30 | 41 | 29 | 
| 22.00 | 30 | 41 | 29 | 
| 26.00 | 50 | 0 | 50 | 
| 29.00 | 50 | 0 | 50 | 
| 29.01 | 5 | 90 | 5 | 
| 35.00 | 5 | 90 | 5 | 
| Compound | Retention Time (min) | m/z and Main Transitions | Detection Limit (μg/mL) | Quantification Limit (μg/mL) | A. mexicana Extract (μg/mL) | A. scrophulariifolia Extract (μg/mL) | 
|---|---|---|---|---|---|---|
| Gallic Acid | 7.0 | 168.9 > 125.0 | 1.90 | 2.90 | 3.6 ± 0.05 | 4.0 ± 0.07 | 
| Chlorogenic Acid | 11.9 | 353.0 > 191.0 | 5.00 | 8.00 | 4005.2 ± 35.42 | 3362.3 ± 5.47 | 
| Vitexin | 13.0 | 179.1 > 123.0 | 1.30 | 2.00 | 2.5 ± 0.03 | 2.5 ± 0.05 | 
| Luteolin-7-O-glucoside | 13.6 | 317.0 > 179.0 | 3.00 | 4.00 | 677.9 ± 8.49 | 762.1 ± 10.78 | 
| Caffeic Acid | 13.8 | 179.0 > 135.0 | 3.20 | 4.80 | 189.7 ± 1.94 | 194.3 ± 3.21 | 
| Trans-p-coumaric Acid | 17.5 | 163.0 > 119.0 | 2.50 | 4.90 | 28.7 ± 0.31 | 23.7 ± 0.51 | 
| Quercetin | 18.4 | 431.0 > 311.0 | 0.80 | 1.10 | 2.5 ± 0.03 | 1.1 ± 0.02 | 
| Kaempferol | 19.9 | 447.0 > 284.9 | 0.80 | 1.20 | 470.3 ± 7.14 | 397.9 ± 7.41 | 
| Naringenin | 20.2 | 609.0 > 300.0 | 0.60 | 0.90 | 2.5 ± 0.03 | 2.3 ± 0.02 | 
| Tilianin | 20.2 | 447.1 > 285.0 | 9.10 | 13.60 | 51,635.8 ± 278.21 | 55,574.8 ± 411.21 | 
| Esculetin | 20.3 | 463.1 > 300.0 | 2.90 | 5.80 | 990.8 ± 12.17 | 748.7 ± 10.78 | 
| Rosmarinic Acid | 21.4 | 358.9 > 161.0 | 0.10 | 0.20 | 5910.3 ± 99.41 | 4263.3 ± 59.24 | 
| Salicylic Acid | 23.5 | 137.0 > 93.0 | 1.50 | 2.00 | 34.7 ± 0.72 | 47.9 ± 1.07 | 
| Myricetin | 25.4 | 300.9 > 151.0 | 0.60 | 0.90 | 132.5 ± 1.87 | 145.1 ± 2.78 | 
| Luteolin | 26.2 | 271.0 > 119.0 | 0.05 | 0.07 | 21.6 ± 0.27 | 13.0 ± 0.27 | 
| Hyperoside | 26.8 | 287.0 > 153.0 | 0.60 | 0.90 | 18.9 ± 0.24 | 21.0 ± 0.37 | 
| Chrysin | 27.0 | 301.0 > 164.0 | 3.00 | 5.00 | 4.5 ± 0.04 | 4.5 ± 0.07 | 
| Ellagic Acid | 27.2 | 301.0 > 185.0 | 3.00 | 5.00 | 72.7 ± 1.21 | 449.5 ± 7.49 | 
| Hesperetin | 27.9 | 285.0 > 187.0 | 3.00 | 5.00 | 9.9 ± 0.11 | 11.5 ± 0.17 | 
| Apigenin | 28.1 | 269.0 > 117.0 | 0.20 | 0.30 | 43.5 ± 0.74 | 26.0 ± 0.87 | 
| Carnosol | 29.7 | 253.0 > 143.0 | 1.00 | 2.00 | 10.8 ± 0.11 | 6.5 ± 0.10 | 
| Acacetin | 30.0 | 283.1 > 268.0 | 0.20 | 0.30 | 6.6 ± 0.09 | 6.1 ± 0.07 | 
| Rutoside | 30.7 | 329.1 > 285.1 | 4.00 | 6.00 | 7.8 ± 0.10 | 151.7 ± 2.45 | 
| Carnosic Acid | 32.0 | 331.2 > 285.1 | 4.00 | 6.00 | 51.4 ± 0.84 | 54.3 ± 1.07 | 
| Extract | TPC (mg GAE/g d.w.)  | TFC (mg RE/g d.w.)  | TCADC (mg CAE/g d.w.)  | 
|---|---|---|---|
| A. mexicana | 51.33 ± 1.53 | 9.73 ± 0.15 | 36.17 ± 0.76 | 
| A. scrophulariifolia | 36.33 ± 1.53 | 11.73 ± 1.07 | 27.38 ± 0.85 | 
| Extract | DPPH Assay IC50 (µg/mL)  | FRAP Assay (µM of TEs/100 mL of Extract)  | 
|---|---|---|
| A. mexicana | 65.99 ± 1.21 | 2566.71 ± 267.55 | 
| A. scrophulariifolia | 68.64 ± 2.48 | 1688.76 ± 212.32 | 
| Group | TOS (µM H2O2 E/L) | OSI | TAC (mM TE/L) | NOx (µM/L) | MDA (μM/L) | SH (µM/L) | 
|---|---|---|---|---|---|---|
| CONTROL | 10.81 ± 0.51 | 10.33 ± 0.49 | 1.046 ± 0.003 | 38.05 ± 4.59 | 6.68 ± 10.21 | 628.2 ± 55.41 | 
| INFL | 13.06 ± 0.59 * | 12.62 ± 0.57 ** | 1.035 ± 0.001 *** | 43.31 ± 1.39 * | 5.19 ± 0.33 | 520.6 ± 66.96 * | 
| TROLOX | 12.08 ± 0.35 **# | 11.55 ± 0.33 ** | 1.046 ± 0.002 ### | 38.91 ± 8.30 | 4.21 ± 0.29 ## | 675.8 ± 97.02 # | 
| DICLO | 11.33 ± 0.38 ### | 10.82 ± 0.32 ### | 1.048 ± 0.004 ### | 37.79 ± 1.65 ### | 4.34 ± 0.21 ## | 490.2 ± 44.37 * | 
| AS1 | 11.35 ± 0.18 ### | 10.84 ± 0.16 ### | 1.047 ± 0.003 # | 45.49 ± 2.02 * | 4.06 ± 0.44 ## | 625.4 ± 33.17 # | 
| AS2 | 12.14 ± 0.49 *# | 11.54 ± 0.52 *# | 1.052 ± 0.006 ### | 31.26 ± 1.96 *### | 3.84 ± 0.23 ### | 608.6 ± 48.11 # | 
| AS3 | 12.64 ± 0.30 ** | 12.10 ± 0.49 ** | 1.045 ± 0.002 ### | 48.37 ± 2.85 **## | 4.30 ± 0.27 ## | 611.4 ± 48.85 # | 
| AM1 | 13.08 ± 0.61 ** | 12.43 ± 0.53 ** | 1.052 ± 0.005 ### | 47.77 ± 3.77 *# | 3.73 ± 0.17 ### | 688.6 ± 101.72 # | 
| AM2 | 13.35 ± 0.54 ** | 12.71 ± 0.45 ** | 1.051 ± 0.005 ### | 49.34 ± 5.40 *# | 4.32 ± 0.29 ## | 531.4 ± 87.38 | 
| AM3 | 12.74 ± 0.97 ** | 12.20 ± 0.89 ** | 1.044 ± 0.004 ## | 39.11 ± 6.62 | 4.13 ± 0.35 ## | 525.4 ± 60.07 * | 
| Group | TOS (µM H2O2 E/L) | OSI | TAC (mM TE/L) | NOX (μM/L) | MDA (μM/L) | SH (μM/L) | GOT (U/L) | GPT (U/L) | CK-MB (U/L) | 
|---|---|---|---|---|---|---|---|---|---|
| CONTROL | 10.8 ± 0.51 | 10.33 ± 0.49 | 1.046 ± 0.003 | 38.05 ± 4.59 | 6.68 ± 10.21 | 628.2 ± 55.41 | 40.20 ± 6.66 | 47.29 ± 4.34 | 7.71 ± 0.68 | 
| ISO | 12.96 ± 0.32 *** | 12.50 ± 0.33 *** | 1.036 ± 0.003 ** | 44.37 ± 2.77 * | 3.39 ± 0.15 | 480.5 ± 30.74 ** | 62.26 ± 7.11 ** | 62.74 ± 5.03** | 11.20 ± 0.67 *** | 
| TROLOX | 12.20 ± 0.31 **# | 11.63 ± 0.32 **# | 1.049 ± 0.003 ## | 36.79 ± 1.30 ## | 2.82 ± 0.42 # | 673.67 ± 63.13 ## | 47.63 ± 6.00 # | 50.30 ± 5.81 # | 7.82 ± 0.52 ### | 
| AM1 | 11.73 ± 0.34 # | 11.23 ± 0.31 # | 1.044 ± 0.001 # | 41.39 ± 0.72 | 2.54 ± 0.09 ## | 629 ± 33.94 ## | 40.41 ± 2.99 # | 44.28 ± 4.06 # | 8.34 ± 0.00 ## | 
| AM2 | 11.63 ± 0.29 *### | 11.10 ± 0.25 *### | 1.049 ± 0.005 ## | 40.47 ± 4.72 | 2.65 ± 0.37 # | 552 ± 20.30 *## | 46.88 ± 7.04 # | 47.39 ± 5.89 ## | 8.34 ± 0.43 ### | 
| AM3 | 11.54 ± 0.34 ## | 10.98 ± 0.30 ## | 1.051 ± 0.002 ## | 28.16 ± 1.70 ## | 2.70 ± 0.15 ## | 476 ± 43.84 * | 45.95 ± 1.87 # | 49.14 ± 0.35 # | 8.86 ± 0.00 # | 
| AS1 | 11.01 ± 0.26 ### | 10.55 ± 0.25 ### | 1.044 ± 0.001 ### | 30.41 ± 3.24 *### | 2.69 ± 0.12 ### | 610.2 ± 42.18 # | 42.89 ± 6.71 ## | 45.35 ± 4.98 ## | 7.92 ± 0.44 ### | 
| AS2 | 11.97 ± 0.14 *# | 11.41 ± 0.15 *# | 1.049 ± 0.002 ## | 48.16 ± 2.24 | 2.6 ± 0.18 ## | 711 ± 59.40 ## | 70.25 ± 7.84 ** | 71.59 ± 2.82 *** | 9.90 ± 0.00 | 
| AS3 | 12.79 ± 0.20 ** | 12.20 ± 0.16 ** | 1.049 ± 0.003 ## | 40.57 ± 5.82 | 2.35 ± 0.06 ### | 619 ± 28.28 ## | 64.71 ± 2.99 ** | 65.23 ± 5.82 ** | 9.90 ± 0.00 | 
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.  | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nechita, M.-A.; Pârvu, A.E.; Uifălean, A.; Iurian, S.; Olah, N.-K.; Bab, T.H.; Vârban, R.; Nechita, V.-I.; Toiu, A.; Oniga, O.; et al. LC-MS Analysis of the Polyphenolic Composition and Assessment of the Antioxidant, Anti-Inflammatory and Cardioprotective Activities of Agastache mexicana and Agastache scrophulariifolia Extracts. Plants 2025, 14, 2122. https://doi.org/10.3390/plants14142122
Nechita M-A, Pârvu AE, Uifălean A, Iurian S, Olah N-K, Bab TH, Vârban R, Nechita V-I, Toiu A, Oniga O, et al. LC-MS Analysis of the Polyphenolic Composition and Assessment of the Antioxidant, Anti-Inflammatory and Cardioprotective Activities of Agastache mexicana and Agastache scrophulariifolia Extracts. Plants. 2025; 14(14):2122. https://doi.org/10.3390/plants14142122
Chicago/Turabian StyleNechita, Mihaela-Ancuța, Alina Elena Pârvu, Ana Uifălean, Sonia Iurian, Neli-Kinga Olah, Timea Henrietta Bab, Rodica Vârban, Vlad-Ionuț Nechita, Anca Toiu, Ovidiu Oniga, and et al. 2025. "LC-MS Analysis of the Polyphenolic Composition and Assessment of the Antioxidant, Anti-Inflammatory and Cardioprotective Activities of Agastache mexicana and Agastache scrophulariifolia Extracts" Plants 14, no. 14: 2122. https://doi.org/10.3390/plants14142122
APA StyleNechita, M.-A., Pârvu, A. E., Uifălean, A., Iurian, S., Olah, N.-K., Bab, T. H., Vârban, R., Nechita, V.-I., Toiu, A., Oniga, O., Benedec, D., Hanganu, D., & Oniga, I. (2025). LC-MS Analysis of the Polyphenolic Composition and Assessment of the Antioxidant, Anti-Inflammatory and Cardioprotective Activities of Agastache mexicana and Agastache scrophulariifolia Extracts. Plants, 14(14), 2122. https://doi.org/10.3390/plants14142122
        
