Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = anti-fermentation solution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1299 KB  
Review
From Natural Defense to Synthetic Application: Emerging Bacterial Anti-Phage Mechanisms and Their Potential in Industrial Fermentation
by Hengwei Zhang, Jiajia You, Guomin Li, Zhiming Rao and Xian Zhang
Fermentation 2026, 12(1), 17; https://doi.org/10.3390/fermentation12010017 - 29 Dec 2025
Viewed by 402
Abstract
Bacteriophage contamination remains a persistent and costly challenge in industrial bio-manufacturing. Traditional control strategies rely heavily on physical exclusion and chemical disinfection, yet these passive measures often fail to address the rapid evolutionary adaptation of phages and their persistence in complex fermentation environments. [...] Read more.
Bacteriophage contamination remains a persistent and costly challenge in industrial bio-manufacturing. Traditional control strategies rely heavily on physical exclusion and chemical disinfection, yet these passive measures often fail to address the rapid evolutionary adaptation of phages and their persistence in complex fermentation environments. Recent genomic and biochemical discoveries have revealed a diverse arsenal of bacterial antiviral immune systems beyond the classical Restriction-Modification and CRISPR-Cas pathways, including cyclic oligonucleotide-based signaling systems and various abortive infection mechanisms. This review systematically summarizes the latest advances in bacterial anti-phage defense mechanisms, categorizing them into adsorption inhibition, replication interference, nucleic acid degradation, and population-level suicide defense. Furthermore, we discuss the application of synthetic biology in integrating these defense modules to construct broad-spectrum “pan-immune” microbial chassis. This active defense strategy offers a fundamental solution to phage predation and provides a theoretical basis for developing robust next-generation cell factories. Full article
(This article belongs to the Special Issue Feature Review Papers in Industrial Fermentation, 2nd Edition)
Show Figures

Figure 1

16 pages, 844 KB  
Systematic Review
An Overview of Essential Nutritional Strategies and Products in the Treatment of Endometriosis
by Małgorzata Szczuko, Maciej Ziętek, Katarzyna Janda-Milczarek, Ewa Rębacz-Maron, Jolanta Nawrocka-Rutkowska and Kamila Pokorska-Niewiada
Nutrients 2026, 18(1), 77; https://doi.org/10.3390/nu18010077 - 26 Dec 2025
Viewed by 461
Abstract
Background/Objectives: Recent reports on the co-occurrence of allergies and endometriosis have provided grounds for expanding research in this area, suggesting that diagnostics should be extended to women with endometriosis. However, numerous studies on nutrients and antioxidants do not specify the type of diet [...] Read more.
Background/Objectives: Recent reports on the co-occurrence of allergies and endometriosis have provided grounds for expanding research in this area, suggesting that diagnostics should be extended to women with endometriosis. However, numerous studies on nutrients and antioxidants do not specify the type of diet that supports the treatment process. In our review, we focus on the types of food elimination and dietary approaches that have been used. Methods: This systematic review was conducted according to the PRISMA guidelines. We searched the EMBASE, PUBMED and SCOPUS databases, as well as the bibliographies of research papers and reviews, including the latest reports from June 2025. The search keywords were “endometriosis” and “type of diet”, “nutrition”, “food products”, “nutrients”, “elimination diet”, and “allergies”. Results: Excluding coexisting allergies and introducing an anti-inflammatory diet low in animal products, limiting butter and margarine, and eliminating fried foods and refined simple sugars may be the best solution to help treat endometriosis. Conclusions: Personalised nutritional counselling for patients with endometriosis is particularly helpful and necessary, as there is no single elimination diet that can be recommended for all patients with endometriosis. The first step should be an anti-inflammatory diet, such as the Mediterranean diet or the MIND diet (Mediterranean-DASH diet intervention for neurological delay), followed by more in-depth allergy screening. The phenotypic diversity of this group of patients may require the use of a low-FODMAP (fermentable oligo-, di-, monosaccharides and polyols), low-nickel, gluten-free or other elimination diet. Full article
Show Figures

Figure 1

19 pages, 951 KB  
Review
Modern Pro-Health Applications of Medicinal Mushrooms: Insights into the Polyporaceae Family, with a Focus on Cerrena unicolor
by Dominika Pigoń-Zając, Teresa Małecka-Massalska, Jacek Łapiński and Monika Prendecka-Wróbel
Molecules 2025, 30(20), 4089; https://doi.org/10.3390/molecules30204089 - 15 Oct 2025
Viewed by 1698
Abstract
Fungal-derived bioactive compounds are emerging as key components in functional food development, offering new opportunities for health-promoting formulations. The Polyporaceae family, particularly Cerrena unicolor, has demonstrated significant potential due to its rich biochemical profile and diverse health benefits. Despite its extensive bioactive [...] Read more.
Fungal-derived bioactive compounds are emerging as key components in functional food development, offering new opportunities for health-promoting formulations. The Polyporaceae family, particularly Cerrena unicolor, has demonstrated significant potential due to its rich biochemical profile and diverse health benefits. Despite its extensive bioactive properties, its application in food science and biotechnology remains underutilized. This review explores the bioactive composition, technological potential, and functional applications of C. unicolor in innovative food systems. We analyze its antioxidant, antimicrobial, and anticancer effects, focusing on its interactions with dairy-based matrices to enhance bioavailability and therapeutic potential. C. unicolor is a valuable source of polysaccharides, phenolics, and enzymatic compounds with antioxidant and anti-inflammatory properties. Its anticancer potential, especially when incorporated into dairy fermentations, opens new avenues for oncology-focused functional foods. Strong antimicrobial activity suggests its potential as a natural biopreservative or bioactive food additive. Bioactive fractions contribute to metabolic health improvements (diabetes management) and tissue regeneration, highlighting their role in next-generation nutraceuticals. Incorporating C. unicolor into functional food systems represents a cutting-edge approach to biotechnology-driven health solutions. Further research is required to optimize its formulation, improve bioavailability, and explore regulatory pathways for market implementation. Full article
(This article belongs to the Special Issue Innovative Anticancer Compounds and Therapeutic Strategies)
Show Figures

Figure 1

25 pages, 457 KB  
Review
Transformation of Brewer’s Spent Grain Through Solid-State Fermentation: Implications for Nutrition and Health
by Marcos Barrera-León, Elí Terán-Cabanillas, Roberto de Jesús Avena-Bustillos, Feliznando Isidro Cárdenas-Torres, Bianca Anabel Amézquita-López, Mario Armando Gómez-Favela, David Moroni Alemán-Hidalgo and Mayra Arias-Gastélum
Recycling 2025, 10(5), 170; https://doi.org/10.3390/recycling10050170 - 2 Sep 2025
Viewed by 4473
Abstract
Brewer’s spent grain (BSG), a by-product originating from the brewing industry, contains substantial amounts of fibers, proteins, and bioactive compounds; however, its utility is restricted by anti-nutritional factors. Solid-state fermentation (SSF) presents a viable method for improving the nutritional and functional properties of [...] Read more.
Brewer’s spent grain (BSG), a by-product originating from the brewing industry, contains substantial amounts of fibers, proteins, and bioactive compounds; however, its utility is restricted by anti-nutritional factors. Solid-state fermentation (SSF) presents a viable method for improving the nutritional and functional properties of BSG. Microorganisms such as Rhizopus oligosporus have been demonstrated to enhance nutrient bioavailability, facilitate the degradation of complex carbohydrates, and improve protein digestibility while simultaneously reducing anti-nutritional components. Furthermore, this fermentation process yields bioactive compounds that exhibit antioxidant, anti-inflammatory, and prebiotic properties, thereby contributing to improved gut health, the prevention of metabolic disorders, and enhanced nutritional outcomes. Additionally, SSF seeks sustainability by repurposing agro-industrial by-products, reducing waste, and promoting the principles of a circular economy. Collectively, these advantages underscore the transformative potential of SSF in converting BSG into a functional food ingredient, effectively addressing contemporary health and environmental challenges and offering innovative solutions for food security and sustainable development. Full article
Show Figures

Graphical abstract

17 pages, 2242 KB  
Article
Ginsenoside-Enriched Panax ginseng Sprouts Cultivated from Aquaponic System with a Novel Nutrient Solution Regulate LPS-Induced Inflammatory Cytokines and UVB-Induced Photoaging Responses via MAPK/AP-1 Signaling Pathways
by Jeong-Ho Kim, Kyung-Wuk Park, Beom-Gyun Jeong, Jun-Ki Park, Ho-Yeol Jang, Yun-Seo Oh, Jin-Yeong Choi and Kyung-Yun Kang
Plants 2025, 14(11), 1712; https://doi.org/10.3390/plants14111712 - 4 Jun 2025
Viewed by 1499
Abstract
Panax ginseng sprouts (GSs) have attracted attention as functional resources due to their short cultivation time and enriched ginsenoside content. This study aimed to evaluate the bioactivities of GSs cultivated using kelp fermentates (KF) as a nutrient solution under a smart-farming system. Ginsenoside-enriched [...] Read more.
Panax ginseng sprouts (GSs) have attracted attention as functional resources due to their short cultivation time and enriched ginsenoside content. This study aimed to evaluate the bioactivities of GSs cultivated using kelp fermentates (KF) as a nutrient solution under a smart-farming system. Ginsenoside-enriched extract (FGE), its water-soluble saponin fraction (WFGE), and 70% ethanol-soluble saponin fraction (EFGE) were analyzed for phytochemical contents and biological activities. The EFGE exhibited the highest levels of eight major ginsenosides, including Rg1, Rb1, Rc, Rg2, Rb2, Rd, Rf, and F2. Total phenolic and flavonoid contents were significantly higher in KF-treated ginseng and their crude saponin fractions, with EFGE showing the highest values. WFGE and EFGE indicated strong antioxidant activity through ABTS radical scavenging assays. In LPS-stimulated RAW264.7 macrophages, all extracts significantly inhibited nitric oxide production and downregulated IL-1β, IL-6, iNOS, and COX-2 expression. Moreover, UVB-irradiated human fibroblasts (Hs68) treated with KF-derived fractions showed increased cell viability, enhanced procollagen synthesis, and reduced MMP-1 and MMP-3 expression. These effects were associated with suppression of MAPK/AP-1 signaling. In conclusion, GSs cultivated with KF exhibit notable antioxidant, anti-inflammatory, and anti-photoaging activities, suggesting their potential as natural ingredients for skin health applications. Full article
(This article belongs to the Special Issue Plant Extracts for Health Benefits and Nutrition)
Show Figures

Figure 1

17 pages, 4857 KB  
Review
A Review of Novel Antioxidant Ergothioneine: Biosynthesis Pathways, Production, Function and Food Applications
by Haijing Zhang, Zheng Liu, Zhong Wang, Ziteng Lei, Yan Jia, Wei Chen, Ruoyu Shi and Chengtao Wang
Foods 2025, 14(9), 1588; https://doi.org/10.3390/foods14091588 - 30 Apr 2025
Cited by 4 | Viewed by 9774
Abstract
Ergothioneine (EGT), a natural thiol compound with potent antioxidant properties, exhibits diverse biological functions, including anti-inflammatory, neuroprotective, and cardioprotective effects. Despite its promising health and food applications, current production methods, such as mushroom-based liquid fermentation, are hindered by low yields and complex processes. [...] Read more.
Ergothioneine (EGT), a natural thiol compound with potent antioxidant properties, exhibits diverse biological functions, including anti-inflammatory, neuroprotective, and cardioprotective effects. Despite its promising health and food applications, current production methods, such as mushroom-based liquid fermentation, are hindered by low yields and complex processes. Advances in biosynthetic fermentation, including heterologous expression of key pathway genes and optimization of cultivation conditions, offer promising solutions to these challenges. Recent discoveries, such as the catalytic efficiency of mononuclear non-heme iron enzymes like Egt1 and EgtB, have streamlined EGT biosynthetic pathways, reducing steps and increasing yield. The compound’s active transport via the OCTN1 protein facilitates its distribution across tissues, enhancing its therapeutic efficacy and potential in functional foods. Currently employed as an antioxidant and antimelanogenic agent in aquatic products, EGT holds vast potential for broader applications in food systems. This review explores the advancements in EGT production and biosynthesis while emphasizing its prospects as a safe, versatile, and effective natural ingredient for health and industrial applications. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

29 pages, 4106 KB  
Article
Antimicrobial, Quorum Sensing Inhibition, and Anti-Cancer Activities of Silver Nanoparticles Synthesized from Kenyan Bacterial Endophytes of Teclea nobilis
by Farzana Mohamed and Hafizah Yousuf Chenia
Int. J. Mol. Sci. 2025, 26(7), 3306; https://doi.org/10.3390/ijms26073306 - 2 Apr 2025
Cited by 2 | Viewed by 1885
Abstract
Untapped bioactive compounds from microbial endophytes offer a promising solution to counter antimicrobial and chemotherapeutic drug resistance when complexed as silver nanoparticles (AgNPs). AgNPs were biosynthesized using cell-free supernatants from endophytic Streptomyces sp. KE4D and Bacillus safensis KE4K isolated from the Kenyan medicinal [...] Read more.
Untapped bioactive compounds from microbial endophytes offer a promising solution to counter antimicrobial and chemotherapeutic drug resistance when complexed as silver nanoparticles (AgNPs). AgNPs were biosynthesized using cell-free supernatants from endophytic Streptomyces sp. KE4D and Bacillus safensis KE4K isolated from the Kenyan medicinal plant Teclea nobilis, following fermentation in three different media. Bacterial extracts were analyzed using gas chromatography–mass spectrometry. AgNPs were characterized using Fourier-transform infrared spectroscopy and high-resolution transmission electron microscopy. Antimicrobial activity was assessed using agar well diffusion assays, and quorum sensing inhibition (QSI) was investigated using Chromobacterium violaceum. Anti-cancer potential was evaluated against breast (MCF-7) and prostate cancer (DU-145) cell lines using MTT assays. AgNPs were 5–55 nm in size, with KE4D AgNPs being spherical and KE4K AgNPs exhibiting various shapes. Cyclopropane acetic acids and fatty acids were identified as possible capping agents. Medium-dependent antimicrobial activity was observed, with medium Mannitol and medium 5294 AgNPs displaying stronger activity, particularly against Gram-negative indicators. KE4D medium 5294 AgNPs demonstrated 85.12% violacein inhibition at 140 µg/mL and better QSI activity, whilst KE4K AgNPs were better antimicrobials. The AgNPs IC50 values were <3.5 µg/mL for MCF-7 and <2.5 µg/mL for DU-145 cells. The bioactivity of biosynthesized AgNPs is influenced by the bacterial isolate and fermentation medium, suggesting that AgNP synthesis can be tailored for specific bioactivity. Full article
Show Figures

Figure 1

21 pages, 599 KB  
Article
Cocoa Pod Husk Valorization Through Rhizopus stolonifer Solid-State Fermentation: Enhancement in Antioxidant Activity
by Patrick Barros Tiburcio, Dão Pedro de Carvalho Neto, Carlos Ricardo Soccol and Adriane Bianchi Pedroni Medeiros
Microorganisms 2025, 13(4), 716; https://doi.org/10.3390/microorganisms13040716 - 22 Mar 2025
Cited by 2 | Viewed by 2551
Abstract
Cocoa pod husk (CPH), a significant agricultural byproduct of cocoa production, presents an opportunity for sustainable valorization through biotechnological methods. This study aimed to enhance the nutritional, antioxidant, and therapeutic properties of CPH using solid-state fermentation (SSF) with Rhizopus stolonifer. Physicochemical characterization [...] Read more.
Cocoa pod husk (CPH), a significant agricultural byproduct of cocoa production, presents an opportunity for sustainable valorization through biotechnological methods. This study aimed to enhance the nutritional, antioxidant, and therapeutic properties of CPH using solid-state fermentation (SSF) with Rhizopus stolonifer. Physicochemical characterization confirmed CPH’s suitability for SSF, providing a nutrient-rich and favorable environment for fungal growth. The fermentation process significantly improved protein recovery (11.327 ± 0.859 mg g−1) and antioxidant activity, with ORAC (51.68 ± 0.35 mmol TE g−1) and DPPH (7.09 ± 0.05 µmol TE g−1) assays demonstrating marked increases in redox potential, particularly at 144 h and 96 h of fermentation, respectively. GC-MS analysis revealed the generation of bioactive compounds in fermented CPH (CPHF), including methyl 3-hydroxybutyrate, 10,12-Tricosadiynoic acid, and palmitic acid, which are known for their antioxidant, anti-inflammatory, and therapeutic properties. Additionally, phenolic compounds are biotransformed into more bioavailable forms, further enhancing the functional value of the material. This work demonstrates that SSF can effectively transform CPH from an agricultural waste product into a high-value biomaterial with potential applications in functional food, nutraceutical, and pharmaceutical industries. By addressing waste management challenges and promoting the development of innovative bio-based products, this study highlights the promising role of SSF in advancing sustainable and circular biotechnological solutions. Full article
(This article belongs to the Special Issue Microbial Manufacture of Natural Products)
Show Figures

Figure 1

13 pages, 1234 KB  
Review
Water Kefir: Review of Microbial Diversity, Potential Health Benefits, and Fermentation Process
by Klinger Vinícius de Almeida, Cíntia Tomaz Sant’ Ana, Samarha Pacheco Wichello, Gabriele Estofeles Louzada, Silvani Verruck and Luciano José Quintão Teixeira
Processes 2025, 13(3), 885; https://doi.org/10.3390/pr13030885 - 17 Mar 2025
Cited by 5 | Viewed by 15197
Abstract
Water kefir is a non-dairy fermented beverage that ferments water kefir grains in a sucrose solution. These grains harbor a diverse microbiota, including lactic acid bacteria, acetic acid bacteria, and yeast species. The composition of water kefir is primarily influenced by cultivation conditions [...] Read more.
Water kefir is a non-dairy fermented beverage that ferments water kefir grains in a sucrose solution. These grains harbor a diverse microbiota, including lactic acid bacteria, acetic acid bacteria, and yeast species. The composition of water kefir is primarily influenced by cultivation conditions and the microbiota profile of the grains, resulting in fermentation metabolites such as ethanol, lactic acid, mannitol, acetic acid, glycerol, and other organic acids. However, this microbial diversity can vary depending on the origin of the grains, the fermentation substrate, and environmental conditions. As it is a potentially beneficial product for health, interest in kefir consumption has increased in recent years. Specific legislation for water kefir is still scarce, and despite potentially probiotic microorganisms, water kefir is not classified as a probiotic, but it fits the definition of a potentially functional food due to its health benefits. Studies demonstrate the potential health benefits of water kefir in terms of anti-inflammatory, antimicrobial, antioxidant, antidiabetic, and intestinal health effects. However, industrial-scale production and starter cultures have not yet been developed. This study aims to comprehensively review water kefir, exploring its potential health benefits, fermentation process, microbial diversity, and regulatory aspects. Full article
Show Figures

Graphical abstract

16 pages, 11300 KB  
Article
Improvement in Palm Kernel Meal Quality by Solid-Sate Fermentation with Bacillus velezensis, Saccharomyces cerevisiae and Lactobacillus paracasei
by Xiaoyan Zhu, Zechen Deng, Qiuyue Wang, Shanxin Hao, Pei Liu, Shuai He and Xiangqian Li
Fermentation 2024, 10(12), 655; https://doi.org/10.3390/fermentation10120655 - 17 Dec 2024
Cited by 3 | Viewed by 2367
Abstract
To improve the quality of palm kernel meal (PKM), the effect of solid-state fermentation (SSF) with Bacillus velezensis, Saccharomyces cerevisiae and Lactobacillus paracasei on nutritional components, anti-nutritional factor and antioxidant activity were investigated. The results show that inoculation ratio of three strains [...] Read more.
To improve the quality of palm kernel meal (PKM), the effect of solid-state fermentation (SSF) with Bacillus velezensis, Saccharomyces cerevisiae and Lactobacillus paracasei on nutritional components, anti-nutritional factor and antioxidant activity were investigated. The results show that inoculation ratio of three strains 4:2:1, inoculation amount 21%, moisture content 52%, fermentation temperature 34 °C and fermentation time 60 h were the optimal SSF conditions. After 60 h of fermentation, the content of neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), cellulose and hemicellulose in PKM were significantly decreased by 22.5%, 18.2%, 20.2%, 17.6% and 32.4%, respectively. Meanwhile, the content of crude protein, soluble protein, peptides, amino acids and reducing sugar were increased significantly by 27.3%, 193%, 134%, 16.3% and 228%, respectively. SSF significantly improved the total phenolic content, DPPH radical scavenging activity, hydroxyl radical scavenging activity and reducing power. In addition, in vitro dry matter digestibility (IVDMD) and in vitro crude protein digestibility (IVCPD) were increased. Scanning electron microscopy (SEM) analysis revealed microstructural alterations in PKM. The results indicate that SSF with B. velezensis, S. cerevisiae and L. paracasei is an effective and promising method to enhance the nutritional value and antioxidant activity of PKM, providing a feasible solution for increasing the utilization of PKM in animal feed. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

13 pages, 1246 KB  
Article
The Production of Water Kefir Drink with the Addition of Dried Figs in the Horizontal Rotating Tubular Bioreactor
by Mladen Pavlečić, Mario Novak, Antonija Trontel, Nenad Marđetko, Vlatka Petravić Tominac, Ana Dobrinčić, Monika Kralj and Božidar Šantek
Foods 2024, 13(17), 2834; https://doi.org/10.3390/foods13172834 - 6 Sep 2024
Cited by 2 | Viewed by 3882
Abstract
Water kefir is a product obtained through the fermentation of sucrose solution, usually with some kind of dried fruit addition, by a combined culture of micro-organisms which are contained within kefir grains. Its popularity is rising because of the simplicity of its preparation [...] Read more.
Water kefir is a product obtained through the fermentation of sucrose solution, usually with some kind of dried fruit addition, by a combined culture of micro-organisms which are contained within kefir grains. Its popularity is rising because of the simplicity of its preparation and its anti-inflammatory, antioxidant, probiotic, and antibacterial effects. In this research, the water kefir production was studied in 250 mL jars, as well as in a horizontal rotating tubular bioreactor (HRTB). The first part of the research was conducted in smaller-scale (jars), wherein the optimal fruit and fruit portions were determined. These experiments included the addition of dried plums, apricots, raisins, dates, cranberries, papaya, and figs into 150 mL of initial sugar solution. Also, the optimal ratio between dried fruit and sucrose solution (0.2) at the beginning of the bioprocess was determined. The second part of this research was conducted using HRTB. The experiments in the HRTB were carried out by using different operational modes (constant or interval bioreactor rotation). A total of six different bioreactor setups were used, and in all experiments, figs were added at the beginning of the bioprocess (0.2 ratio between dried figs and sucrose solution). On the basis of the obtained results, the interval bioreactor rotation mode proved to be the better HRTB mode for the production of the water kefir, as the yield of the main fermentation products was higher, and their ratios were the most adequate for the quality of water kefir drink. The optimal results were obtained via HRTB setup 3/57 (3 min rotation, 57 min pause within 1 h) and rotation speed of 3 rpm. Furthermore, it is clear that HRTB has great potential for water kefir production due to the fact that HRTB experiments showed shorter fermentation times (at least five times) than water kefir production in jars. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

16 pages, 5944 KB  
Article
Lonicera japonica Fermented by Lactobacillus plantarum Improve Multiple Patterns Driven Osteoporosis
by Zimin Chen, Weiye Xu, Jianming Luo, Liu Liu and Xichun Peng
Foods 2024, 13(17), 2649; https://doi.org/10.3390/foods13172649 - 23 Aug 2024
Cited by 2 | Viewed by 1783
Abstract
Osteoporosis (OP) represents a global health challenge. Certain functional food has the potential to mitigate OP. Honeysuckle (Lonicera japonica) solution has medicinal effects, such as anti-inflammatory and immune enhancement, and can be used in functional foods such as health drinks and [...] Read more.
Osteoporosis (OP) represents a global health challenge. Certain functional food has the potential to mitigate OP. Honeysuckle (Lonicera japonica) solution has medicinal effects, such as anti-inflammatory and immune enhancement, and can be used in functional foods such as health drinks and functional snacks. The composition of honeysuckle changed significantly after fermentation, and 376 metabolites were enriched. In this study, we used dexamethasone to induce OP in the rat model. Research has confirmed the ability of FS (fermented Lonicera japonica solution) to enhance bone mineral density (BMD), repair bone microarchitectural damage, and increase blood calcium levels. Markers such as tartrate-resistant acid phosphatase-5b (TRACP-5b) and pro-inflammatory cytokines (TNF-α and IL-6) were notably decreased, whereas osteocalcin (OCN) levels increased after FS treatment. FS intervention in OP rats restored the abundance of 6 bacterial genera and the contents of 17 serum metabolites. The results of the Spearman correlation analysis showed that FS may alleviate OP by restoring the abundance of 6 bacterial genera and the contents of 17 serum metabolites, reducing osteoclast differentiation, promoting osteoblast differentiation, and reducing the inflammatory response. This study revealed that Lactobacillus plantarum-fermented honeysuckle alleviated OP through intestinal bacteria and serum metabolites and provided a theoretical basis for the development of related functional foods. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Graphical abstract

16 pages, 3248 KB  
Article
Human Health Benefits and Microbial Consortium of Stevia Fermented with Barley Nuruk
by Hyun-Ju Han, Min Nyeong Ko, Chan Seong Shin and Chang-Gu Hyun
Fermentation 2024, 10(7), 330; https://doi.org/10.3390/fermentation10070330 - 25 Jun 2024
Cited by 2 | Viewed by 3808
Abstract
In this study, the microbial community present during the barley yeast fermentation of stevia leaves and its correlation with antioxidant, anti-obesity, and anti-inflammatory properties, as well as metabolites, were investigated using UPLC-Q-TOF-MS. Stevia was fermented using commercial TSB media (TSB 1, TSB 3, [...] Read more.
In this study, the microbial community present during the barley yeast fermentation of stevia leaves and its correlation with antioxidant, anti-obesity, and anti-inflammatory properties, as well as metabolites, were investigated using UPLC-Q-TOF-MS. Stevia was fermented using commercial TSB media (TSB 1, TSB 3, and TSB 5) and sucrose (Sucrose 1, Sucrose 3, and Sucrose 5) for 1, 3, and 5 days, respectively. Stevia ferments showed higher DPPH and ABTS radical scavenging capacity compared to samples incubated with sucrose for 5 days, and all six ferments inhibited nitric oxide production in a concentration-dependent manner in LPS-induced mouse macrophages. Furthermore, UPLC-QTOF-MS analysis identified 23 related substances, including 10 terpenoids (including rubusoside, steviolbioside, and rebadioside derivatives), dulcoside A, and phlomisoside II, which are indicators of stevia, as well as five flavonoids, four phenolic acids, and four fatty acids. We also identified the microbial community during fermentation via the next-generation sequencing of the 16S rRNA gene for bacteria and the internal transcribed spacer (ITS) gene for fungi. The results showed that TSB 1 and Sucrose 1 ferments were dominated by the pathogens Enterococcus hirae (58.93%) and Cronobacter sakazakii (80.92%), while samples fermented for more than 3 days were pathogen-free and dominated by lactic acid bacteria such as Pediococcus stilesii (73.37%). Microbial community analysis using the ITS region showed that Saccharomycopsis fibuligera, classified as a yeast rather than a mold, dominated the stevia fermentation regardless of the fermentation duration. In particular, the microbial community of the fermentation with a sucrose solution was dominated by S. fibuligera by more than 99% throughout the fermentation periods of 1, 3, and 5 days. Finally, to apply the stevia ferments topically to human skin, skin irritation tests were performed on 30 volunteers. The results showed that the highly concentrated extracts (1 mg/mL) of all six stevia ferments were hypoallergenic. Taken together, these findings suggest that barley nuruk fermented from stevia leaves with a sucrose solution offers promise as a natural ingredient for use in functional foods and cosmetics. Full article
(This article belongs to the Special Issue Functional Properties of Microorganisms in Fermented Foods)
Show Figures

Figure 1

15 pages, 3190 KB  
Article
The Pea Oligosaccharides Could Stimulate the In Vitro Proliferation of Beneficial Bacteria and Enhance Anti-Inflammatory Effects via the NF-κB Pathway
by Yongxia Cheng, Ruoqi Zhao, Mingwu Qiao, Yan Ma, Tiange Li, Ning Li, Yue Shen, Xianqing Huang and Lianjun Song
Foods 2024, 13(4), 626; https://doi.org/10.3390/foods13040626 - 19 Feb 2024
Cited by 6 | Viewed by 2759
Abstract
The oligosaccharides extracted from the seeds of peas, specifically consisting of raffinose, stachyose, and verbascose, fall under the category of raffinose family oligosaccharides (RFOs). The effect of RFOs on intestinal microflora and the anti-inflammatory mechanism were investigated by in vitro fermentation and cell [...] Read more.
The oligosaccharides extracted from the seeds of peas, specifically consisting of raffinose, stachyose, and verbascose, fall under the category of raffinose family oligosaccharides (RFOs). The effect of RFOs on intestinal microflora and the anti-inflammatory mechanism were investigated by in vitro fermentation and cell experiments. Firstly, mouse feces were fermented in vitro and different doses of RFOs (0~2%) were added to determine the changes in the representative bacterial community, PH, and short-chain fatty acids in the fermentation solution during the fermentation period. The probiotic index was used to evaluate the probiotic proliferation effect of RFOs and the optimal group was selected for 16S rRNA assay with blank group. Then, the effects of RFOs on the inflammatory response of macrophage RAW264.7 induced by LPS were studied. The activity of cells, the levels of NO, ROS, inflammatory factors, and the expression of NF-κB, p65, and iNOS proteins in related pathways were measured. The results demonstrated that RFOs exerted a stimulatory effect on the proliferation of beneficial bacteria while concurrently inhibiting the growth of harmful bacteria. Moreover, RFOs significantly enhanced the diversity of intestinal flora and reduced the ratio of Firmicutes-to-Bacteroides (F/B). Importantly, it was observed that RFOs effectively suppressed NO and ROS levels, as well as inflammatory cytokine release and expression of NF-κB, p65, and iNOS proteins. These findings highlight the potential of RFOs in promoting intestinal health and ameliorating intestinal inflammation. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

10 pages, 731 KB  
Review
Opportunities for Camelina Meal as a Livestock Feed Ingredient
by Justin J. Delver and Zachary K. Smith
Agriculture 2024, 14(1), 116; https://doi.org/10.3390/agriculture14010116 - 12 Jan 2024
Cited by 11 | Viewed by 5645
Abstract
Camelina sativa is an annual oilseed crop that requires low inputs. Recently, interest in camelina oil for both human use and biofuel production has increased. Camelina oil extraction is performed through two main methods, namely, mechanical expulsion and solvent extraction. The resulting meals [...] Read more.
Camelina sativa is an annual oilseed crop that requires low inputs. Recently, interest in camelina oil for both human use and biofuel production has increased. Camelina oil extraction is performed through two main methods, namely, mechanical expulsion and solvent extraction. The resulting meals from the oil extraction process show promise as an animal feed due to their high crude protein content. Solvent extraction removes more oil from the seed, which results in a meal that is lower in fat and higher in crude protein concentration than expelled meal (3.52 vs. 13.69% and 41.04 vs. 34.65%, respectively). Solvent-extracted camelina meal has a similar chemical composition to canola meal but less crude protein and more fiber than soybean meal. Camelina meal is also limited by its anti-nutritional factors, mainly glucosinolates. Camelina meal contains 23.10 to 44.90 mmol/kg of glucosinolates, but processing methods may be able to decrease the total glucosinolates. Heat-treating the camelina meal can decrease glucosinolates and remove residual solvent in the solvent-extracted meal. The fungal fermentation of canola meal has also decreased glucosinolates, which could be used in camelina meal as well. The selective breeding of camelina varieties to decrease glucosinolates in the plant is also a solution to the high glucosinolates found in camelina meal. Current feed regulations in the US and Canada limit camelina meal to 10% inclusion in broiler chicken, laying hen, and cattle diets. Full article
(This article belongs to the Special Issue Latest Updates in Livestock Nutrition, Processing and Breeding)
Show Figures

Figure 1

Back to TopTop