Human Health Benefits and Microbial Consortium of Stevia Fermented with Barley Nuruk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Stevia Ferments and Extracts
2.3. Antioxidant Capacity
2.4. Antidiabetic Capacity
2.5. Anti-Inflammatory Capacity
2.6. Qualitative Analysis of the Stevia Ferments
2.7. Amplification and Sequencing
2.8. Human Skin Irritation Test
2.9. Statistical Analyses
3. Results and Discussion
3.1. Antioxidant and Antidiabetic Capacity of Stevia Ferments
3.2. Anti-Inflammatory Capacity of Stevia Ferments
3.3. Qualitative Analysis of the Stevia Ferments
3.4. Raw Data Statistics
3.5. Analysis of Microbial Communities
3.6. Human Skin Primary Irritation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jeong, D.M.; Kim, H.J.; Jeon, M.S.; Yoo, S.J.; Moon, H.Y.; Jeon, E.J.; Jeon, C.O.; Eyun, S.I.; Kang, H.A. Genomic and functional features of yeast species in Korean traditional fermented alcoholic beverage and soybean products. FEMS Yeast Res. 2023, 23, foac066. [Google Scholar] [CrossRef]
- Kim, C.H. Study on the Dietary Culture of Confucism-Sauge-Zeuhn Rites in Korea, China and Japan. J. Korean Soc. Food Cult. 1997, 12, 155–172. [Google Scholar]
- Xia, Y.; Luo, H.; Wu, Z.; Zhang, W. Microbial diversity in jiuqu and its fermentation features: Saccharification, alcohol fermentation and flavors generation. Appl. Microbiol. Biotechnol. 2023, 107, 25–41. [Google Scholar] [CrossRef] [PubMed]
- Allwood, J.G.; Wakeling, L.T.; Bean, D.C. Fermentation and the microbial community of Japanese koji and miso: A review. J. Food Sci. 2021, 86, 2194–2207. [Google Scholar] [CrossRef]
- Cha, J.; Park, S.E.; Kim, E.J.; Seo, S.H.; Cho, K.M.; Kwon, S.J.; Lee, M.H.; Son, H.S. Effects of saccharification agents on the microbial and metabolic profiles of Korean rice wine (makgeolli). Food Res. Int. 2023, 172, 113367. [Google Scholar] [CrossRef]
- Wong, B.; Muchangi, K.; Quach, E.; Chen, T.; Owens, A.; Otter, D.; Phillips, M.; Kam, R. Characterisation of Korean rice wine (makgeolli) prepared by different processing methods. Curr. Res. Food Sci. 2022, 6, 100420. [Google Scholar] [CrossRef] [PubMed]
- Bal, J.; Yun, S.H.; Yeo, S.H.; Kim, J.M.; Kim, B.T.; Kim, D.H. Effects of initial moisture content of Korean traditional wheat-based fermentation starter nuruk on microbial abundance and diversity. Appl. Microbiol. Biotechnol. 2017, 101, 2093–2106. [Google Scholar] [CrossRef]
- Jung, M.J.; Nam, Y.D.; Roh, S.W.; Bae, J.W. Unexpected convergence of fungal and bacterial communities during fermentation of traditional Korean alcoholic beverages inoculated with various natural starters. Food Microbiol. 2012, 30, 112–123. [Google Scholar] [CrossRef]
- Hyun, S.B.; Hyun, C.G. Anti-Inflammatory Effects and Their Correlation with Microbial Community of Shindari, a Traditional Jeju Beverage. Fermentation 2020, 6, 87. [Google Scholar] [CrossRef]
- Chung, Y.C.; Ko, J.H.; Kang, H.K.; Kim, S.; Kang, C.I.; Lee, J.N.; Park, S.M.; Hyun, C.G. Antimelanogenic Effects of Polygonum tinctorium Flower Extract from Traditional Jeju Fermentation via Upregulation of Extracellular Signal-Regulated Kinase and Protein Kinase B Activation. Int. J. Mol. Sci. 2018, 19, 2895. [Google Scholar] [CrossRef] [PubMed]
- Salvadori, M.; Rosso, G. Update on the gut microbiome in health and diseases. World J. Methodol. 2024, 14, 89196. [Google Scholar] [CrossRef] [PubMed]
- Malakar, S.; Sutaoney, P.; Madhyastha, H.; Shah, K.; Chauhan, N.S.; Banerjee, P. Understanding gut microbiome-based machine learning platforms: A review on therapeutic approaches using deep learning. Chem. Biol. Drug. Des. 2024, 103, e14505. [Google Scholar] [CrossRef] [PubMed]
- Kahraman-Ilıkkan, Ö. Microbiome composition of kombucha tea from Türkiye using high-throughput sequencing. J. Food Sci. Technol. 2023, 60, 1826–1833. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; D’Amico, D.J. Composition, Succession, and Source Tracking of Microbial Communities throughout the Traditional Production of a Farmstead Cheese. mSystems 2021, 6, e0083021. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.; Lee, S.; Park, H.; Jo, S.; Kim, S.; Rahim, M.A.; Ul-Haq, A.; Barman, I.; Lee, Y.; Seo, A.; et al. Characteristics and Microbiome Profiling of Korean Gochang Bokbunja Vinegar by the Fermentation Process. Foods 2022, 11, 3308. [Google Scholar] [CrossRef] [PubMed]
- Park, D.G.; Ha, E.S.; Kang, B.; Choi, I.; Kwak, J.E.; Choi, J.; Park, J.; Lee, W.; Kim, S.H.; Kim, S.H.; et al. Development and Evaluation of a Next-Generation Sequencing Panel for the Multiple Detection and Identification of Pathogens in Fermented Foods. J. Microbiol. Biotechnol. 2023, 33, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Heo, S.; Na, H.E.; Lee, G.; Kim, J.H.; Kwak, M.S.; Sung, M.H.; Jeong, D.W. Bacterial Community of Galchi-Baechu Kimchi Based on Culture-Dependent and—Independent Investigation and Selection of Starter Candidates. J. Microbiol. Biotechnol. 2022, 32, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Song, E.J.; Lee, E.S.; Park, S.L.; Choi, H.J.; Roh, S.W.; Nam, Y.D. Bacterial community analysis in three types of the fermented seafood, jeotgal, produced in South Korea. Biosci. Biotechnol. Biochem. 2018, 82, 1444–1454. [Google Scholar] [CrossRef] [PubMed]
- Schiatti-Sisó, I.P.; Quintana, S.E.; García-Zapateiro, L.A. Stevia (Stevia rebaudiana) as a common sugar substitute and its application in food matrices: An updated review. J. Food Sci. Technol. 2023, 60, 1483–1492. [Google Scholar] [CrossRef]
- Hollá, M.; Šatínský, D.; Švec, F.; Sklenářová, H. UHPLC coupled with charged aerosol detector for rapid separation of steviol glycosides in commercial sweeteners and extract of Stevia rebaudiana. J. Pharm. Biomed. Anal. 2022, 207, 114398. [Google Scholar] [CrossRef]
- Mert Ozupek, N.; Cavas, L. Modelling of multilinear gradient retention time of bio-sweetener rebaudioside A in HPLC analysis. Anal. Biochem. 2021, 627, 114248. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Xie, T.; Wu, Q.; Hu, Z.; Luo, Y.; Luo, F. Alpha-Glucosidase Inhibitory Peptides: Sources, Preparations, Identifications, and Action Mechanisms. Nutrients 2023, 15, 4267. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Saini, R.; Bhatnagar, A.; Mishra, A. Exploring plant-based alpha-glucosidase inhibitors: Promising contenders for combatting type-2 diabetes. Arch. Physiol. Biochem. 2023, 28, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Ren, F.; Ji, N.; Zhu, Y. Research Progress of α-Glucosidase Inhibitors Produced by Microorganisms and Their Applications. Foods 2023, 12, 3344. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Choi, S.I.; Men, X.; Lee, S.J.; Oh, G.; Jin, H.; Oh, H.J.; Kim, E.; Kim, J.; Lee, B.Y.; et al. Radical Scavenging-Linked Anti-Obesity Effect of Standardized Ecklonia stolonifera Extract on 3T3-L1 Preadipocytes and High-Fat Diet-Fed ICR Mice. J. Med. Food. 2023, 26, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Chaipoot, S.; Punfa, W.; Ounjaijean, S.; Phongphisutthinant, R.; Kulprachakarn, K.; Parklak, W.; Phaworn, L.; Rotphet, P.; Boonyapranai, K. Antioxidant, Anti-Diabetic, Anti-Obesity, and Antihypertensive Properties of Protein Hydrolysate and Peptide Fractions from Black Sesame Cake. Molecules 2022, 28, 211. [Google Scholar] [CrossRef]
- Peng, M.; Gao, Z.; Liao, Y.; Guo, J.; Shan, Y. Development of Citrus-Based Functional Jelly and an Investigation of Its Anti-Obesity and Antioxidant Properties. Antioxidants 2022, 11, 2418. [Google Scholar] [CrossRef]
- Bae, S.; Hyun, C.G. The Effects of 2′-Hydroxy-3,6′-Dimethoxychalcone on Melanogenesis and Inflammation. Int. J. Mol. Sci. 2023, 24, 10393. [Google Scholar] [CrossRef]
- Lee, Y.; Hyun, C.G. Anti-Inflammatory Effects of Psoralen Derivatives on RAW264.7 Cells via Regulation of the NF-κB and MAPK Signaling Pathways. Int. J. Mol. Sci. 2022, 23, 5813. [Google Scholar] [CrossRef]
- Hyun, S.B.; Chung, Y.C.; Hyun, C.G. Nojirimycin suppresses inflammation via regulation of NF-κ B signaling pathways. Pharmazie 2020, 75, 637–641. [Google Scholar] [CrossRef]
- Kang, J.K.; Hyun, C.G. 4-Hydroxy-7-Methoxycoumarin Inhibits Inflammation in LPS-activated RAW264.7 Macrophages by Suppressing NF-κB and MAPK Activation. Molecules 2020, 25, 4424. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Park, J.S.; Chung, Y.C.; Jang, S.; Hyun, C.G.; Kim, S.Y. Anti-Inflammatory Effects of Formononetin 7-O-phosphate, a Novel Biorenovation Product, on LPS-Stimulated RAW 264.7 Macrophage Cells. Molecules 2019, 24, 3910. [Google Scholar] [CrossRef] [PubMed]
- Yoon, W.J.; Moon, J.Y.; Song, G.; Lee, Y.K.; Han, M.S.; Lee, J.S.; Ihm, B.S.; Lee, W.J.; Lee, N.H.; Hyun, C.G. Artemisia fukudo essential oil attenuates LPS-induced inflammation by suppressing NF-kappaB and MAPK activation in RAW 264.7 macrophages. Food Chem. Toxicol. 2010, 48, 1222–1229. [Google Scholar] [CrossRef]
- Yoon, W.J.; Ham, Y.M.; Yoo, B.S.; Moon, J.Y.; Koh, J.; Hyun, C.G. Oenothera laciniata inhibits lipopolysaccharide induced production of nitric oxide, prostaglandin E2, and proinflammatory cytokines in RAW264.7 macrophages. J. Biosci. Bioeng. 2009, 107, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Penland, S.N.; Morrow, A.L. 3alpha,5beta-Reduced cortisol exhibits antagonist properties on cerebral cortical GABA(A) receptors. Eur. J. Pharmacol. 2004, 506, 129–132. [Google Scholar] [CrossRef]
- Farh, M.E.; Abdellaoui, N.; Seo, J.A. pH Changes Have a Profound Effect on Gene Expression, Hydrolytic Enzyme Production, and Dimorphism in Saccharomycopsis fibuligera. Front. Microbiol. 2021, 12, 672661. [Google Scholar] [CrossRef]
- Carroll, E.; Trinh, T.N.; Son, H.; Lee, Y.W.; Seo, J.A. Comprehensive analysis of fungal diversity and enzyme activity in nuruk, a Korean fermenting starter, for acquiring useful fungi. J. Microbiol. 2017, 55, 357–365. [Google Scholar] [CrossRef]
- Lin, T.S.; Chiu, S.H.; Chen, C.C.; Lin, C.H. Investigation of monacolin K, yellow pigments, and citrinin production capabilities of Monascus purpureus and Monascus ruber (Monascus pilosus). J. Food Drug Anal. 2023, 31, 85–94. [Google Scholar] [CrossRef]
- Pérez-Rivero, C.; López-Gómez, J.P. Unlocking the Potential of Fermentation in Cosmetics: A Review. Fermentation 2023, 9, 463. [Google Scholar] [CrossRef]
- Suckling, J.; Morse, S.; Murphy, R.; Astley, S.; Halford, J.C.G.; Harrold, J.A.; Le-Bail, A.; Koukouna, E.; Musinovic, H.; Perret, J.; et al. Environmental life cycle assessment of production of the high intensity sweetener steviol glycosides from Stevia rebaudiana leaf grown in Europe: The SWEET project. Int. J. Life Cycle Assess. 2023, 28, 221–233. [Google Scholar] [CrossRef] [PubMed]
Grade | Description of Clinical Observation |
---|---|
+1 | Slight erythema |
+2 | Moderate erythema, possibly with barely perceptible edema at the margin; papules may be present |
+3 | Moderate erythema with generalized edema |
+4 | Severe erythema with severe edema, with or without vesicles |
+5 | Severe reaction spread beyond the area of the patch |
No | RT (Min) | Proposed Compound | Exact Mass (M-H) | MS Fragments |
---|---|---|---|---|
1 | 2.81 | Chlorogenic acid | 353.0873 | 191, 135 |
2 | 3.09 | Patuletin-3-O-(4″-O-acetyl-α-L-rhamnopyranosyl)-7-O-(2‴-O-acetyl-α-L-rhamnopyranoside) | 707.1832 | 191, 173, 93 |
3 | 3.81 | Quercitrin | 447.0925 | 300, 151 |
4 | 3.87 | Cynarine | 515.1188 | 353, 173 |
5 | 4.28 | 3,4,5-Tricaffeoylquinic acid | 677.1512 | 515, 353 |
6 | 4.41 | Quercetin | 301.0346 | 151 |
7 | 4.47 | Rebaudioside A | 965.4258 | 623 |
8 | 4.50 | Rubusoside/steviolbioside | 641.3182 | 479, 317 |
9 | 4.63 | Rebaudioside C | 949.4308 | 713 |
10 | 4.94 | Stevioside | 803.3720 | 623 |
11 | 5.00 | Rubusoside/steviolbioside | 641.3180 | 179, 317 |
12 | 5.06 | Dulcoside A | 787.3773 | 625 |
13 | 5.91 | 15,16-Dihode/9(S)-Hpode | 311.2220 | 293, 223, 87 |
14 | 6.84 | 9-Hode | 295.2271 | 277, 185 |
15 | 7.25 | 10-Ketostearic acid/methyl palmoxirate | 297.2430 | 279, 185, 167 |
16 | 7.66 | Hydroxystearic acid | 299.2586 | 281, 253, 141 |
No | RT (Min) | Proposed Compound | Exact Mass (M-H) | MS Fragments |
---|---|---|---|---|
1 | 2.81 | Chlorogenic acid | 353.0870 | 191, 135 |
2 | 3.09 | Patuletin-3-O-(4″-O-acetyl-α-L-rhamnopyranosyl)-7-O-(2‴-O-acetyl-α-L-rhamnopyranoside) | 707.1835 | 191, 173, 93 |
3 | 3.78 | Cynarine | 515.1184 | 353, 173 |
4 | 3.99 | Rebaudioside E/rebaudioside A | 965.4249 | 845, 641 |
5 | 4.04 | Rebaudioside I/rebaudioside D | 1127.4772 | 1111, 803 |
6 | 4.27 | 3,4,5-Tricaffeoylquinic acid | 677.1516 | 515, 353 |
7 | 4.38 | Luteolin/kaempferol | 285.0399 | 133 |
8 | 4.40 | Quercetin | 301.0346 | 151 |
9 | 4.47 | Rebaudioside E/rebaudioside A | 965.4256 | 623 |
10 | 4.50 | Rubusoside/steviolbioside | 641.3181 | 611, 317 |
11 | 4.58 | Rebaudioside F | 935.4149 | 611 |
12 | 4.63 | Dulcoside A | 787.3771 | 625 |
13 | 4.67 | Phlomisoside II | 625.3226 | 661, 449 |
14 | 4.71 | Rebaudioside B/rebaudioside G/rubusoside | 803.3726 | 641, 611, 317 |
15 | 4.94 | Rebaudioside B/rebaudioside G/rubusoside | 803.3724 | 641, 611, 317 |
16 | 5.00 | Rubusoside/steviolbioside | 641.3175 | 479, 317 |
17 | 5.03 | (−)-Pinellic acid | 329.2329 | 229, 211, 171, 139 |
18 | 5.06 | Chrysosplenol D/jaceidin | 359.0772 | 344, 329 |
19 | 5.35 | Tetrahydro-11-deoxy Cortisol 3-O-β-D-Glucuronide | 525.2702 | 317, 171 |
Samples | Total Bases (bp) 1 | Total Reads 2 | GC (%) 3 | AT (%) 4 | Q20 (%) 5 | Q30 (%) 6 |
---|---|---|---|---|---|---|
TSB 1_16S | 62,594,154 | 207,954 | 54.85 | 45.15 | 90.08 | 79.46 |
TSB 1_ITS | 60,307,156 | 200,356 | 50.84 | 49.16 | 88.05 | 76.64 |
TSB 3_16S | 65,093,056 | 216,256 | 54.79 | 45.21 | 89.90 | 79.16 |
TSB 3_ITS | 75,572,070 | 251,070 | 58.14 | 41.86 | 85.17 | 72.54 |
TSB 5_16S | 79,682,526 | 264,726 | 54.50 | 45.50 | 89.50 | 78.75 |
TSB 5_ITS | 93,429,798 | 310,398 | 39.35 | 60.65 | 93.20 | 84.93 |
Sucrose 1_16S | 56,846,258 | 188,858 | 55.20 | 44.80 | 89.97 | 79.08 |
Sucrose 1_ITS | 65,697,464 | 218,264 | 38.61 | 61.39 | 92.81 | 84.21 |
Sucrose 3_16S | 54,704,944 | 181,744 | 53.01 | 46.99 | 90.16 | 79.60 |
Sucrose 3_ITS | 66,342,206 | 220,406 | 38.46 | 61.54 | 92.36 | 83.00 |
Sucrose 5_16S | 53,721,276 | 178,476 | 51.94 | 48.06 | 90.92 | 80.86 |
Sucrose 5_ITS | 52,744,230 | 175,230 | 40.61 | 59.39 | 91.34 | 81.21 |
Species | TSB 1 (16S) | TSB 3 (16S) | TSB 5 (16S) | Suc 1 (16S) | Suc 3 (16S) | Suc 5 (16S) |
---|---|---|---|---|---|---|
Corynebacterium nuruki | 0.02% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% |
Brachybacterium nesterenkovii | 0.01% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% |
Saccharopolyspora phatthalungensis | 0.05% | 0.00% | 0.01% | 0.02% | 0.00% | 0.00% |
Streptomyces cacaoi | 0.07% | 0.01% | 0.00% | 0.01% | 0.01% | 0.00% |
Aerosakkonema funiforme | 0.00% | 0.00% | 0.00% | 0.03% | 0.06% | 0.01% |
Bacillus inaquosorum | 0.00% | 0.00% | 0.00% | 0.00% | 0.04% | 0.00% |
Bacillus velezensis | 0.02% | 0.00% | 0.00% | 0.05% | 0.00% | 0.00% |
Staphylococcus gallinarum | 0.02% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% |
Staphylococcus kloosii | 0.04% | 0.00% | 0.01% | 0.00% | 0.00% | 0.00% |
Enterococcus gallinarum | 0.09% | 2.71% | 14.28% | 0.00% | 0.00% | 0.00% |
Enterococcus hirae | 58.93% | 19.24% | 18.06% | 0.63% | 0.06% | 0.00% |
Enterococcus lactis | 0.55% | 0.08% | 0.00% | 0.00% | 0.00% | 0.00% |
Pediococcus pentosaceus | 1.22% | 1.96% | 1.71% | 13.25% | 29.38% | 22.71% |
Pediococcus stilesii | 2.58% | 13.77% | 19.89% | 0.20% | 40.04% | 73.37% |
Buttiauxella warmboldiae | 0.83% | 0.14% | 0.17% | 0.00% | 0.00% | 0.00% |
Cronobacter dublinensis | 0.00% | 0.00% | 0.00% | 0.15% | 0.08% | 0.00% |
Cronobacter sakazakii | 16.65% | 52.21% | 33.07% | 80.92% | 29.12% | 2.98% |
Enterobacter cloacae | 1.04% | 0.77% | 0.91% | 0.30% | 0.18% | 0.14% |
Enterobacter mori | 1.00% | 0.46% | 0.52% | 0.17% | 0.10% | 0.05% |
Klebsiella oxytoca | 0.13% | 0.03% | 0.02% | 0.00% | 0.00% | 0.00% |
Klebsiella pneumoniae | 3.78% | 2.61% | 4.14% | 0.00% | 0.21% | 0.35% |
Klebsiella variicola | 4.79% | 2.75% | 4.24% | 0.01% | 0.17% | 0.39% |
Kosakonia cowanii | 7.97% | 3.23% | 2.86% | 1.70% | 0.43% | 0.00% |
Phytobacter diazotrophicus | 0.00% | 0.00% | 0.00% | 0.02% | 0.00% | 0.00% |
Pseudescherichia vulneris | 0.17% | 0.02% | 0.05% | 0.00% | 0.00% | 0.00% |
Salmonella bongori | 0.00% | 0.01% | 0.00% | 0.00% | 0.00% | 0.00% |
Erwinia billingiae | 0.00% | 0.00% | 0.00% | 0.42% | 0.00% | 0.00% |
Erwinia gerundensis | 0.00% | 0.00% | 0.00% | 0.02% | 0.00% | 0.00% |
Erwinia persicina | 0.00% | 0.00% | 0.00% | 0.04% | 0.00% | 0.00% |
Mixta calida | 0.00% | 0.00% | 0.00% | 0.10% | 0.00% | 0.00% |
Pantoea agglomerans | 0.00% | 0.00% | 0.05% | 0.08% | 0.04% | 0.00% |
Pantoea vagans | 0.00% | 0.00% | 0.00% | 1.72% | 0.00% | 0.00% |
[Curtobacterium] plantarum | 0.02% | 0.00% | 0.00% | 0.10% | 0.05% | 0.00% |
Other | 0.00% | 0.00% | 0.01% | 0.01% | 0.05% | 0.01% |
Species | TSB 1 (ITS) | TSB 3 (ITS) | TSB 5 (ITS) | Suc 1 (ITS) | Suc 3 (ITS) | Suc 5 (ITS) |
---|---|---|---|---|---|---|
Other | 0.03% | 0.08% | 0.00% | 0.00% | 0.00% | 0.00% |
Stemphylium sp. | 0.00% | 0.02% | 0.00% | 0.00% | 0.00% | 0.00% |
Aspergillus sp. | 0.50% | 1.93% | 0.14% | 0.00% | 0.00% | 0.00% |
Aspergillus amstelodami | 0.60% | 2.72% | 0.19% | 0.09% | 0.00% | 0.00% |
Aspergillus flavus | 0.00% | 0.00% | 0.00% | 0.03% | 0.00% | 0.00% |
Monascus purpureus | 1.82% | 7.88% | 0.12% | 0.13% | 0.01% | 0.00% |
Thermomyces sp. | 0.00% | 0.03% | 0.00% | 0.00% | 0.00% | 0.00% |
Hyphopichia burtonii | 0.08% | 0.14% | 0.00% | 0.00% | 0.00% | 0.00% |
Millerozyma farinosa | 0.01% | 0.00% | 0.00% | 0.01% | 0.00% | 0.00% |
Kodamaea ohmeri | 0.07% | 0.15% | 0.01% | 0.00% | 0.00% | 0.00% |
Issatchenkia orientalis | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.33% |
Candida parapsilosis | 0.00% | 0.12% | 0.00% | 0.00% | 0.00% | 0.00% |
Saccharomycopsis fibuligera | 96.37% | 86.14% | 99.54% | 99.69% | 99.99% | 99.67% |
Trichomonascus ciferrii | 0.01% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% |
Lichtheimia corymbifera | 0.47% | 0.79% | 0.01% | 0.02% | 0.00% | 0.00% |
Rhizomucor pusillus | 0.05% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% |
Rhizopus microsporus | 0.00% | 0.00% | 0.00% | 0.04% | 0.00% | 0.00% |
Test Samples | No. of Responder | 20 min after Patch Removal | 24 h after Patch Removal | Reaction Grade (R) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
+1 | +2 | +3 | +4 | +1 | +2 | +3 | +4 | ||||
1 | TSB 1 (1 mg/mL) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | TSB 3 (1 mg/mL) | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0.4 |
3 | TSB 5 (1 mg/mL) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | Suc 1 (1 mg/mL) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | Suc 3 (1 mg/mL) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | Suc 5 (1 mg/mL) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, H.-J.; Ko, M.N.; Shin, C.S.; Hyun, C.-G. Human Health Benefits and Microbial Consortium of Stevia Fermented with Barley Nuruk. Fermentation 2024, 10, 330. https://doi.org/10.3390/fermentation10070330
Han H-J, Ko MN, Shin CS, Hyun C-G. Human Health Benefits and Microbial Consortium of Stevia Fermented with Barley Nuruk. Fermentation. 2024; 10(7):330. https://doi.org/10.3390/fermentation10070330
Chicago/Turabian StyleHan, Hyun-Ju, Min Nyeong Ko, Chan Seong Shin, and Chang-Gu Hyun. 2024. "Human Health Benefits and Microbial Consortium of Stevia Fermented with Barley Nuruk" Fermentation 10, no. 7: 330. https://doi.org/10.3390/fermentation10070330
APA StyleHan, H. -J., Ko, M. N., Shin, C. S., & Hyun, C. -G. (2024). Human Health Benefits and Microbial Consortium of Stevia Fermented with Barley Nuruk. Fermentation, 10(7), 330. https://doi.org/10.3390/fermentation10070330