Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (292)

Search Parameters:
Keywords = anti-Alzheimer’s disease agents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1680 KiB  
Review
Microtubule-Targeting Agents: Advances in Tubulin Binding and Small Molecule Therapy for Gliomas and Neurodegenerative Diseases
by Maya Ezzo and Sandrine Etienne-Manneville
Int. J. Mol. Sci. 2025, 26(15), 7652; https://doi.org/10.3390/ijms26157652 (registering DOI) - 7 Aug 2025
Abstract
Microtubules play a key role in cell division and cell migration. Thus, microtubule-targeting agents (MTAs) are pivotal in cancer therapy due to their ability to disrupt cell division microtubule dynamics. Traditionally divided into stabilizers and destabilizers, MTAs are increasingly being repurposed for central [...] Read more.
Microtubules play a key role in cell division and cell migration. Thus, microtubule-targeting agents (MTAs) are pivotal in cancer therapy due to their ability to disrupt cell division microtubule dynamics. Traditionally divided into stabilizers and destabilizers, MTAs are increasingly being repurposed for central nervous system (CNS) applications, including brain malignancies such as gliomas and neurodegenerative diseases like Alzheimer’s and Parkinson’s. Microtubule-stabilizing agents, such as taxanes and epothilones, promote microtubule assembly and have shown efficacy in both tumour suppression and neuronal repair, though their CNS use is hindered by blood–brain barrier (BBB) permeability and neurotoxicity. Destabilizing agents, including colchicine-site and vinca domain binders, offer potent anticancer effects but pose greater risks for neuronal toxicity. This review highlights the mapping of nine distinct tubulin binding pockets—including classical (taxane, vinca, colchicine) and emerging (tumabulin, pironetin) sites—that offer new pharmacological entry points. We summarize the recent advances in structural biology and drug design, enabling MTAs to move beyond anti-mitotic roles, unlocking applications in both cancer and neurodegeneration for next-generation MTAs with enhanced specificity and BBB penetration. We further discuss the therapeutic potential of combination strategies, including MTAs with radiation, histone deacetylase (HDAC) inhibitors, or antibody–drug conjugates, that show synergistic effects in glioblastoma models. Furthermore, innovative delivery systems like nanoparticles and liposomes are enhancing CNS drug delivery. Overall, MTAs continue to evolve as multifunctional tools with expanding applications across oncology and neurology, with future therapies focusing on optimizing efficacy, reducing toxicity, and overcoming therapeutic resistance in brain-related diseases. Full article
(This article belongs to the Special Issue New Drugs Regulating Cytoskeletons in Human Health and Diseases)
Show Figures

Figure 1

24 pages, 2082 KiB  
Review
Exploring the Pharmacological Landscape of Undaria pinnatifida: Insights into Neuroprotective Actions and Bioactive Constituents
by Helena Machado, Jorge Pereira Machado, Christian Alves, Cristina Soares, Clara Grosso, Jorge Magalhães Rodrigues and Maria Begoña Criado
Nutraceuticals 2025, 5(3), 20; https://doi.org/10.3390/nutraceuticals5030020 - 24 Jul 2025
Viewed by 427
Abstract
The marine seaweed Undaria pinnatifida belongs to the large group of brown macroalgae (Ochrophyta) and is valued both as a nutritious food and a source of pharmaceutical compounds. It has been widely consumed in East Asia as part of the traditional [...] Read more.
The marine seaweed Undaria pinnatifida belongs to the large group of brown macroalgae (Ochrophyta) and is valued both as a nutritious food and a source of pharmaceutical compounds. It has been widely consumed in East Asia as part of the traditional diet and is generally regarded as a “healthy longevity food.” Consequently, it represents one of the most promising natural sources of biomedicinal and bioactive products. This review aims to synthesize current scientific evidence on the pharmacologically active compounds of U. pinnatifida, emphasizing their mechanisms of action and therapeutic potential in neurodegenerative and chronic diseases. This narrative review is based on a comprehensive literature search of peer-reviewed articles from scientific databases, focusing on studies addressing the pharmacological properties of U. pinnatifida and its major bioactive constituents. Recent research highlights that compounds such as fucoxanthin (a carotenoid), fucosterol (a sterol), fucoidan (a polysaccharide), alginate, and dietary fiber found in U. pinnatifida possess significant potential for developing treatments for conditions including goitre, urinary diseases, scrofula, dropsy, stomach ailments, and hemorrhoids. Moreover, these compounds exhibit remarkable pharmacological properties, including immunomodulation, antitumor, antiviral, antioxidant, antidiabetic, anti-inflammatory, anticoagulant, antithrombotic, and antibacterial activities, all with low toxicity and minimal side effects. Additionally, U. pinnatifida shows promise in the treatment or prevention of neurodegenerative diseases such as Alzheimer’s and Parkinson’s, as well as neuropsychiatric conditions like depression, supported by its antioxidant effects against oxidative stress and neuroprotective activities. Numerous in vitro and in vivo studies have confirmed that U. pinnatifida polysaccharides (UPPs), particularly fucoidans, exhibit significant biological activities. Thus, accumulating evidence positions UPPs as promising therapeutic agents for a variety of diseases. Full article
Show Figures

Figure 1

19 pages, 753 KiB  
Review
Neuroprotective Role of Omega-3 Fatty Acids: Fighting Alzheimer’s Disease
by Mervin Chávez-Castillo, María Paula Gotera, Pablo Duran, María P. Díaz, Manuel Nava, Clímaco Cano, Edgar Díaz-Camargo, Gabriel Cano, Raquel Cano, Diego Rivera-Porras and Valmore Bermúdez
Molecules 2025, 30(15), 3057; https://doi.org/10.3390/molecules30153057 - 22 Jul 2025
Viewed by 612
Abstract
Alzheimer’s disease (AD) is one of the main causes of dementia, with an exponential increment in its incidence as years go by. However, since pathophysiological mechanisms are complex and multifactorial, therapeutic strategies remain inconclusive and only provide symptomatic relief to patients. In order [...] Read more.
Alzheimer’s disease (AD) is one of the main causes of dementia, with an exponential increment in its incidence as years go by. However, since pathophysiological mechanisms are complex and multifactorial, therapeutic strategies remain inconclusive and only provide symptomatic relief to patients. In order to solve this problem, new strategies have been investigated over recent years for AD treatment. This field has been reborn due to epidemiological and preclinical findings that demonstrate the fact that omega-3 polyunsaturated fatty acids (ω-3 PUFAs) can be promising therapeutic agents because of their anti-inflammatory, antioxidant, and neurogenic-promoting activities, thus allowing us to classify these molecules as neuroprotectors. Similarly, ω-3 PUFAs perform important actions in the formation of characteristic AD lesions, amyloid-β plaques (Aβ) and neurofibrillary tangles, reducing the development of these structures. Altogether, the aforementioned actions hinder cognitive decline and possibly reduce AD development. In addition, ω-3 PUFAs modulate the inflammatory response by inhibiting the production of pro-inflammatory molecules and promoting the synthesis of specialised pro-resolving mediators. Consequently, the present review assesses the mechanisms by which ω-3 PUFAs can act as therapeutic molecules and the effectiveness of their use in patients. Clinical evidence so far has shown promising results on ω-3 PUFA effects, both in animal and epidemiological studies, but remains contradictory in clinical trials. More research on these molecules and their neuroprotective effects in AD is needed, as well as the establishment of future guidelines to obtain more reproducible results on this matter. Full article
Show Figures

Figure 1

19 pages, 1204 KiB  
Review
Immunomodulatory Effects of RAAS Inhibitors: Beyond Hypertension and Heart Failure
by Raluca Ecaterina Haliga, Elena Cojocaru, Oana Sîrbu, Ilinca Hrițcu, Raluca Elena Alexa, Ioana Bianca Haliga, Victorița Șorodoc and Adorata Elena Coman
Biomedicines 2025, 13(7), 1779; https://doi.org/10.3390/biomedicines13071779 - 21 Jul 2025
Viewed by 496
Abstract
The renin–angiotensin–aldosterone system (RAAS) plays a central role in cardiovascular and renal homeostasis and is increasingly recognized for its broad immunomodulatory effects. Pharmacological RAAS inhibition, primarily via angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), has demonstrated therapeutic value beyond its use [...] Read more.
The renin–angiotensin–aldosterone system (RAAS) plays a central role in cardiovascular and renal homeostasis and is increasingly recognized for its broad immunomodulatory effects. Pharmacological RAAS inhibition, primarily via angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), has demonstrated therapeutic value beyond its use in hypertension and heart failure, extending to autoimmune, infectious, oncologic, and neurodegenerative conditions. ACEIs and ARBs modulate both innate and adaptive immune responses through Ang II-dependent and -independent mechanisms, influencing macrophage polarization, T-cell differentiation, cytokine expression, and antigen presentation. Notably, ACEIs exhibit Ang II-independent effects by enhancing antigen processing and regulating amyloid-β metabolism, offering potential neuroprotective benefits in Alzheimer’s disease. ARBs, particularly telmisartan and candesartan, provide additional anti-inflammatory effects via PPARγ activation. In cancer, RAAS inhibition affects tumor growth, angiogenesis, and immune surveillance, with ACEIs and ARBs showing distinct yet complementary impacts on tumor microenvironment modulation and chemotherapy cardioprotection. Moreover, ACEIs have shown promise in autoimmune myocarditis, colitis, and diabetic nephropathy by attenuating inflammatory cytokines. While clinical evidence supports the use of centrally acting ACEIs to treat early cognitive decline, further investigation is warranted to determine the long-term outcomes across disease contexts. These findings highlight the evolving role of RAAS inhibitors as immunomodulatory agents with promising implications across multiple systemic pathologies. Full article
(This article belongs to the Special Issue Renin-Angiotensin System in Cardiovascular Biology, 2nd Edition)
Show Figures

Figure 1

35 pages, 3582 KiB  
Review
Polyphenols in the Central Nervous System: Cellular Effects and Liposomal Delivery Approaches
by Mateusz Kaluza, Dominika Ksiazek-Winiarek, Piotr Szpakowski, Joanna Czpakowska, Julia Fijalkowska and Andrzej Glabinski
Int. J. Mol. Sci. 2025, 26(13), 6477; https://doi.org/10.3390/ijms26136477 - 4 Jul 2025
Viewed by 827
Abstract
Neurodegenerative and neuroinflammatory diseases of the central nervous system are closely linked to aging and sustained oxidative and inflammatory stress. Polyphenols, plant-derived secondary metabolites, exhibit broad biological activities, including antioxidant and anti-inflammatory effects, the modulation of pathways such as PI3K/Akt, MAPK, Nrf2, and [...] Read more.
Neurodegenerative and neuroinflammatory diseases of the central nervous system are closely linked to aging and sustained oxidative and inflammatory stress. Polyphenols, plant-derived secondary metabolites, exhibit broad biological activities, including antioxidant and anti-inflammatory effects, the modulation of pathways such as PI3K/Akt, MAPK, Nrf2, and CREB, and the regulation of neurogenesis and microglial activation. This review focuses on the cell-specific actions of selected polyphenols in neurons, astrocytes, microglia, and oligodendrocytes within the context of Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. A major limitation to the therapeutic use of polyphenols is their poor bioavailability, due to instability, low solubility, and limited blood–brain barrier penetration. Liposomal nanocarriers are explored as promising delivery systems to overcome these barriers. Both conventional and functionalized liposomes (e.g., PEGylated, receptor-targeted) are discussed, alongside in vitro and in vivo studies demonstrating enhanced efficacy compared to free compounds. Intranasal delivery is also presented as a viable alternative to oral administration. Overall, polyphenols offer great potential as neuroprotective agents, and liposome-based delivery platforms have the potential to significantly enhance their clinical potential, provided that key formulation and targeting issues are addressed. Full article
(This article belongs to the Special Issue Plant-Derived Bioactive Compounds for Pharmacological Applications)
Show Figures

Figure 1

25 pages, 11349 KiB  
Article
Uric Acid, the End-Product of Purine Metabolism, Mitigates Tau-Related Abnormalities: Comparison with DOT, a Non-Antibiotic Oxytetracycline Derivative
by Bianca Andretto de Mattos, Rodrigo Hernán Tomas-Grau, Thaís Antonia Alves Fernandes, Florencia González-Lizárraga, Aurore Tourville, Ismaila Ciss, Jean-Michel Brunel, Rosana Chehin, Annie Lannuzel, Laurent Ferrié, Rita Raisman-Vozari, Bruno Figadère, Elaine Del Bel and Patrick Pierre Michel
Biomolecules 2025, 15(7), 941; https://doi.org/10.3390/biom15070941 - 28 Jun 2025
Viewed by 425
Abstract
We aimed to simulate tau abnormalities—specifically hyperphosphorylation and aggregation—that are hallmarks of tauopathies, including Alzheimer’s disease, to evaluate tau-targeting therapies. To model pathological p-tau accumulation at early disease stages, we exposed mouse cortical cultures to redox-active iron from hemin (Hm), a breakdown product [...] Read more.
We aimed to simulate tau abnormalities—specifically hyperphosphorylation and aggregation—that are hallmarks of tauopathies, including Alzheimer’s disease, to evaluate tau-targeting therapies. To model pathological p-tau accumulation at early disease stages, we exposed mouse cortical cultures to redox-active iron from hemin (Hm), a breakdown product of hemoglobin, or challenged them with the excitatory neurotransmitter glutamate. Using the AT8 phospho-specific antibody, we demonstrate that a subtoxic concentration of Hm (3 µM) promotes pathological p-tau accumulation in a subpopulation of cultured cortical neurons and their proximal neurites. Uric acid (UA; 0.1–200 µM), the metabolic end-product of purines in humans, prevented p-tau build-up. Neither xanthine, the immediate precursor of UA, nor allantoin, its oxidized product, reproduced this effect. Live cell imaging studies revealed that UA operates by repressing iron-driven lipid peroxidation. DOT (3 µM), a brain-permeant tetracycline (TC) without antibiotic activity, mimicked UA’s anti-tau and antioxidant effects. Interestingly, both UA and DOT remained effective in preventing p-tau accumulation induced by glutamate (10 µM). To simulate tau aggregation at more advanced disease stages, we conducted a Thioflavin-T aggregation assay. Our findings revealed that UA and DOT prevented tau aggregation seeded by heparin. However, only DOT remained effective when heparin-assembled tau fibrils were used as the seeding material. In summary, our results indicate that UA-elevating agents may hold therapeutic utility for tauopathies. The non-purine compound DOT could serve as an effective alternative to UA-related therapies. Full article
Show Figures

Figure 1

20 pages, 6758 KiB  
Article
Novel Au(I)- and Ag(I)-NHC Complexes with N-Boc-Protected Proline as Potential Candidates for Neurodegenerative Disorders
by Jessica Ceramella, Assunta D’Amato, Francesca Procopio, Annaluisa Mariconda, Daniel Chavarria, Domenico Iacopetta, Francesco Ortuso, Pasquale Longo, Fernanda Borges and Maria Stefania Sinicropi
Int. J. Mol. Sci. 2025, 26(13), 6116; https://doi.org/10.3390/ijms26136116 - 25 Jun 2025
Viewed by 407
Abstract
Neurodegenerative diseases (NDDs), including Alzheimer’s disease (AD) and Parkinson’s disease (PD), are characterized by progressive neuronal dysfunction and loss and represent a significant global health challenge. Oxidative stress, neuroinflammation, and neurotransmitter dysregulation, particularly affecting acetylcholine (ACh) and monoamines, are key hallmarks of these [...] Read more.
Neurodegenerative diseases (NDDs), including Alzheimer’s disease (AD) and Parkinson’s disease (PD), are characterized by progressive neuronal dysfunction and loss and represent a significant global health challenge. Oxidative stress, neuroinflammation, and neurotransmitter dysregulation, particularly affecting acetylcholine (ACh) and monoamines, are key hallmarks of these conditions. The current therapeutic strategies targeting cholinergic and monoaminergic systems have some limitations, highlighting the need for novel approaches. Metallodrugs, especially ruthenium and platinum complexes, are gaining attention for their therapeutic use. Among metal complexes, gold(I) and silver(I) N-heterocyclic carbene (NHC) complexes exhibit several biological activities, but their application in NDDs, particularly as monoamine oxidase (MAO) inhibitors, remains largely unexplored. To advance the understanding of this field, we designed, synthesized, and evaluated the biological activity of a new series of Au(I) and Ag(I) complexes stabilized by NHC ligands and bearing a carboxylate salt of tert-butyloxycarbonyl (Boc)-N-protected proline as an anionic ligand. Through in silico and in vitro studies, we assessed their potential as acetylcholinesterase (AChE) and MAO inhibitors, as well as their antioxidant and anti-inflammatory properties, aiming to contribute to the development of potential novel therapeutic agents for NDD management. Full article
Show Figures

Figure 1

20 pages, 1793 KiB  
Article
Anti-Amyloid Aggregation Effects of Gobaishi (Galla chinensis) and Its Active Constituents
by Sharmin Akter, Takayuki Tohge, Sahithya Hulimane Ananda, Masahiro Kuragano, Kiyotaka Tokuraku and Koji Uwai
Molecules 2025, 30(13), 2720; https://doi.org/10.3390/molecules30132720 - 24 Jun 2025
Viewed by 478
Abstract
Alzheimer′s disease (AD) is a chronic neurodegenerative disorder that leads to memory loss and changes in mental and behavioral functions in elderly individuals. A major pathological feature of AD is the aggregation of amyloid-beta (Aβ) peptides, along with oxidative stress, inducing neurocellular apoptosis [...] Read more.
Alzheimer′s disease (AD) is a chronic neurodegenerative disorder that leads to memory loss and changes in mental and behavioral functions in elderly individuals. A major pathological feature of AD is the aggregation of amyloid-beta (Aβ) peptides, along with oxidative stress, inducing neurocellular apoptosis in the brain. Gobaishi (Galla chinensis), a traditional herbal medicine, has gained considerable attention for its constituents and potent therapeutic properties, particularly its strong inhibitory activity against Aβ fibril formation. In this study, we investigated the anti-Aβ aggregation effects of Gobaishi and its active constituents. We isolated two compounds by employing Thioflavin T (ThT) assay-guided fractionation, which were identified through various spectroscopic methods as pentagalloyl glucose (PGG) and methyl gallate (MG). Evaluation of their anti-Aβ aggregation effects revealed that PGG and MG contribute 1.5% and 0.7% of the activity of Gobaishi, respectively. In addition, PGG demonstrated significantly stronger DPPH radical scavenging activity (EC50 = 1.16 µM) compared to MG (EC50 = 6.44 µM). At a concentration of 30 µM, PGG significantly reduced the Aβ-induced cytotoxicity in SH-SY5Y cell lines compared to MG. Based on these findings, both Gobaishi and its active compound PGG are proposed as promising candidates for further investigation as potent anti-amyloidogenic agents in AD management. Full article
Show Figures

Figure 1

29 pages, 600 KiB  
Review
The Occurrence and Bioactivities of Amaryllidaceae Alkaloids from Plants: A Taxonomy-Guided Genera-Wide Review
by G. David Lin, Pinky Vishwakarma, Paul N. Smith and Rachel W. Li
Plants 2025, 14(13), 1935; https://doi.org/10.3390/plants14131935 - 24 Jun 2025
Viewed by 737
Abstract
The distribution of Amaryllidaceae alkaloids, with a focus on their chemodiversity, has been reported previously, but not at a genera-wide diversity level. This review provides a comprehensive survey of the occurrence of Amaryllidaceae alkaloids across the genera of the Amaryllidaceae family. This survey [...] Read more.
The distribution of Amaryllidaceae alkaloids, with a focus on their chemodiversity, has been reported previously, but not at a genera-wide diversity level. This review provides a comprehensive survey of the occurrence of Amaryllidaceae alkaloids across the genera of the Amaryllidaceae family. This survey is taxonomically guided by the National Center for Biotechnology Information (NCBI) Taxonomy Browser, with targeted keyword searches conducted in the Chemical Abstracts Service (CAS) SciFinder-n and PubMed. The family Amaryllidaceae comprises over 1214 species across three subfamilies: Agapanthoideae (1 genus, 5 species), Allioideae (3 genera plus 11 subgenera, 617 species), and Amaryllidoideae (58 genera plus 13 subgenera, 592 species). Amaryllidaceae alkaloids have been identified exclusively in 36 of the 58 genera and 6 of the 13 subgenera within the Amaryllidoideae subfamily. To date, more than 600 Amaryllidaceae alkaloids have been isolated, predominantly from this subfamily—hence the designation “Amaryllidaceae alkaloids”. These alkaloids display a wide spectrum of biological activities, including acetylcholinesterase inhibition, anti-inflammatory, antioxidant, antimicrobial, antidiabetic, and anticancer effects. A notable example is galanthamine (also known as galantamine), an FDA-approved drug marketed under the brand names Reminyl™ (Janssen Research Foundation, Beerse, Belgium, 2001) and Razadyne™ (Johnson & Johnson Pharmaceutical Research, New Brunswick, NJ, USA, 2004) for the treatment of mild to moderate Alzheimer’s disease, due to its potent acetylcholinesterase-inhibitory activity. Galanthamine has been isolated from species belonging to the genera Cyrtanthus, Galanthus, Leucojum, Lycoris, Narcissus, Ungernia, Chlidanthus, Crinum, Eucharis, Eustephia, Pancratium, and Phaedranassa. Lycorine is another widely distributed alkaloid found across multiple genera, and it has been extensively studied for its diverse bioactivities. Given the remarkable chemical diversity and bioactivity of Amaryllidaceae alkaloids, along with the many underexplored genera and species, further research into Amaryllidaceae species and their alkaloids is strongly warranted to support the discovery and development of novel therapeutic agents. Full article
Show Figures

Figure 1

48 pages, 3898 KiB  
Review
Stable Gastric Pentadecapeptide BPC 157 as a Therapy and Safety Key: A Special Beneficial Pleiotropic Effect Controlling and Modulating Angiogenesis and the NO-System
by Predrag Sikiric, Sven Seiwerth, Anita Skrtic, Mario Staresinic, Sanja Strbe, Antonia Vuksic, Suncana Sikiric, Dinko Bekic, Dragan Soldo, Boris Grizelj, Luka Novosel, Lidija Beketic Oreskovic, Ivana Oreskovic, Mirjana Stupnisek, Alenka Boban Blagaic and Ivan Dobric
Pharmaceuticals 2025, 18(6), 928; https://doi.org/10.3390/ph18060928 - 19 Jun 2025
Viewed by 3230
Abstract
Although approached through many concepts, the pleiotropic healing issue, specifically, maintaining/reestablishing tissue integrity, remains a central challenge in pharmacology, particularly when the process is misdirected or not properly controlled. Robert and Szabo’s concept of cytoprotection holds that innate cell (epithelial (Robert), endothelial (Szabo)) [...] Read more.
Although approached through many concepts, the pleiotropic healing issue, specifically, maintaining/reestablishing tissue integrity, remains a central challenge in pharmacology, particularly when the process is misdirected or not properly controlled. Robert and Szabo’s concept of cytoprotection holds that innate cell (epithelial (Robert), endothelial (Szabo)) integrity and protection/maintenance/reestablishment in the stomach is translated to other organ therapy (cytoprotection → organoprotection) via the cytoprotection agent’s effect. Therefore, we defend stable gastric pentadecapeptide BPC 157 therapy’s efficacy and pleiotropic beneficial effects, along with its high safety (LD1 not achieved), against speculation of its negative impact, speculation of angiogenesis toward tumorigenesis, increased NO and eNOS, damaging free radical formation, and neurodegenerative diseases (Parkinson’s disease and Alzheimer’s disease). Contrarily, in wound healing and general healing capabilities, as reviewed, as a cytoprotective agent and native cytoprotection mediator, BPC 157 controls angiogenesis and the NO-system’s healing functions and counteracts the pathological presentation of neurodegenerative diseases in acknowledged animal models (i.e., Parkinson’s disease and Alzheimer’s disease), and it presents prominent anti-tumor potential in vivo and in vitro. BPC 157 resolved cornea transparency maintenance, cornea healing “angiogenic privilege” (vs. angiogenesis/neovascularization/tumorigenesis), and it does not produce corneal neovascularization but rather opposes it. Per Folkman’s concept, it demonstrates an anti-tumor effect in vivo and in vitro. BPC 157 exhibits a distinctive effect on the NO-level (increase vs. decrease), always combined with the counteraction of free radical formation, and, in mice and rats, BPC 157 therapy counteracts Parkinson’s disease-like and Alzheimer’s disease-like disturbances. Thus, BPC 157 therapy means targeting angiogenesis and NO’s cytotoxic and damaging actions but maintaining, promoting, or recovering their essential protective functions. Full article
(This article belongs to the Special Issue Application of Gastrointestinal Peptides in Medicine)
Show Figures

Figure 1

28 pages, 13615 KiB  
Article
The Anti-Parkinsonian A2A Receptor Antagonist Istradefylline (KW-6002) Attenuates Behavioral Abnormalities, Neuroinflammation, and Neurodegeneration in Cerebral Ischemia: An Adenosinergic Signaling Link Between Stroke and Parkinson’s Disease
by Michael G. Zaki, Elisabet Jakova, Mahboubeh Pordeli, Elina Setork, Changiz Taghibiglou and Francisco S. Cayabyab
Int. J. Mol. Sci. 2025, 26(12), 5680; https://doi.org/10.3390/ijms26125680 - 13 Jun 2025
Viewed by 1424
Abstract
Stroke, the third leading cause of death worldwide, is a major cause of functional disability. Cerebral ischemia causes a rapid elevation of adenosine, the main neuromodulator in the brain. The inhibition of adenosine A2A receptors (A2ARs) has been introduced as a potential target [...] Read more.
Stroke, the third leading cause of death worldwide, is a major cause of functional disability. Cerebral ischemia causes a rapid elevation of adenosine, the main neuromodulator in the brain. The inhibition of adenosine A2A receptors (A2ARs) has been introduced as a potential target in neurodegenerative disorders involving extracellular adenosine elevation. Istradefylline, a selective A2AR antagonist, has been approved for Parkinson’s disease (PD) adjunctive therapy and showed neuroprotective effects in PD and Alzheimer’s disease. However, the role of A2ARs in post-stroke neuronal damage and behavioral deficits remains unclear. We recently showed that A2AR antagonism prevented the adenosine-induced post-hypoxia synaptic potentiation of glutamatergic neurotransmission following the hypoxia/reperfusion of hippocampal slices. Here, we investigated the potential neuroprotective effects of istradefylline in male Sprague-Dawley rats subjected to pial vessel disruption (PVD) used to model a small-vessel stroke. Rats were treated with either a vehicle control or istradefylline (3 mg/kg i.p.) following PVD surgery for three days. Istradefylline administration prevented anxiety and depressive-like behaviors caused by PVD stroke. In addition, istradefylline significantly attenuated ischemia-induced cognitive impairment and motor deficits. Moreover, istradefylline markedly reduced hippocampal neurodegeneration, as well as GFAP/Iba-1, TNF-α, nNOS, and iNOS levels after PVD, but prevented the downregulation of anti-inflammatory markers TGF-β1 and IL-4. Together, these results suggest a molecular link between stroke and PD and that the anti-PD drug istradefylline displays translational potential for drug repurposing as a neuroprotective agent for cerebral ischemic damage. Full article
Show Figures

Figure 1

19 pages, 2651 KiB  
Article
Temporal Shifts in MicroRNAs Signify the Inflammatory State of Primary Murine Microglial Cells
by Keren Zohar, Elyad Lezmi, Fanny Reichert, Tsiona Eliyahu, Shlomo Rotshenker, Marta Weinstock and Michal Linial
Int. J. Mol. Sci. 2025, 26(12), 5677; https://doi.org/10.3390/ijms26125677 - 13 Jun 2025
Viewed by 569
Abstract
The primary function of microglia is to maintain brain homeostasis. In neurodegenerative diseases like Alzheimer’s, microglia contribute to neurotoxicity and inflammation. In this study, we exposed neonatal murine primary microglial cultures to stimuli mimicking pathogens, injury, or toxins. Treatment with benzoyl ATP (bzATP) [...] Read more.
The primary function of microglia is to maintain brain homeostasis. In neurodegenerative diseases like Alzheimer’s, microglia contribute to neurotoxicity and inflammation. In this study, we exposed neonatal murine primary microglial cultures to stimuli mimicking pathogens, injury, or toxins. Treatment with benzoyl ATP (bzATP) and lipopolysaccharide (LPS) triggered a coordinated increase in interleukin and chemokine expression. We analyzed statistically significant differentially expressed microRNAs (DEMs) at 3 and 8 h post-activation, identifying 33 and 57 DEMs, respectively. Notably, miR-155, miR-132, miR-3473e, miR-222, and miR-146b showed strong temporal regulation, while miR-3963 was sharply downregulated by bzATP. These DEMs regulate inflammatory pathways, including TNFα and NFκB signaling. We also examined the effect of ladostigil, a neuroprotective agent known to reduce oxidative stress and inflammation. At 8 h post-activation, ladostigil induced upregulation of anti-inflammatory miRNAs, such as miR-27a, miR-27b, and miR-23b. Our findings suggest that miRNA profiles reflect microglial responses to inflammatory cues and that ladostigil modulates these responses. This model of controlled microglial activation offers a powerful tool with which to study inflammation in the aging brain and the progression of neurodegenerative diseases. Full article
Show Figures

Graphical abstract

24 pages, 993 KiB  
Review
Astaxanthin: A Compound in the Prevention of Chronic Diseases and as a Potential Adjuvant Treatment Agent
by Xiao Zhu, Xi Chen, Matthew Wang and Honghua Hu
Antioxidants 2025, 14(6), 715; https://doi.org/10.3390/antiox14060715 - 12 Jun 2025
Cited by 1 | Viewed by 1081
Abstract
Astaxanthin (AST) is a fat-soluble carotenoid antioxidant. AST exhibits multiple protective mechanisms, including its antioxidant, anti-inflammatory, immunomodulatory, anti-apoptotic, nervous system-protective, anti-tumor, and anti-fibrotic effects. These effects make it a promising compound for the prevention of chronic diseases. AST can protect the nervous system [...] Read more.
Astaxanthin (AST) is a fat-soluble carotenoid antioxidant. AST exhibits multiple protective mechanisms, including its antioxidant, anti-inflammatory, immunomodulatory, anti-apoptotic, nervous system-protective, anti-tumor, and anti-fibrotic effects. These effects make it a promising compound for the prevention of chronic diseases. AST can protect the nervous system against neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. It also protects the liver and helps reduce the risk of chronic kidney disease. Additionally, it improves cardiovascular health and has anti-diabetic properties. This review aims to provide an updated overview covering the protective effects of AST against various chronic diseases, including its antioxidant, anti-inflammatory, and anti-apoptotic effects. We also discuss the strategies used for improving astaxanthin bioavailability and its potential as an adjuvant therapeutic agent. Full article
(This article belongs to the Special Issue Carotenoids in Health and Disease)
Show Figures

Figure 1

27 pages, 4599 KiB  
Article
Heterostilbene Carbamates with Selective and Remarkable Butyrylcholinesterase Inhibition: Computational Study and Physico-Chemical Properties
by Anamarija Raspudić, Ilijana Odak, Milena Mlakić, Antonija Jelčić, Karla Bulava, Karla Karadža, Valentina Milašinović, Ivana Šagud, Paula Pongrac, Dora Štefok, Danijela Barić and Irena Škorić
Biomolecules 2025, 15(6), 825; https://doi.org/10.3390/biom15060825 - 5 Jun 2025
Viewed by 726
Abstract
This manuscript reports the synthesis and characterization of 19 novel heterostilbene carbamates, designed as selective butyrylcholinesterase (BChE) inhibitors with potential applications in the treatment of neurodegenerative disorders, particularly Alzheimer’s disease. The compounds were synthesized from resveratrol analogs, and their structures were confirmed by [...] Read more.
This manuscript reports the synthesis and characterization of 19 novel heterostilbene carbamates, designed as selective butyrylcholinesterase (BChE) inhibitors with potential applications in the treatment of neurodegenerative disorders, particularly Alzheimer’s disease. The compounds were synthesized from resveratrol analogs, and their structures were confirmed by NMR spectroscopy, high-resolution mass spectrometry (HRMS), and single-crystal X-ray diffraction for selected derivatives (compounds 1 and 4). In vitro assays demonstrated high selectivity toward BChE over acetylcholinesterase (AChE), with compound 16 exhibiting exceptional inhibitory activity (IC50 = 26.5 nM). Furthermore, compound 16 showed moderate anti-inflammatory effects by inhibiting LPS-stimulated TNF-α production in peripheral blood mononuclear cells. In silico ADME(T) profiling revealed favorable pharmacokinetic properties and low mutagenic potential for the majority of compounds. Molecular docking and molecular dynamics simulations confirmed stable binding interactions within the BChE active site. These results highlight heterostilbene carbamates as promising lead structures for developing novel therapeutic agents targeting neurodegenerative diseases. Full article
Show Figures

Figure 1

22 pages, 1582 KiB  
Review
Preclinical Evidence of Withania somnifera and Cordyceps spp.: Neuroprotective Properties for the Management of Alzheimer’s Disease
by Gabriele Tancreda, Silvia Ravera and Isabella Panfoli
Int. J. Mol. Sci. 2025, 26(11), 5403; https://doi.org/10.3390/ijms26115403 - 4 Jun 2025
Viewed by 981
Abstract
Alzheimer’s disease (AD) is considered one of the main pathologies of our time, whose incidence and prevalence are suggested to be strongly underestimated. AD presents as a complex neurodegenerative condition characterized by marked neuroinflammation and a significant decline in the cognitive and mnemonic [...] Read more.
Alzheimer’s disease (AD) is considered one of the main pathologies of our time, whose incidence and prevalence are suggested to be strongly underestimated. AD presents as a complex neurodegenerative condition characterized by marked neuroinflammation and a significant decline in the cognitive and mnemonic functions of affected patients. Recognized AD pathological hallmarks include amyloid beta plaque and neurofibrillary tangle formation, synaptic dysfunction with considerable apoptosis of cholinergic and dopaminergic neurons, and high levels of oxidative stress and neuroinflammation. The available pharmacological treatments are represented by acetylcholinesterase inhibitors to treat the mild to moderate form of the disease and N-methyl-D-aspartate inhibitors alone or in combination with the previously cited ones in the late stage of the neurodegenerative condition. Furthermore, emerging drug therapies such as monoclonal antibodies are promising agents in AD management. Although scientific evidence highlights these chemicals as effective in slowing down disease progression, significant limitations behind their employment derive from the notable dose-dependent side effects and the single-target mechanism of action. In this context, two well-studied phytotherapeutics, W. somnifera (W. somnifera) and fungi belonging to the genus Cordyceps, have gained attention for their chemical composition regarding their neuroprotective and anti-inflammatory effects. Ashwagandha (obtained principally from the roots of W. somnifera) is an adaptogen that relieves stress and anxiety. It contains several ergostane-type steroidal lactones—such as withanolides and withaferin A—and various alkaloids, contributing to its antioxidant and neuroprotective effects. Likewise, cordycepin is the main bioactive principle found in Cordyceps fungi. This natural nucleoside has been reported to possess therapeutic potential as an anti-cancer, immunomodulatory, and anti-inflammatory agent, with some studies suggesting a beneficial role in AD treatment. The purpose of the present review is to investigate the pharmacological properties of W. somnifera and Cordyceps species in the context of AD treatment and explore the therapeutic potential of the constitutive bioactive molecules in preclinical models mimicking this neurodegenerative condition. Full article
Show Figures

Graphical abstract

Back to TopTop