The Occurrence and Bioactivities of Amaryllidaceae Alkaloids from Plants: A Taxonomy-Guided Genera-Wide Review
Abstract
1. Introduction
2. Genera and Species from the Family Amaryllidaceae
3. Alkaloids from Subfamily Agapanthoideae
4. Alkaloids from Subfamily Allioideae
5. Alkaloids from Subfamily Amaryllidoideae
- Isolated Amaryllidaceae alkaloids;
- Detected and identified (but not isolated) Amaryllidaceae alkaloids;
- No reported Amaryllidaceae alkaloids from the subfamily Amaryllidoideae.
5.1. Isolated Amaryllidaceae Alkaloids from the Subfamily Amaryllidoideae
5.1.1. Genus Amaryllis
5.1.2. Genus Ammocharis
5.1.3. Genus Boophone
5.1.4. Genus Brunsvigia
5.1.5. Genus Calostemma
5.1.6. Genus Chlidanthus
5.1.7. Genus Clinantheae (With Three Subgenera)
5.1.8. Genus Clivia
5.1.9. Genus Crinum
5.1.10. Genus Crossyne
5.1.11. Genus Cybistetes
5.1.12. Genus Cyrtanthus
5.1.13. Genus Eucharis
5.1.14. Genus Eustephia
5.1.15. Genus Galanthus
5.1.16. Genus Haemanthus
5.1.17. Genus Hieronymiella
5.1.18. Genus Hippeastreae (With 10 Subgenera)
5.1.19. Hippeastrum Species
5.1.20. Rhodolirium speciosum
5.1.21. Rhodophiala bifida
5.1.22. Zephyranthes species
5.1.23. Genus Hymenocallis
5.1.24. Genus Ismene
5.1.25. Genus Lapiedra
5.1.26. Genus Leucojum
5.1.27. Genus Lycoris
5.1.28. Genus Narcissus
5.1.29. Genus Nerine
5.1.30. Genus Pancratium
- (1)
- Lycorenine type, which includes hippeastrine, (+)-9-O-demethylhomolycorine, 10-norneronine, and pancratinine A;
- (2)
- Lycorine type, which includes pancrassidine, galanthane, hippadine, 3,4-dihydroanhydrolycorine, hihydrocaranine, dihydrolycorine, ungeremine, zefbetaine, ungiminorine N-oxide, and pancratinine D;
- (3)
- Montanine type, which includes pancracine from P. maritimum and P. sickenbergeri; pancratinine B, and pancratinine C from P. canariense;
- (4)
- Narciclasine type, which includes pancratistatin, narciclasine, and its glycosidic derivative;
- (5)
- Tazettine type, which includes tazettine and deoxytazettine from P. maritimum and pretazettine from Pancratium biflorum;
- (6)
- Galanthamine type, which includes galanthamine, N-norgalanthamine, N-formylgalanthamine, habranthine, lycoramine, N-norlycoramine, and 3-O-acetyllycoramine;
- (7)
- Cranine type, which includes crinine, crinan-3-one, buphanisine, macowine, (−)-3β-methoxy-6,11-dihydroxycrinane, and (−)-3β-11-dihydroxycrinane; and
- (8)
- Haemanthamine, which includes haemanthamine, vittatine, 11-hydroxyvittatine, maritidine, haemanthidine, ent-6-hydroxybufanisine, 8-demethylmaritidine, 9-demethylmaritidine, crinamine, and 6-O-methylhaemanthidine.
5.1.31. Genus Phaedranassa
5.1.32. Genus Scadoxus
5.1.33. Genus Sternbergia
5.1.34. Genus Ungernia
5.1.35. Genus Urceolina
5.1.36. Genus Worsleya
5.2. Detected and Identified Amaryllidaceae Alkaloids from the Subfamily Amaryllidoideae
5.3. The Genera from the Subfamily Amaryllidoideae with No Amaryllidaceae Alkaloids Reported
- (1)
- Genus Caliphruria (Table 4), three species C. korsakoffi, C. subedentata, and C. teneraz;
- (2)
- Genus Cryptostephanus (Table 4), two species C. haemanthoides and C. vansonii;
- (3)
- Genus Eremocrinum (Table 4), one species E. albomarginatum;
- (4)
- Genus Eucrosia (Table 4), six species E. aurantiaca, E. bicolor, E. dodsonii, E. eucrosioides, E. mirabilis, and E. stricklandii;
- (5)
- Genus Hannonia (Table 4), one species H. hesperidum;
- (6)
- Genus Haylockia (Table 4), one species H. Herb., 1830;
- (7)
- Genus Hessea (Table 4), seven species H. breviflora, H. pilosula, H. pulcherrima, H. speciosa, H. stellaris, H. stenosiphon, and H. zeyheri;
- (8)
- Genus Namaquanula (Table 4), one species N. bruce-bayeri;
- (9)
- Genus Pabellonia (Table 4), one species P. Quezada & Martic;
- (10)
- Genus Plagiolirion (Table 4), one species P. horsmannii;
- (11)
- Genus Rauhia (Table 4), three species R. decora, R. multiflora, and R. staminosa;
- (12)
- Genus Stemmatium (Table 4), one species S. Phil., 1873;
- (13)
- Genus Stenomesson (Table 4), eight species S. aurantiacum, S. chloranthum, S. ecuadorense, S. flavum, S. leucanthum, S. miniatum, S. pearcei, and S. variegatum;
- (14)
- Genus Strumaria (Table 4), ten species S. aestivalis, S. bidentata, S. chaplinii, S. discifera, S. picta, S. salteri, S. spiralis, S. tenella, S. truncate, and S. watermeyeri;
- (15)
- Genus Vagaria (Table 4), two species V. ollivieri and V. parviflora.
6. Bioactivities of Amaryllidaceae Alkaloids for Drug Discovery
6.1. Inhibiting Acetylcholinesterase (Anti-Alzheimer’s)
6.2. Anti-Inflammatory
6.3. Antioxidant
6.4. Antimicrobial
6.5. Antidiabetic
6.6. Anticancer
6.7. Other Bioactivities
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hesse, M. Alkaloids: Nature’s Curse or Blessing? Wiley-VCH: New York, NY, USA, 2002; p. 413. [Google Scholar]
- Berkov, S.; Osorio, E.; Viladomat, F.; Bastida, J. Chemodiversity, chemotaxonomy and chemoecology of Amaryllidaceae alkaloids. Alkaloids Chem. Biol. 2020, 83, 113–185. [Google Scholar] [CrossRef]
- Lim, A.W.Y.; Schneider, L.; Loy, C. Galantamine for dementia due to Alzheimer’s disease and mild cognitive impairment. Cochrane Database Syst. Rev. 2024, 11, CD001747. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.; Meerow, A. Amaryllidaceae. In Flora of China; Wu, Z., Raven, P., Hong, D.Y., Eds.; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 2000; Volume 24, pp. 264–273. [Google Scholar]
- Spies, P.; Groble, J.; Spices, J. A review of phylogenetic relationships in the genus Clivia. Philos. Trans. Genet. 2011, 1, 168–207. [Google Scholar]
- National Center for Biotechnology Informaton. Taxonomy Browser, Amaryllidaceae. Available online: https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Tree&id=4668&lvl=3&keep=1&srchmode=1&unlock (accessed on 31 January 2025).
- Stevens, P. Angiosperm Phylogeny Website. Available online: https://www.mobot.org/mobot/research/APweb/ (accessed on 4 January 2022).
- Ding, Y.; Qu, D.; Zhang, K.M.; Cang, X.X.; Kou, Z.N.; Xiao, W.; Zhu, J.B. Phytochemical and biological investigations of Amaryllidaceae alkaloids: A review. J. Asian Nat. Prod. Res. 2017, 19, 53–100. [Google Scholar] [CrossRef]
- Bastida, J.; Lavilla, R.; Viladomat, F. Chapter 3 Chemical and Biological Aspects of Narcissus Alkaloids. In THE ALKALOIDS: Chemistry and Biology; Cordell, G., Ed.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 63, pp. 87–179. [Google Scholar]
- Jin, Z. Amaryllidaceae and Sceletium alkaloids. Nat. Prod. Rep. 2007, 24, 886–905. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z. Amaryllidaceae and Sceletium alkaloids. Nat. Prod. Rep. 2013, 30, 849–868. [Google Scholar] [CrossRef]
- Li, R.; Palit, P.; Lin, G.; Li, R. Amaryllidaceae Alkaloids as Anti-inflammatory Agents Targeting Cholinergic Anti-inflammatory Pathway: Mechanisms and Prospects. In Evidence-Based Validation of Traditional Medicines; Mandal, S., Chakraborty, R., Ses, S., Eds.; Springer Nature: Singapore, 2021; pp. 97–116. [Google Scholar]
- Fawole, O.A.; Ndhlala, A.R.; Amoo, S.O.; Finnie, J.F.; Van Staden, J. Anti-inflammatory and phytochemical properties of twelve medicinal plants used for treating gastro-intestinal ailments in South Africa. J. Ethnopharmacol. 2009, 123, 237–243. [Google Scholar] [CrossRef]
- O’Donnell, G.; Gibbons, S. Antibacterial activity of two canthin-6-one alkaloids from Allium neapolitanum. Phytother. Res. 2007, 21, 653–657. [Google Scholar] [CrossRef]
- Sang, S.; Mao, S.; Lao, A.; Chen, Z. A new alkaloid from the seeds of Allium tuberosum. Tianran Chanwu Yanjiu Yu Kaifa 2000, 12, 1–3. [Google Scholar]
- Tashkhodzhaev, B.; Samikov, K.; Yagudaev, M.R.; Antsupova, T.P.; Shakirov, R.; Yunusov, S.Y. Structure of alline. Chem. Nat. Compd. 1985, 21, 645–649. [Google Scholar] [CrossRef]
- Sibanyoni, M.N.; Chaudhary, S.K.; Chen, W.; Adhami, H.R.; Combrinck, S.; Maharaj, V.; Schuster, D.; Viljoen, A. Isolation, in vitro evaluation and molecular docking of acetylcholinesterase inhibitors from South African Amaryllidaceae. Fitoterapia 2020, 146, 104650. [Google Scholar] [CrossRef] [PubMed]
- Pettit, G.; Gaddamidi, V.; Goswami, A.; Cragg, G. Antineoplastic Agents, 99. Amaryllis belladonna. J. Nat. Prod. 1984, 47, 796–801. [Google Scholar] [CrossRef]
- Queckenberg, O.R.; Frahm, A.W.; Müller-Doblies, D.; Müller-Doblies, U. Reinvestigation of Amaryllis belladonna. Phytochem. Anal. 1996, 7, 156–160. [Google Scholar] [CrossRef]
- Evidente, A.; Andolfi, A.; Abou-Donia, A.H.; Touema, S.M.; Hammoda, H.M.; Shawky, E.; Motta, A. (-)-Amarbellisine, a lycorine-type alkaloid from Amaryllis belladonna L. growing in Egypt. Phytochemistry 2004, 65, 2113–2118. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.; Du, Y.; Valenciano, A.L.; Fernandez-Murga, M.L.; Goetz, M.; Clement, J.; Cassera, M.B.; Kingston, D.G.I. Antiplasmodial alkaloids from bulbs of Amaryllis belladonna Steud. Bioorg Med. Chem. Lett. 2018, 28, 40–42. [Google Scholar] [CrossRef]
- Machocho, A.; Chhabra, S.C.; Viladomat, F.; Codina, C.; Bastida, J. Alkaloids from Ammocharis tinneana. Phytochemistry 1999, 51, 1185–1191. [Google Scholar] [CrossRef]
- Koorbanally, N.; Mulholland, D.A.; Crouch, N. Alkaloids and triterpenoids from Ammocharis coranica (Amaryllidaceae). Phytochemistry 2000, 54, 93–97. [Google Scholar] [CrossRef]
- Raghoo, M.; Crouch, N.R.; Koorbanally, N.A. A novel and unusual tetramethoxylated crinine alkaloid from Ammocharis coranica (Amaryllidaceae). S. Afr. J. Bot. 2021, 137, 451–454. [Google Scholar] [CrossRef]
- Neergaard, J.S.; Andersen, J.; Pedersen, M.E.; Stafford, G.I.; Staden, J.V.; Jäger, A.K. Alkaloids from Boophone disticha with affinity to the serotonin transporter. S. Afr. J. Bot. 2009, 75, 371–374. [Google Scholar] [CrossRef]
- Nair, J.J.; Rárová, L.; Strnad, M.; Bastida, J.; Van Staden, J. Alkaloids from Boophone haemanthoides (Amaryllidaceae). Nat. Prod. Commun. 2013, 8, 1705–1710. [Google Scholar] [CrossRef]
- Cheesman, L.; Nair, J.J.; van Staden, J. Antibacterial activity of crinane alkaloids from Boophone disticha (Amaryllidaceae). J. Ethnopharmacol. 2012, 140, 405–408. [Google Scholar] [CrossRef]
- Nair, J.J.; Manning, J.C.; Van Staden, J. Distichamine, a chemotaxonomic marker for the genus Boophone Herb. (Amaryllidaceae). S. Afr. J. Bot. 2012, 83, 89–91. [Google Scholar] [CrossRef]
- van Rensburg, E.; Zietsman, P.C.; Bonnet, S.L.; Wilhelm, A. Alkaloids from the Bulbs of Boophone disticha. Nat. Prod. Commun. 2017, 12, 1934578X1701200911. [Google Scholar] [CrossRef]
- Ibrakaw, A.S.; Omoruyi, S.I.; Ekpo, O.E.; Hussein, A.A. Neuroprotective Activities of Boophone haemanthoides (Amaryllidaceae) Extract and Its Chemical Constituents. Molecules 2020, 25, 5376. [Google Scholar] [CrossRef]
- Viladomat, F.; Bastida, J.; Codina, C.; Campbell, W.E.; Mathee, S. Alkaloids from Brunsvigia josephinæ. Phytochemistry 1994, 35, 809–812. [Google Scholar] [CrossRef]
- Campbell, W.E.; Nair, J.J.; Gammon, D.W.; Bastida, J.; Codina, C.; Viladomat, F.; Smith, P.J.; Albrecht, C.F. Cytotoxic and antimalarial alkaloids from Brunsvigia littoralis. Planta Medica 1998, 64, 91–93. [Google Scholar] [CrossRef]
- Campbell, W.E.; Nair, J.J.; Gammon, D.W.; Codina, C.; Bastida, J.; Viladomat, F.; Smith, P.J.; Albrecht, C.F. Alkaloids from South African amaryllidaceae: Bioactive alkaloids from Brunsvigia radulosa. Phytochemistry 2000, 53, 587–591. [Google Scholar] [CrossRef] [PubMed]
- Boit, H.G.; Dopke, W. Amaryllidaceous alkaloids. XVIII. Alkaloids from Urceolina, Hymenocallis, Elisena, Calostemma, Eustephia, and Hippeastrum. Chem. Ber. 1957, 90, 1827–1830. [Google Scholar] [CrossRef]
- Jensen, B.S.; Christensen, S.B.; Jäger, A.K.; Rønsted, N. Amaryllidaceae alkaloids from the Australasian tribe Calostemmateae with acetylcholinesterase inhibitory activity. Biochem. Syst. Ecol. 2011, 39, 153–155. [Google Scholar] [CrossRef]
- Boit, H. Amaryllidaceous alkaloids. XI. Alkaloids of Chlidanthus fragrans, Valotta purpurea, Nerine undulata, and Hippeastrum vittatum. Chem. Berichte 1956, 89, 1129–1134. [Google Scholar] [CrossRef]
- Cahlikova, L.; Macakova, K.; Zavadil, S.; Jiros, P.; Opletal, L.; Urbanova, K.; Jahodar, L. Analysis of Amaryllidaceae alkaloids from Chlidanthus fragrans by GC-MS and their cholinesterase activity. Nat. Prod. Commun. 2011, 6, 603–606. [Google Scholar] [CrossRef] [PubMed]
- Cahlíková, L.; Hrabinová, M.; Kulhánková, A.; Benesová, N.; Chlebek, J.; Jun, D.; Novák, Z.; Macáková, K.; Kunes, J.; Kuca, K.; et al. Alkaloids from Chlidanthus fragrans and their acetylcholinesterase, butyrylcholinesterase and prolyl oligopeptidase activities. Nat. Prod. Commun. 2013, 8, 1541–1544. [Google Scholar] [CrossRef]
- Adessi, T.G.; Borioni, J.L.; Pigni, N.B.; Bastida, J.; Cavallaro, V.; Murray, A.P.; Puiatti, M.; Oberti, J.C.; Leiva, S.; Nicotra, V.E.; et al. Clinanthus microstephium, an Amaryllidaceae Species with Cholinesterase Inhibitor Alkaloids: Structure−Activity Analysis of Haemanthamine Skeleton Derivatives. Chem. Biodivers. 2019, 16, e1800662. [Google Scholar] [CrossRef] [PubMed]
- Crouch, N.R.; Mulholland, D.A.; Pohl, T.L.; Ndlovu, E.; van Wyk, B.E. The ethnobotany and chemistry of the genus Clivia (Amaryllidaceae). S. Afr. J. Bot. 2003, 69, 144–147. [Google Scholar] [CrossRef]
- Kornienko, A.; Evidente, A. Chemistry, Biology, and Medicinal Potential of Narciclasine and its Congeners. Chem. Rev. 2008, 108, 1982–2014. [Google Scholar] [CrossRef]
- Evidente, A.; Abou-Donia, A.H.; Darwish, F.A.; AMer, M.; Kassem, F.; Hammoda, H.M.; Motta, A. Nobilisitine A and B, two masanane!type alkaloids from Clivia nobilis. Phytochemistry 1999, 65, 1151–1155. [Google Scholar] [CrossRef]
- Ieven, M.; Vlietinck, A.J.; Vanden Berghe, D.A.; Totte, J.; Dommisse, R.; Esmans, E.; Alderweireldt, F. Plant antiviral agents. III. Isolation of alkaloids from Clivia miniata Regel (Amaryllidaceae). J. Nat. Prod. 1982, 45, 564–573. [Google Scholar] [CrossRef]
- Ghosal, S.; Saini, K.; Razdan, S. Crinum alkaloids: Their chemistry and biology. Phytochemistry 1985, 24, 2141–2156. [Google Scholar] [CrossRef]
- Tram, N.T.N.T.; Titorenkova, T.V.; St. Bankova, V.; Handjieva, N.V.; Popov, S.S. Crinum L. (Amaryllidaceae); Elsevier B.V: Amsterdam, The Netherlands, 2002; Volume 73, pp. 183–208. [Google Scholar]
- Yadav, S.K.; Sharma, Y.K. A review: Plant profile, phytochemistry and pharmacology of Crinum latifolium. World J. Pharm. Res. 2020, 9, 2493–2501. [Google Scholar] [CrossRef]
- Aldhaher, A.H.S.; Langat, M.K.; Knirsch, W.; Andriantiana, J.L.; Mulholland, D.A. Isoquinoline alkaloids from three Madagascan Crinum (Amaryllidaceae) species. Biochem. Syst. Ecol. 2018, 77, 7–9. [Google Scholar] [CrossRef]
- Chen, M.X.; Huo, J.M.; Hu, J.; Xu, Z.P.; Zhang, X. Amaryllidaceae alkaloids from Crinum latifolium with cytotoxic, antimicrobial, antioxidant, and anti-inflammatory activities. Fitoterapia 2018, 130, 48–53. [Google Scholar] [CrossRef]
- Elgorashi, E.E.; Zschocke, S.; Van Staden, J. The anti-inflammatory and antibacterial activities of Amaryllidaceae alkaloids. S. Afr. J. Bot. 2003, 69, 448–449. [Google Scholar] [CrossRef]
- Ghosal, S.; Rao, P.; Jaiswal, D.; Kumar, V.; Frahm, A. Alkaloids of crinum pratense. Phytochemistry 1981, 20, 2003–2007. [Google Scholar] [CrossRef]
- Machocho, A.K.; Bastida, J.; Codina, C.; Viladomat, F.; Brun, R.; Chhabra, S.C. Augustamine type alkaloids from Crinum kirkii. Phytochemistry 2004, 65, 3143–3149. [Google Scholar] [CrossRef]
- Naidoo, D.; Roy, A.; Slavětínská, L.P.; Chukwujekwu, J.C.; Gupta, S.; Van Staden, J. New role for crinamine as a potent, safe and selective inhibitor of human monoamine oxidase B: In vitro and in silico pharmacology and modeling. J. Ethnopharmacol. 2020, 248, 112305. [Google Scholar] [CrossRef] [PubMed]
- Omoruyi, S.I.; Ibrakaw, A.S.; Ekpo, O.E.; Boatwright, J.S.; Cupido, C.N.; Hussein, A.A. Neuroprotective Activities of Crossyne flava Bulbs and Amaryllidaceae Alkaloids: Implications for Parkinson′s Disease. Molecules 2021, 26, 3990. [Google Scholar] [CrossRef]
- Naidoo, D.; Manning, J.C.; Slavětínská, L.P.; Van Staden, J. Isolation of the antibacterial alkaloid distichamine from Crossyne Salisb. (Amaryllidaceae: Amaryllideae: Strumariinae). S. Afr. J. Bot. 2021, 137, 331–334. [Google Scholar] [CrossRef]
- Campbell, W.E.; Dlova, M.C.; Makhesha, P.A.; Paterson, F.W. Alkaloids from Cybistetes longifolia. Planta Medica 1992, 58, 299. [Google Scholar] [CrossRef]
- Herrera, M.; Machocho, A.; Nair, J.; Campbell, W.; Brun, R.; Viladomat, F.; Codina, C.; Bastida, J. Alkaloids from Cyrtanthus elatus. Fitoterapia 2001, 72, 444–448. [Google Scholar] [CrossRef]
- Brine, N.D.; Campbell, W.E.; Bastida, J.; Herrera, M.R.; Viladomat, F.; Codina, C.; Smith, P.J. A dinitrogenous alkaloid from Cyrtanthus obliquus. Phytochemistry 2002, 61, 443–447. [Google Scholar] [CrossRef]
- Cabezas, F.; Ramirez, A.; Viladomat, F.; Codina, C.; Bastida, J. Alkaloids from Eucharis amazonica (Amaryllidaceae). Chem. Pharm. Bull. 2003, 51, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Boit, H.G.; Dopke, W. Alkaloids of the Amaryllidaceae. XVIII. Alkaloids from Urceolina, Hymenocallis, Elisena, Calostemma, Eustephia, and Hippeastrum. Chem. Ber. 1957, 90, 1827. [Google Scholar] [CrossRef]
- Henrich, M. Chapter 4—Galanthamine from Galanthus and Other Amaryllidaceae—Chemistry and Biology Based on Traditional Use. In THE ALKALOIDS: Chemistry and Biology; Cordell, G., Ed.; Academic Press: London, UK, 2010; Volume 68, pp. 156–165. [Google Scholar]
- Georgiev, B.; Sidjimova, B.; Berkov, S. Phytochemical and Cytotoxic Aspects of Amaryllidaceae Alkaloids in Galanthus Species: A Review. Plants 2024, 13, 3577. [Google Scholar] [CrossRef] [PubMed]
- Berkov, S.; Cuadrado, M.; Osorio, E.; Viladomat, F.; Codina, C.; Bastida, J. Three new alkaloids from Galanthus nivalis and Galanthus elwesii. Planta Medica 2009, 75, 1351–1355. [Google Scholar] [CrossRef]
- Latvala, A.; Onur, M.; Gozler, T.; Linden, A.; Kivcak, B.; Hesse, M. Alkaloids of galanthus elwesii. Phytochemistry 1995, 39, 1229–1240. [Google Scholar] [CrossRef]
- Kaya, G.I.; Uzun, K.; Bozkurt, B.; Onur, M.A.; Somer, N.U.; Glatzel, D.K.; Fürst, R. Chemical characterization and biological activity of an endemic Amaryllidaceae species: Galanthus cilicicus. S. Afr. J. Bot. 2017, 108, 256–260. [Google Scholar] [CrossRef]
- Emir, A.; Emir, C.; Bozkurt, B.; Ali Onur, M.; Bastida, J.; Unver Somer, N. Alkaloids from Galanthus fosteri. Phytochem. Lett. 2016, 17, 167–172. [Google Scholar] [CrossRef]
- Sarikaya, B.B.; Kaya, G.I.; Onur, M.A.; Viladomat, F.; Codina, C.; Bastida, J.; Somer, N.U. Alkaloids from Galanthus rizehensis. Phytochem. Lett. 2012, 5, 367–370. [Google Scholar] [CrossRef]
- Kaya, G.I.; Sarıkaya, B.; Onur, M.A.; Somer, N.U.; Viladomat, F.; Codina, C.; Bastida, J.; Lauinger, I.L.; Kaiser, M.; Tasdemir, D. Antiprotozoal alkaloids from Galanthus trojanus. Phytochem. Lett. 2011, 4, 301–305. [Google Scholar] [CrossRef]
- Ghosal, S.; Lochen, R.; Kumar, Y.; Srivastava, R. Alkaloids of Haemanthus kalbrryeri. Phytochemistry 1985, 24, 1825–1828. [Google Scholar] [CrossRef]
- Ghosal, S.; Singh, S.; KUMAR, V.; Srivastava, R. Isocarbostyril alkaloids from haemanthus kalbreyeri. Phytochemistry 1989, 28, 611–613. [Google Scholar] [CrossRef]
- Ortiz, J.E.; Garro, A.; Pigni, N.B.; Aguero, M.B.; Roitman, G.; Slanis, A.; Enriz, R.D.; Feresin, G.E.; Bastida, J.; Tapia, A. Cholinesterase-inhibitory effect and in silico analysis of alkaloids from bulbs of Hieronymiella species. Phytomedicine 2018, 39, 66–74. [Google Scholar] [CrossRef]
- Llalla-Cordova, O.; Ortiz, J.E.; Tallini, L.R.; Torras-Claveria, L.; Bastida, J.; Luna, L.C.; Feresin, G.E. Alkaloid Profile, Anticholinesterase and Antioxidant Activities, and Sexual Propagation in Hieronymiella peruviana (Amaryllidaceae)†. Plants 2025, 14, 281. [Google Scholar] [CrossRef] [PubMed]
- de Andrade, J.P.; Guo, Y.; Font-Bardia, M.; Calvet, T.; Dutilh, J.; Viladomat, F.; Codina, C.; Nair, J.J.; Zuanazzi, J.A.S.; Bastida, J. Crinine-type alkaloids from Hippeastrum aulicum and H. calyptratum. Phytochemistry 2014, 103, 188–195. [Google Scholar] [CrossRef]
- Sebben, C.; Giordani, R.B.; de Andrade, J.P.; Berkov, S.; Osorio, E.J.; Sobral, M.; de Almeida, M.V.; Henriques, A.T.; Bastida, J.; Zuanazzi, J.Â.S. New lycosinine derivative from Hippeastrum breviflorum. Rev. Bras. De Farmacogn. 2015, 25, 353–355. [Google Scholar] [CrossRef]
- Crouch, N.R.; Pohl, T.L.; Mulholland, D.A.; Ndlovu, E.; van Staden, J. Alkaloids from three ethnomedicinal Haemanthus species: H. albiflos, H. deformis and H. pauculifolius (Amaryllidaceae). S. Afr. J. Bot. 2005, 71, 49–52. [Google Scholar] [CrossRef]
- Pham, L.H.; Gründemann, E.; Wagner, J.; Bartoszek, M.; Döpke, W. Two novel Amaryllidaceae alkaloids from Hippeastrum equestre Herb.: 3- O-demethyltazettine and egonine. Phytochemistry 1999, 51, 327–332. [Google Scholar] [CrossRef]
- Jin, Z.; Yao, G. Amaryllidaceae and Sceletium alkaloids. Nat. Prod. Rep. 2019, 36, 1462–1488. [Google Scholar] [CrossRef]
- Correa, D.I.; Pastene-Navarrete, E.; Bustamante, L.; Baeza, M.; Alarcon-Enos, J. Isolation of three lycorine type alkaloids from Rhodolirium speciosum (Herb.) ravenna using pH-zone- refinement centrifugal partition chromatography and their acetylcholinesterase inhibitory activities. Metabolites 2020, 10, 309. [Google Scholar] [CrossRef]
- Wildman, W.C.; Brown, C.L.; Michel, K.H.; Bailey, D.T.; Heimer, N.E.; Shaffer, R.; Murphy, C.F. Alkaloids from Rhodophiala bifida, Crinum erubescens, and Sprekelia formosissima. Pharmazie 1967, 22, 725. [Google Scholar]
- Katoch, D.; Singh, B. Phytochemistry and pharmacology of genus Zephyranthes. Med. Aromat. Plants 2015, 4, 212/211–212/218. [Google Scholar] [CrossRef]
- Zhan, G.; Zhou, J.; Liu, J.; Huang, J.; Zhang, H.; Liu, R.; Yao, G. Acetylcholinesterase Inhibitory Alkaloids from the Whole Plants of Zephyranthes carinata. J. Nat. Prod. 2017, 80, 2462–2471. [Google Scholar] [CrossRef]
- Zhan, G.; Liu, J.; Zhou, J.; Sun, B.; Aisa, H.A.; Yao, G. Amaryllidaceae alkaloids with new framework types from Zephyranthes candida as potent acetylcholinesterase inhibitors. Eur. J. Med. Chem. 2017, 127, 771–780. [Google Scholar] [CrossRef]
- Ghosal, S.; Sushil, K.; Singh, S.; Srivasta, R. Alkaloids of Zephxuanthes flava. Phytochemistry 1986, 25, 1975–1978. [Google Scholar] [CrossRef]
- Ghosal, S.; Singh, S.; Unnikrishnan, G. Phosphatldylpyrrolophenanthridine alkaloids from Zephyranthes flava. Phytochemistry 1987, 26, 823–828. [Google Scholar] [CrossRef]
- Zhan, G.; Gao, B.; Zhou, J.; Liu, T.; Zheng, G.; Jin, Z.; Yao, G. Structurally diverse alkaloids with nine frameworks from Zephyranthes candida and their acetylcholinesterase inhibitory and anti-inflammatory activities. Phytochemistry 2023, 207, 113564. [Google Scholar] [CrossRef] [PubMed]
- Ghosal, S.; Razdan, S. (+)-Epimaritidine, an alkaloid from Zephyranthes rosea. Phytochemistry 1985, 24, 635–637. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Qu, S.-M.; Wang, Y.; Wang, H.-T. Cytotoxic and anti-inflammatory active plicamine alkaloids from Zephyranthes grandiflora. Fitoterapia 2018, 130, 163–168. [Google Scholar] [CrossRef]
- Reyes-Chilpa, R.; Berkov, S.; Hernandez-Ortega, S.; Jankowski, C.K.; Arseneau, S.; Clotet-Codina, I.; Este, J.A.; Codina, C.; Viladomat, F.; Jaume, B. Acetylcholinesterase-inhibiting alkaloids from Zephyranthes concolor. Molecules 2011, 16, 9520–9533. [Google Scholar] [CrossRef]
- Herrera, M.R.; Machocho, A.K.; Brun, R.; Viladomat, F.; Codina, C.; Bastida, J. Crinane and lycorane type alkaloids from Zephyranthes citrina. Planta Med. 2001, 67, 191–193. [Google Scholar] [CrossRef]
- Pettit, G.R.; Pettit, G.R., 3rd; Groszek, G.; Backhaus, R.A.; Doubek, D.L.; Barr, R.J.; Meerow, A.W. Antineoplastic agents, 301. An investigation of the Amaryllidaceae genus Hymenocallis. J. Nat. Prod. 1995, 58, 756–759. [Google Scholar] [CrossRef] [PubMed]
- Hohmann, J.; Forgo, P.; Szabó, P. A new phenanthridine alkaloid from Hymenocallis X festalis. Fitoterapia 2002, 73, 749–751. [Google Scholar] [CrossRef] [PubMed]
- Soto-Vasquez, M.R.; Rodriguez-Munoz, C.A.; Tallini, L.R.; Bastida, J. Alkaloid Composition and Biological Activities of the Amaryllidaceae Species Ismene amancaes (Ker Gawl.) Herb. Plants 2022, 11, 1906. [Google Scholar] [CrossRef]
- Suau, R.; Gómez, A.I.; Rico, R.; Tato, M.P.V.; Castedo, L.; Riguera, R. Alkaloid N-oxides of amaryllidaceae. Phytochemistry 1988, 27, 3285–3287. [Google Scholar] [CrossRef]
- Suau, R.; Gomez, A.I.; Rico, R. Alkaloids of Lapiedra martinezii. An. De. Quim. 1990, 86, 672–674. [Google Scholar]
- Suau, R.; Gómez, A.I.; Rico, R. Ismine and related alkaloids from Lapiedra martinezii. Phytochemistry 1990, 29, 1710–1712. [Google Scholar] [CrossRef]
- Forgo, P.; Hohmann, J. Leucovernine and Acetylleucovernine, Alkaloids from Leucojum v ernum. J. Nat. Prod. 2005, 68, 1588–1591. [Google Scholar] [CrossRef]
- Berkov, S.; Codina, C.; Viladomat, F.; Bastida, J. N-Alkylated galanthamine derivatives: Potent acetylcholinesterase inhibitors from Leucojum aestivum. Bioorganic Med. Chem. Lett. 2008, 18, 2263–2266. [Google Scholar] [CrossRef]
- Stanilova, M.; Molle, E.; Yanev, S. Chapter 5—Galanthamine Production by Leucojum aestivum Cultures In Vitro. In THE ALKALOIDS: Chemistry and Biology; Cordell, G., Ed.; Academic Press: London, UK, 2010; Volume 68, pp. 167–210. [Google Scholar]
- Song, J.H.; Zhang, L.; Song, Y. Alkaloids from Lycoris aurea and their cytotoxicities against the head and neck squamous cell carcinoma. Fitoterapia 2014, 95, 121–126. [Google Scholar] [CrossRef]
- Feng, T.; Wang, Y.-Y.; Su, J.; Li, Y.; Cai, X.-H.; Luo, X.-D. Amaryllidaceae Alkaloids from Lycoris radiata. Helv. Chim. Acta 2011, 94, 178–183. [Google Scholar] [CrossRef]
- Li, X.; Yu, H.Y.; Wang, Z.Y.; Pi, H.F.; Zhang, P.; Ruan, H.L. Neuroprotective compounds from the bulbs of Lycoris radiata. Fitoterapia 2013, 88, 82–90. [Google Scholar] [CrossRef]
- Liu, Z.M.; Huang, X.Y.; Cui, M.R.; Zhang, X.D.; Chen, Z.; Yang, B.S.; Zhao, X.K. Amaryllidaceae alkaloids from the bulbs of Lycoris radiata with cytotoxic and anti-inflammatory activities. Fitoterapia 2015, 101, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Toriizuka, Y.; Kinoshita, E.; Kogure, N.; Kitajima, M.; Ishiyama, A.; Otoguro, K.; Yamada, H.; Omura, S.; Takayama, H. New lycorine-type alkaloid from Lycoris traubii and evaluation of antitrypanosomal and antimalarial activities of lycorine derivatives. Bioorg Med. Chem. 2008, 16, 10182–10189. [Google Scholar] [CrossRef] [PubMed]
- Cao, P.; Pan, D.-S.; Han, S.; Yu, C.-Y.; Zhao, Q.-J.; Song, Y.; Liang, Y. Alkaloids from Lycoris caldwellii and their particular cytotoxicities against the astrocytoma and glioma cell lines. Arch. Pharmacal Res. 2013, 36, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Van Goietsenoven, G.; Andolfi, A.; Lallemand, B.; Cimmino, A.; Lamoral-Theys, D.; Gras, T.; Abou-Donia, A.; Dubois, J.; Lefranc, F.; Mathieu, V.R.; et al. Amaryllidaceae Alkaloids Belonging to Different Structural Subgroups Display Activity against Apoptosis-Resistant Cancer Cells. J. Nat. Prod. 2010, 73, 1223–1227. [Google Scholar] [CrossRef]
- Bastida, J.; Lavilla, R.; Viladomat, F. Chapter 3 Chemical and Biological Aspects of Narcissus Alkaloids. Alkaloids Chem. Biol. 2006, 63, 87–179. [Google Scholar]
- Viladomat, F.; Bastida, J.; Tribo, G.; Codina, C.; Rubiralta, M. Alkaloids from Narcissus bicolor. Phytochemistry 1990, 29, 1307–1310. [Google Scholar] [CrossRef]
- Suau, R.; Rico, R.; Garcia, A.I.; Gomez, A.I. New Amaryllidaceae alkaloids from Narcissus papyraceus Ker-Gawler. Heterocycles 1990, 31, 517. [Google Scholar] [CrossRef]
- Bastida, J.; Llabres, J.M.; Viladomat, F.; Codina, C.; Rubiralta, M.; Feliz, M. 9-O-Demethylmaritidine: A new alkaloid from Narcissus radinganorum. Planta Med. 1988, 54, 524. [Google Scholar] [CrossRef]
- Bastida, J.; Codina, C.; Viladomat, F.; Rubiralta, M.; Quirion, J.-C.; Weniger, B. Narcissus Alkaloids, XV. Roserine from Narcissus pallidulus. J. Nat. Prod. 1992, 55, 134–136. [Google Scholar] [CrossRef]
- Labrana, J.; Machocho, A.K.o.; Kricsfalusy, V.; Brun, R.; Codina, C.; Viladomat, F.; Bastida, J. Alkaloids from Narcissus angustifolius subsp. transcarpathicus (Amaryllidaceae). Phytochemistry 2002, 60, 847–852. [Google Scholar] [CrossRef]
- Labrana, J.; Choy, G.; Solans, X.; Font-Bardia, M.; De La Fuente, G.; Viladomat, F.; Codina, C.; Bastida, J. Narcissus alkaloids. Part 25. Alkaloids from Narcissus bujei (Amaryllidaceae). Phytochemistry 1998, 50, 183–188. [Google Scholar] [CrossRef]
- Viladomat, F.; Bastida, J.; Codina, C.; Solans, X.; Font-Bardia, M. Homolycorine hydrochloride dihydrate. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1999, C55, 385–387. [Google Scholar] [CrossRef]
- Viladomat, F.; Codina, C.; Bastida, J.; Solans, X.; Font-Bardia, M. Ismine. Acta Crystallogr. 1998, 54, 81–82. [Google Scholar] [CrossRef]
- Karakoyun, C.; Bozkurt, B.; Coban, G.; Masi, M.; Cimmino, A.; Evidente, A.; Unver Somer, N. A comprehensive study on narcissus tazetta subsp. tazetta L.: Chemo-profiling, isolation, anticholinesterase activity and molecular docking of amaryllidaceae alkaloids. S. Afr. J. Bot. 2020, 130, 148–154. [Google Scholar] [CrossRef]
- Breiterova, K.; Koutova, D.; Marikova, J.; Havelek, R.; Kunes, J.; Majorosova, M.; Opletal, L.I.; Host’Alkova, A.; Jenco, J.; Rezacova, M.; et al. Amaryllidaceae alkaloids of different structural types from Narcissus L. cv. Professor einstein and their cytotoxic activity. Plants 2020, 9, 137. [Google Scholar] [CrossRef]
- van Rijn, R.M.; Rhee, I.K.; Verpoorte, R. Isolation of acetylcholinesterase inhibitory alkaloids from Nerine bowdenii. Nat. Prod. Res. 2010, 24, 222–225. [Google Scholar] [CrossRef]
- Nair, J.J.; Campbell, W.E.; Brun, R.; Viladomat, F.; Codina, C.; Bastida, J. Alkaloids from Nerine filifolia. Phytochemistry 2005, 66, 373–382. [Google Scholar] [CrossRef]
- Masi, M.; van der Westhuyzen, A.E.; Tabanca, N.; Evidente, M.; Cimmino, A.; Green, I.R.; Bernier, U.R.; Becnel, J.J.; Bloomquist, J.R.; van Otterlo, W.A.; et al. Sarniensine, a mesembrine-type alkaloid isolated from Nerine sarniensis, an indigenous South African Amaryllidaceae, with larvicidal and adulticidal activities against Aedes aegypti. Fitoterapia 2017, 116, 34–38. [Google Scholar] [CrossRef]
- Cedrón, J.C.; Del Arco-Aguilar, M.; Estévez-Braun, A.; Ravelo, Á.G. Chemistry and Biology of Pancratium Alkaloids. Alkaloids Chem. Biol. 2010, 68, 1–37. [Google Scholar] [CrossRef]
- Abou-Donia, A.; Abib, A.; El Din, A.; Evidente, A.; Gaber, M.; Scopa, A. Two betaine-type alkaloids from Egyptian Pancratium marztimum. Phytochemistry 1992, 31, 2139–2141. [Google Scholar] [CrossRef]
- Iannello, C.; Pigni, N.B.; Antognoni, F.; Poli, F.; Maxia, A.; de Andrade, J.P.; Bastida, J. A potent acetylcholinesterase inhibitor from Pancratium illyricum L. Fitoterapia 2014, 92, 163–167. Fitoterapia 2014, 92, 163–167. [Google Scholar] [CrossRef]
- Osorio, E.J.; Berkov, S.; Brun, R.; Codina, C.; Viladomat, F.; Cabezas, F.; Bastida, J. In vitro antiprotozoal activity of alkaloids from Phaedranassa dubia (Amaryllidaceae). Phytochem. Lett. 2010, 3, 161–163. [Google Scholar] [CrossRef]
- Naidoo, D.; Slavětínská, L.P.; Aremu, A.O.; Gruz, J.; Biba, O.; Doležal, K.; Van Staden, J.; Finnie, J.F. Metabolite profiling and isolation of biologically active compounds from Scadoxus puniceus, a highly traded South African medicinal plant. Phytother. Res. 2018, 32, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, S.; Zarga, M.A.; Sabri, S. Alkaloids of Sternbergia clusiani and effects of lycorine on guinea-pig isolated pulmonary artery and heart. Fitoterapia 1993, 64, 518–523. [Google Scholar]
- Evidente, A.; Iasiello, I.; Randazzo, G. Isolation of Sternbergine, a New Alkaloid From Bulbs of Sternbergia lutea. J. Nat. Prod. 1984, 47, 1003–1008. [Google Scholar] [CrossRef]
- Pabuççuoglu, V.; Richomme, P.; Gözler, T.; Kivçak, B.; Freyer, A.J.; Shamma, M. Four New Crinine-Type Alkaloids from Sternbergia Species. J. Nat. Prod. 1989, 52, 785–791. [Google Scholar] [CrossRef]
- Allayarov, K.B.; Abdusamatov, A.; Yunusov, S.Y. Alkaloids of Ungernia spiralis and Sternbergia lutea. Chem. Nat. Compd. 1970, 6, 143. [Google Scholar] [CrossRef]
- Berkov, S.; Bastida, J.; Tsvetkova, R.; Viladomat, F.; Codina, C. Alkaloids from Sternbergia colchiciflora. Z. Für Naturforschung C. A J. Biosci. 2009, 64, 311–316. [Google Scholar] [CrossRef]
- Tanker, M.; Çitoglu, G.; Gümühel, B.; Hener, B. Alkaloids of Sternbergia clusiana and their analgesic effects. Pharm. Biol. 1996, 34, 194–197. [Google Scholar] [CrossRef]
- Kadyrov, K.A.; Abdusamatov, A.; Yunusov, S.Y. Ungernia alkaloids. Chem. Nat. Compd. 1980, 16, 525–540. [Google Scholar] [CrossRef]
- Kadyrov, K.A.; Abdusamatov, A.; Yunusov, S.Y. Ungvedine—A new alkaloid from Ungernia vvedenskyi. Chem. Nat. Compd. 1979, 15, 513–514. [Google Scholar] [CrossRef]
- Gonring-Salarini, K.L.; Conti, R.; de Andrade, J.P.; Borges, B.J.P.; Aguiar, A.C.C.; de Souza, J.O.; Zanini, C.L.; Oliva, G.; Tenorio, J.C.; Ellena, J.; et al. In vitro Antiplasmodial Activities of Alkaloids Isolated from Roots of Worsleya procera (Lem.) Traub (Amaryllidaceae). J. Braz. Chem. Soc. 2019, 30, 1624–1633. [Google Scholar] [CrossRef]
- Larsen, M.M.; Adsersen, A.; Davis, A.P.; Lledó, M.D.; Jäger, A.K.; Rønsted, N. Using a phylogenetic approach to selection of target plants in drug discovery of acetylcholinesterase inhibiting alkaloids in Amaryllidaceae tribe Galantheae. Biochem. Syst. Ecol. 2010, 38, 1026–1034. [Google Scholar] [CrossRef]
- de Paiva, J.R.; Souza, A.S.Q.; Pereira, R.C.A.; Ribeiro, P.R.; Zocolo, G.J.; de Brito, E.S.; Pessoa, O.D.L.; Canuto, K.M. Development and Validation of a UPLC-ESI-MS Method for Quantitation of the Anti-Alzheimer Drug Galantamine and other Amaryllidaceae Alkaloids in Plants. J. Braz. Chem. Soc. 2020, 31, 265–272. [Google Scholar] [CrossRef]
- Ortiz, J.E.; Berkov, S.; Pigni, N.B.; Theoduloz, C.; Roitman, G.; Tapia, A.; Bastida, J.; Feresin, G.E. Wild Argentinian Amaryllidaceae, a new renewable source of the acetylcholinesterase inhibitor galanthamine and other alkaloids. Molecules 2012, 17, 13473–13482. [Google Scholar] [CrossRef]
- Huaylla, H.; Llalla, O.; Torras-Claveria, L.; Bastida, J. Alkaloid profile in Pyrolirion albicans Herb. (Amaryllidaceae), a Peruvian endemic species. S. Afr. J. Bot. 2020, 136, 76. [Google Scholar] [CrossRef]
- Bay-Smidt, M.G.K.; Jäger, A.K.; Krydsfeldt, K.; Meerow, A.W.; Stafford, G.I.; Van Staden, J.; Rønsted, N. Phylogenetic selection of target species in Amaryllidaceae tribe Haemantheae for acetylcholinesterase inhibition and affinity to the serotonin reuptake transport protein. S. Afr. J. Bot. 2011, 77, 175–183. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Zhang, Z.-K.; Yang, F.-M.; Sun, Q.-Y.; He, H.-P.; Di, Y.-T.; Mu, S.-Z.; Lu, Y.; Chang, Y.; Zheng, Q.-T.; et al. Benzylphenethylamine Alkaloids from Hosta plantaginea with Inhibitory Activity against Tobacco Mosaic Virus and Acetylcholinesterase. J. Nat. Prod. 2007, 70, 1458–1461. [Google Scholar] [CrossRef]
- Jeneke-Kodama, H.; Müller, R.; Dittmann, E. Evolutionary mechanisms underlying secondary metabolite diversity. In Natural Compounds as Drugs Volume I (Progress in Drug Research Volume 65); Petersen, F., Amstutz, R., Eds.; Birkhäuser Basel: Basel, Switzerland, 2008; pp. 120–140. [Google Scholar] [CrossRef]
- Xiao, H.; Xu, X.; Du, L.; Li, X.; Zhao, H.; Wang, Z.; Zhao, L.; Yang, Z.; Zhang, S.; Yang, Y.; et al. Lycorine and organ protection: Review of its potential effects and molecular mechanisms. Phytomedicine 2022, 104, 154266. [Google Scholar] [CrossRef]
- Lin, G.; Li, R. Analytical characterisation of herbal biomolecules. In Herbal Biomolecules in Healthcare Applications; Mandal, S., Nayak, A., Dhara, A., Eds.; Acadmic Press: Oxford, UK, 2022; pp. 121–144. [Google Scholar]
- He, M.; Qu, C.; Gao, O.; Hu, X.; Hong, X. Biological and pharmacological activities of amaryllidaceae alkaloids. RSC Adv. 2015, 5, 16562–16574. [Google Scholar] [CrossRef]
- Cahlikova, L.; Breiterova, K.; Opletal, L. Chemistry and Biological Activity of Alkaloids from the Genus Lycoris (Amaryllidaceae). Molecules 2020, 25, 4797. [Google Scholar] [CrossRef]
- Fennell, C.; van Staden, J. Crinum species in traditional and modern medicine. J. Ethnopharmacol. 2001, 78, 15–26. [Google Scholar] [CrossRef]
- Calderon, A.I.; Cubilla, M.; Espinosa, A.; Gupta, M.P. Screening of plants of Amaryllidaceae and related families from Panama as sources of acetylcholinesterase inhibitors. Pharm. Biol. 2010, 48, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Lo’pez, S.; Bastida, J.; Viladomat, F.; Codina, C. Acetylcholinesterase inhibitory activity of some Amaryllidaceae alkaloids and Narcissus extracts. Life Sci. 2002, 71, 2521–2529. [Google Scholar] [CrossRef]
- Babashpour-Asl, M.; Kaboudi, P.S.; Barez, S.R. Therapeutic and medicinal effects of snowdrop (Galanthus spp.) in Alzheimer’s disease: A review. J. Educ. Health Promot. 2023, 12, 128. [Google Scholar] [CrossRef] [PubMed]
- Berkov, S.; Atanasova, M.; Georgiev, B.; Bastida, J.; Doytchinova, I. The Amaryllidaceae alkaloids: An untapped source of acetylcholinesterase inhibitors. Phytochem. Rev. 2022, 21, 1415–1443. [Google Scholar] [CrossRef]
- Tallini, L.R.; Acosta Leon, K.; Chamorro, R.; Osorio, E.H.; Bastida, J.; Jost, L.; Oleas, N.H. Alkaloid Profiling and Anti-Cholinesterase Potential of Three Different Genera of Amaryllidaceae Collected in Ecuador: Urceolina Rchb., Clinanthus Herb. and Stenomesson Herb. Life 2024, 14, 924. [Google Scholar] [CrossRef]
- Nair, J.J.; van Staden, J. Anti-inflammatory Principles of the Plant Family Amaryllidaceae. Planta Med. 2024, 90, 900–937. [Google Scholar] [CrossRef]
- Nair, J.J.; van Staden, J. Anti-inflammatory effects of the plant family Amaryllidaceae. J. Ethnopharmacol. 2024, 327, 117943. [Google Scholar] [CrossRef]
- Stark, A.; Schwenk, R.; Wack, G.; Zuchtriegel, G.; Hatemler, M.G.; Braeutigam, J.; Schmidtko, A.; Reichel, C.A.; Bischoff, I.; Fuerst, R. Narciclasine exerts anti-inflammatory actions by blocking leukocyte-endothelial cell interactions and down-regulation of the endothelial TNF receptor 1. FASEB J. 2019, 33, 8771–8781. [Google Scholar] [CrossRef] [PubMed]
- Furst, R. Narciclasine—An Amaryllidaceae Alkaloid with Potent Antitumor and Anti-Inflammatory Properties. Planta Med. 2016, 82, 1389–1394. [Google Scholar] [CrossRef] [PubMed]
- Park, J.B. Synthesis and characterization of norbelladine, a precursor of Amaryllidaceae alkaloid, as an anti-inflammatory/anti-COX compound. Bioorg Med. Chem. Lett. 2014, 24, 5381–5384. [Google Scholar] [CrossRef]
- Citoglu, G.S.; Acikara, O.B.; Yilmaz, B.S.; Ozbek, H. Evaluation of analgesic, anti-inflammatory and hepatoprotective effects of lycorine from Sternbergia fisheriana (Herbert) Rupr. Fitoterapia 2012, 83, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Castilhos, T.S.; Giordani, R.B.; Henriques, A.T.; Menezes, F.S.; Zuanazzi, J.A.S. In vitro evaluation of the antiinflammatory, antioxidant and antimicrobial activities of the montanine alkaloid. Rev. Bras. Farmacogn. 2007, 17, 209–214. [Google Scholar] [CrossRef]
- Minkah, P.A.B.; Danquah, C.A. Anti-infective, anti-inflammatory and antipyretic activities of the bulb extracts of Crinum jagus (J. Thomps.) Dandy (Amaryllidaceae)†. Sci. Afr. 2021, 12, e00723. [Google Scholar] [CrossRef]
- Kaur, J.; Melkani, I.; Singh, A.P.; Singh, A.P.; Bala, K. Galantamine: A review update. J. Drug Deliv. Ther. 2022, 12, 167–173. [Google Scholar] [CrossRef]
- Berkov, S.; Romani, S.; Herrera, M.; Viladomat, F.; Codina, C.; Momekov, G.; Ionkova, I.; Bastida, J. Antiproliferative Alkaloids from Crinum zeylanicum. Phytother. Res. 2011, 25, 1686–1692. [Google Scholar] [CrossRef]
- Nair, J.J.; van Staden, J. Antiviral Effects of the Plant Family Amaryllidaceae. Nat. Prod. Commun. 2023, 18, 1934578X231162781. [Google Scholar] [CrossRef]
- Nair, J.J.; van Staden, J. Antiviral alkaloid principles of the plant family Amaryllidaceae. Phytomedicine 2023, 108, 154480. [Google Scholar] [CrossRef]
- Campbell, W.E.; Gammon, D.W.; Nair, J.J.; Codina, C.; Bastida, J.; Viladomat, F.; Smith, P.J.; Albrecht, C.F. Structure Activity Studies on Alkaloids from Indigenous Amaryllidaceous Species; Vieweg: Ridgecrest, CA, USA, 1998; p. 327. [Google Scholar]
- Schmeda-Hirschmann, G.; Astudillo, L.; Bastida, J.; Viladomat, F.; Codina, C. DNA binding activity of amaryllidaceae alkaloids. Bol. Soc. Chil. Quim. 2000, 45, 515–518. [Google Scholar]
Subfamily | Genus | Species a |
---|---|---|
Agapanthoideae | Agapanthus | 5 + unclassified |
Allioideae | Allieae | 524 + unclassified |
Gilliesieae (+9 subgenera b) | 75 + unclassified | |
Tulbaghieae (+2 subgenera c) | 18 + unclassified | |
Amaryllidoideae | 58 genera (+13 subgenera d) | 592 + unclassified |
Total | 62 genera (+24 subgenera) | 1214 + unclassified |
Genera | Species a | Amaryllidaceae Alkaloids b |
---|---|---|
Agapanthus | A. africanus A. campanulatus A. caulescens A. coddii A. praecox | In all five species, no Amaryllidaceae alkaloids were reported. A. campanulatus (root extract) showed positive alkaloid tests [13]. |
Genera | Species (Numbers) a | Amaryllidaceae Alkaloids b |
---|---|---|
Allieae | Allium spp. (524) | No Amaryllidaceae alkaloids were found. Other alkaloids were reported [14,15,16]. |
Gilliesieae | Under 9 subgenera: Beauverdia spp. (4) Gilliesia spp. (7) Latace spp. (1) Leucocoryne spp. (19) Miersia spp. (5) Nothoscordum spp. (20) Speea spp. (2) Tristagma spp. (15) Zoellnerallium spp. (2) | No Amaryllidaceae alkaloids were reported among a total of 75 species. |
Tulbaghieae | Under 2 subgenera: Prototulbaghia spp. (1) Tulbaghia spp. (17) | Among a total of 18 species T. cernua and T. ludwigiana extracts (1 mg/mL ethanol) inhibited AChE [17]. |
Genus | Spp. a | AA b | Genus | Spp. a | AA b |
---|---|---|---|---|---|
Acis | 8 | D c | Hymenocallis | 40 | Iso |
Amaryllis | 3 | Iso d | Ismene | 6 | Iso |
Ammocharis | 6 | Iso | Lapiedra | 1 | Iso |
Apodolirion | 2 | - e | Leptochiton | 1 | - |
Boophone | 3 | Iso | Leucojum | 2 | Iso |
Brunsvigia | 8 | Iso | Lycoris | 25 | Iso |
Caliphruria | 3 | - | Namaquanula | 1 | - |
Calostemma | 3 | Iso | Narcissus | 97 | Iso |
Carpolyza | 0 | - | Nerine | 9 | Iso |
Cearanthes | 0 | - | Pabellonia | 0 | - |
Chlidanthus | 2 | D | Pancratium | 14 | Iso |
Clinantheae: f | Phaedranassa | 8 | Iso | ||
Clinanthus | 6 | Iso | Plagiolirion | 1 | - |
Pamianthe | 2 | - | Proiphys | 2 | D |
Paramongaia | 4 | - | Pyrolirion | 3 | D |
Clivia | 9 | Iso | Rauhia | 3 | - |
Crinum | 68 | Iso | Scadoxus | 4 | Iso |
Crossyne | 2 | Iso | Shoubiaonia | 1 | - |
Cryptostephanus | 2 | - | Stemmatium | u | - |
Cybistetes | 0 | - | Stenomesson | 8 | - |
Cyrtanthus | 44 | Iso | Sternbergia | 8 | Iso |
Eremocrinum | 1 | - | Strumaria | 10 | - |
Eucharis | 9 | Iso | Ungernia | 2 | Iso |
Eucrosia | 6 | - | Urceolina | 2 | Iso |
Eurycles | 1 | Iso | Vagaria | 2 | - |
Eustephia | 1 | Iso | Worsleya | 2 | Iso |
Galanthus | 25 | Iso | |||
Gethyllis | 7 | - | |||
Griffinia | 7 | D | |||
Haemanthus | 12 | Iso | |||
Hannonia | 1 | - | |||
Haylockia | 1 | - | |||
Hessea | 7 | - | |||
Hieronymiella | 2 | Iso | |||
Hippeastreae: g | |||||
Famatina | 0 | - | |||
Hippeastrum | 29 | Iso | |||
Paposoa | 1 | - | |||
Phycella | 16 | D | |||
Placea | 0 | - | |||
Rhodolirium | 3 | Iso | |||
Rhodophiala | 1 | Iso | |||
Sprekelia | 1 | Iso | |||
Traubia | 1 | 0 | |||
Zephyranthes | 36 | Iso |
Genus | Species | Detection or Identification | Reference | |||
---|---|---|---|---|---|---|
Acis | A. autumnalis; A. fabrei; A. longifolia; A. nicaeensis; A. rosea; A. tingitana; A. trichophylla; A. valentine | Acis valentina NR349 contained glanathamine-type alkaloids, and A. autumnalis NR346 contained lycorine-type and other Amaryllidaceae alkaloids. | [133] | |||
Griffinia | G. alba; G. espiritensis; G. gardneriana; G. hyacinthine; G. nocturna; G. parviflora; G. rochae | Griffinia nocturna was studied by UPLC-ESI-MS) for simultaneous analysis of galantamine, pseudolycorine, sanguinine, and narciclasine. | [134] | |||
Phycella (subgenerus of Hippeastreae) | P. angustifolia: P. arzae; P. australis; P. chilensis; P. cyrtanthoides; P. aff. cyrtanthoides Garcia 4163; P. davidii; P. germainii; P. herbertiana; P. ignea; P. lutea; P. maulensis; P. ornate; P. aff. ornata Garcia 726; P. scarlatina | Chloroform basic extracts from P. herbertiana contained galanthamine detected by GC-MS. | [135] | |||
Proiphys | P. amboinensis; P. cunninghamii | In P. amboinensis ext., haemanthamine and lycorine were identified and trace amounts of alkaloids of the lycorine and homolycorine types were found. | [35] | |||
Pyrolirion | P. albicans; P. cutleri; P. tubiflorum | Leaves of P. albicans analysed by GC-MS were found to contain galanthamine, chlidanthine, tazettine, and lycorine, and those in the bulbs were galanthamine, N-demethylgalanthamine, vittatine/crinine, montanine, pancracine, sternbergine, lycorine, and hippeastrine. | [136] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, G.D.; Vishwakarma, P.; Smith, P.N.; Li, R.W. The Occurrence and Bioactivities of Amaryllidaceae Alkaloids from Plants: A Taxonomy-Guided Genera-Wide Review. Plants 2025, 14, 1935. https://doi.org/10.3390/plants14131935
Lin GD, Vishwakarma P, Smith PN, Li RW. The Occurrence and Bioactivities of Amaryllidaceae Alkaloids from Plants: A Taxonomy-Guided Genera-Wide Review. Plants. 2025; 14(13):1935. https://doi.org/10.3390/plants14131935
Chicago/Turabian StyleLin, G. David, Pinky Vishwakarma, Paul N. Smith, and Rachel W. Li. 2025. "The Occurrence and Bioactivities of Amaryllidaceae Alkaloids from Plants: A Taxonomy-Guided Genera-Wide Review" Plants 14, no. 13: 1935. https://doi.org/10.3390/plants14131935
APA StyleLin, G. D., Vishwakarma, P., Smith, P. N., & Li, R. W. (2025). The Occurrence and Bioactivities of Amaryllidaceae Alkaloids from Plants: A Taxonomy-Guided Genera-Wide Review. Plants, 14(13), 1935. https://doi.org/10.3390/plants14131935