Application of Gastrointestinal Peptides in Medicine

A special issue of Pharmaceuticals (ISSN 1424-8247). This special issue belongs to the section "Pharmacology".

Deadline for manuscript submissions: 20 July 2025 | Viewed by 3147

Special Issue Editors


E-Mail Website
Guest Editor

E-Mail Website
Guest Editor
Department of Pathology, School of Medicine, University of Zagreb, Šalata ul. 2, 10000, Zagreb, Croatia
Interests: wound healing; angiogenesis; tissue reaction to injury; carcinogenesis; metastasis
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
Interests: myelodysplastic syndromes; azacitidine; decitabine

Special Issue Information

Dear Colleagues,

Conceptually, a wide beneficial effect, both peripherally and centrally, might have been essential for the harmony and function of the gut–brain axes. From the original viewpoint of gut peptides' significance and brain relation, these could be favorable behavioral findings (interaction with main systems; anxiolytic, anticonvulsive and antidepressant effects; counteracted catalepsy; and positive and negative schizophrenia symptom models). Further applications are possible in muscle healing and function recovery, both peripherally and centrally mediated muscles disabilities, heart failure including arrhythmias and thrombosis, and smooth muscle function recovery. Finally, encephalopathies, acting simultaneously in both the peripheral and central nervous system, and large lesions in the brain and peripheral organs, can be targets for gut peptide therapy. Severe blood pressure disturbances (i.e., venous (intracranial hypertension, portal and caval hypertension) and arterial (i.e., aortal hypotension or hypertension)) can be targeted by gut peptide therapy. The existence of a multimodal axis in healing as a function of the brain–gut axis and the gut–brain axis as a whole should be revealed by gut peptide therapy.

Prof. Dr. Predrag S. Sikirić
Prof. Dr. Sven Seiwerth
Dr. Anita Škrtić
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • brain–gut axes
  • gut peptides
  • gut peptide therapy
  • peptides, healing
  • heart failure

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 10173 KiB  
Article
Agarwood Chromone Alleviates Gastric Ulcers by Inhibiting the NF-κB and Caspase Pathways Based on Network Pharmacology and Molecular Docking
by Canhong Wang, Yulan Wu, Bao Gong, Junyu Mou, Xiaoling Cheng, Ling Zhang and Jianhe Wei
Pharmaceuticals 2025, 18(4), 514; https://doi.org/10.3390/ph18040514 - 31 Mar 2025
Viewed by 527
Abstract
Background: Agarwood has been widely used for the treatment of gastrointestinal diseases. Our research group has suggested that agarwood alcohol extracts (AAEs) provide good gastric mucosal protection. However, the exact mechanisms underlying this effect remain unclear. Objectives: This study aimed to investigate the [...] Read more.
Background: Agarwood has been widely used for the treatment of gastrointestinal diseases. Our research group has suggested that agarwood alcohol extracts (AAEs) provide good gastric mucosal protection. However, the exact mechanisms underlying this effect remain unclear. Objectives: This study aimed to investigate the ameliorative effect of agarwood chromone on gastric ulcers and its mechanism. Methods: Network pharmacology was used to predict the disease spectrum and key therapeutic targets of 2-(2-phenylethyl)chromone (CHR1) and 2-(2-(4-methoxyphenyI)ethyl)chromone (CHR2). Mice were orally administered CHR1 (20 and 40 mg/kg) and CHR2 (20 and 40 mg/kg) and the positive drug omeprazole as an enteric-coated capsule (OEC, 40 mg/kg) orally. After 7 days of pretreatment with the CHRs, gastric ulcers were induced using absolute ethanol (0.15 mL/10 g). The ulcer index, gastric histopathology, biochemical parameters, and inflammatory and apoptotic proteins were evaluated. Finally, binding of the core compounds to the key targets was verified via molecular docking and visualized. Results: The pharmacological results show that the CHRs reduced the gastric occurrence and ulcer inhibition rates by up to more than 70% in a dose-dependent manner. The CHRs decreased the levels of interleukin 6 (IL-6), interleukin 12 (IL-12), interleukin 18 (IL-18), and tumor necrosis factor α (TNF-α), and improved the severity of the pathological lesions in the gastric tissue. The expression of ATP-binding box transporter B1 (ABCB1), arachidonic acid-5-lipoxygenase (ALOX5), nuclear factor kappa B (NF-κB), cysteinyl aspartate specific proteinase 3 3 (Caspase3), and cysteinyl aspartate specific proteinase 9 (Caspase9) was inhibited, but the expression of B-cell lymphoma-2 (Bcl-2) was enhanced. The CHRs bound stably to the key targets via hydrogen bonding, van der Waals forces, etc. These results demonstrate that agarwood chromone compounds exert alleviative effects against the occurrence and development of gastric ulcers by inhibiting the NF-κB and caspase pathways. The CHRs have a therapeutic effect on gastric ulcers through anti-inflammation and anti-apoptosis mechanisms. Conclusions: This study suggests that agarwood may have a potential role in drug development and the prevention and treatment of gastrointestinal inflammation, and tumors. Full article
(This article belongs to the Special Issue Application of Gastrointestinal Peptides in Medicine)
Show Figures

Figure 1

18 pages, 9438 KiB  
Article
(-)-Fenchone Prevents Cysteamine-Induced Duodenal Ulcers and Accelerates Healing Promoting Re-Epithelialization of Gastric Ulcers in Rats via Antioxidant and Immunomodulatory Mechanisms
by Maria Elaine Cristina Araruna, Edvaldo Balbino Alves Júnior, Catarina Alves de Lima Serafim, Matheus Marley Bezerra Pessoa, Michelle Liz de Souza Pessôa, Vitória Pereira Alves, Marcelo Sobral da Silva, Marianna Vieira Sobral, Adriano Francisco Alves, Mayara Karla dos Santos Nunes, Aurigena Antunes Araújo and Leônia Maria Batista
Pharmaceuticals 2024, 17(5), 641; https://doi.org/10.3390/ph17050641 - 15 May 2024
Cited by 4 | Viewed by 1924
Abstract
Background: (-)-Fenchone is a naturally occurring monoterpene found in the essential oils of Foeniculum vulgare Mill., Thuja occidentalis L., and Peumus boldus Molina. Pharmacological studies have reported its antinociceptive, antimicrobial, anti-inflammatory, antidiarrheal, and antioxidant activities. Methods: The preventive antiulcer effects of (-)-Fenchone were [...] Read more.
Background: (-)-Fenchone is a naturally occurring monoterpene found in the essential oils of Foeniculum vulgare Mill., Thuja occidentalis L., and Peumus boldus Molina. Pharmacological studies have reported its antinociceptive, antimicrobial, anti-inflammatory, antidiarrheal, and antioxidant activities. Methods: The preventive antiulcer effects of (-)-Fenchone were assessed through oral pretreatment in cysteamine-induced duodenal lesion models. Gastric healing, the underlying mechanisms, and toxicity after repeated doses were evaluated using the acetic acid-induced gastric ulcer rat model with oral treatment administered for 14 days. Results: In the cysteamine-induced duodenal ulcer model, fenchone (37.5–300 mg/kg) significantly decreased the ulcer area and prevented lesion formation. In the acetic acid-induced ulcer model, fenchone (150 mg/kg) reduced (p < 0.001) ulcerative injury. These effects were associated with increased levels of reduced glutathione (GSH), superoxide dismutase (SOD), interleukin (IL)-10, and transforming growth factor-beta (TGF-β). Furthermore, treatment with (-)-Fenchone (150 mg/kg) significantly reduced (p < 0.001) malondialdehyde (MDA), myeloperoxidase (MPO), interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and nuclear transcription factor kappa B (NF-κB). A 14-day oral toxicity investigation revealed no alterations in heart, liver, spleen, or kidney weight, nor in the biochemical and hematological parameters assessed. (-)-Fenchone protected animals from body weight loss while maintaining feed and water intake. Conclusion: (-)-Fenchone exhibits low toxicity, prevents duodenal ulcers, and enhances gastric healing activities. Antioxidant and immunomodulatory properties appear to be involved in its therapeutic effects. Full article
(This article belongs to the Special Issue Application of Gastrointestinal Peptides in Medicine)
Show Figures

Graphical abstract

Back to TopTop