Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,545)

Search Parameters:
Keywords = additive manufacturing of electronics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 23283 KiB  
Article
Titanium–Aluminum–Vanadium Surfaces Generated Using Sequential Nanosecond and Femtosecond Laser Etching Provide Osteogenic Nanotopography on Additively Manufactured Implants
by Jonathan T. Dillon, David J. Cohen, Scott McLean, Haibo Fan, Barbara D. Boyan and Zvi Schwartz
Biomimetics 2025, 10(8), 507; https://doi.org/10.3390/biomimetics10080507 - 4 Aug 2025
Abstract
Titanium–aluminum–vanadium (Ti6Al4V) is a material chosen for spine, orthopedic, and dental implants due to its combination of desirable mechanical and biological properties. Lasers have been used to modify metal surfaces, enabling the generation of a surface on Ti6Al4V with distinct micro- and nano-scale [...] Read more.
Titanium–aluminum–vanadium (Ti6Al4V) is a material chosen for spine, orthopedic, and dental implants due to its combination of desirable mechanical and biological properties. Lasers have been used to modify metal surfaces, enabling the generation of a surface on Ti6Al4V with distinct micro- and nano-scale structures. Studies indicate that topography with micro/nano features of osteoclast resorption pits causes bone marrow stromal cells (MSCs) and osteoprogenitor cells to favor differentiation into an osteoblastic phenotype. This study examined whether the biological response of human MSCs to Ti6Al4V surfaces is sensitive to laser treatment-controlled micro/nano-topography. First, 15 mm diameter Ti6Al4V discs (Spine Wave Inc., Shelton, CT, USA) were either machined (M) or additively manufactured (AM). Surface treatments included no laser treatment (NT), nanosecond laser (Ns), femtosecond laser (Fs), or nanosecond followed by femtosecond laser (Ns+Fs). Surface wettability, roughness, and surface chemistry were determined using sessile drop contact angle, laser confocal microscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Human MSCs were cultured in growth media on tissue culture polystyrene (TCPS) or test surfaces. On day 7, the levels of osteocalcin (OCN), osteopontin (OPN), osteoprotegerin (OPG), and vascular endothelial growth factor 165 (VEGF) in the conditioned media were measured. M NT, Fs, and Ns+Fs surfaces were hydrophilic; Ns was hydrophobic. AM NT and Fs surfaces were hydrophilic; AM Ns and Ns+Fs were hydrophobic. Roughness (Sa and Sz) increased after Ns and Ns+Fs treatment for both M and AM disks. All surfaces primarily consisted of oxygen, titanium, and carbon; Fs had increased levels of aluminum for both M and AM. SEM images showed that M NT discs had a smooth surface, whereas AM surfaces appeared rough at a higher magnification. Fs surfaces had a similar morphology to their respective NT disc at low magnification, but higher magnification revealed nano-scale bumps not seen on NT surfaces. AM Fs surfaces also had regular interval ridges that were not seen on non-femto laser-ablated surfaces. Surface roughness was increased on M and AM Ns and Ns+Fs disks compared to NT and Fs disks. OCN was enhanced, and DNA was reduced on Ns and Ns+Fs, with no difference between them. OPN, OPG, and VEGF levels for laser-treated M surfaces were unchanged compared to NT, apart from an increase in OPG on Fs. MSCs grown on AM Ns and Ns+Fs surfaces had increased levels of OCN per DNA. These results indicate that MSCs cultured on AM Ns and AM Ns+Fs surfaces, which exhibited unique roughness at the microscale and nanoscale, had enhanced differentiation to an osteoblastic phenotype. The laser treatments of the surface mediated this enhancement of MSC differentiation and warrant further clinical investigation. Full article
Show Figures

Graphical abstract

33 pages, 3776 KiB  
Review
The Role of Additive Manufacturing in Dental Implant Production—A Narrative Literature Review
by Ján Duplák, Darina Dupláková, Maryna Yeromina, Samuel Mikuláško and Jozef Török
Sci 2025, 7(3), 109; https://doi.org/10.3390/sci7030109 - 3 Aug 2025
Viewed by 139
Abstract
This narrative review explores the role of additive manufacturing (AM) technologies in the production of dental implants, focusing on materials and key AM methods. The study discusses several materials used in implant fabrication, including porous titanium, trabecular tantalum, zirconium dioxide, polymers, and composite [...] Read more.
This narrative review explores the role of additive manufacturing (AM) technologies in the production of dental implants, focusing on materials and key AM methods. The study discusses several materials used in implant fabrication, including porous titanium, trabecular tantalum, zirconium dioxide, polymers, and composite materials. These materials are evaluated for their mechanical properties, biocompatibility, and suitability for AM processes. Additionally, the review examines the main AM technologies used in dental implant production, such as selective laser melting (SLM), electron beam melting (EBM), stereolithography (SLA), selective laser sintering (SLS), and direct metal laser sintering (DMLS). These technologies are compared based on their accuracy, material limitations, customization potential, and applicability in dental practice. The final section presents a data source analysis of the Web of Science and Scopus databases, based on keyword searches. The analysis evaluates the research trends using three criteria: publication category, document type, and year of publication. This provides an insight into the evolution and current trends in the field of additive manufacturing for dental implants. The findings highlight the growing importance of AM technologies in producing customized and efficient dental implants. Full article
Show Figures

Figure 1

16 pages, 2858 KiB  
Article
Reactive Aerosol Jet Printing of Ag Nanoparticles: A New Tool for SERS Substrate Preparation
by Eugenio Gibertini, Lydia Federica Gervasini, Jody Albertazzi, Lorenzo Maria Facchetti, Matteo Tommasini, Valentina Busini and Luca Magagnin
Coatings 2025, 15(8), 900; https://doi.org/10.3390/coatings15080900 (registering DOI) - 1 Aug 2025
Viewed by 97
Abstract
The detection of trace chemicals at low and ultra-low concentrations is critical for applications in environmental monitoring, medical diagnostics, food safety and other fields. Conventional detection techniques often lack the required sensitivity, specificity, or cost-effectiveness, making real-time, in situ analysis challenging. Surface-enhanced Raman [...] Read more.
The detection of trace chemicals at low and ultra-low concentrations is critical for applications in environmental monitoring, medical diagnostics, food safety and other fields. Conventional detection techniques often lack the required sensitivity, specificity, or cost-effectiveness, making real-time, in situ analysis challenging. Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical tool, offering improved sensitivity through the enhancement of Raman scattering by plasmonic nanostructures. While noble metals such as Ag and Au are currently the reference choices for SERS substrates, fabrication methods should balance enhancement efficiency, reproducibility and scalability. In this study, we propose a novel approach for SERS substrate fabrication using reactive Aerosol Jet Printing (r-AJP) as an innovative additive manufacturing technique. The r-AJP process enables in-flight Ag seed reduction and nucleation of Ag nanoparticles (NPs) by mixing silver nitrate and ascorbic acid aerosols before deposition, as suggested by computational fluid dynamics (CFD) simulations. The resulting coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses, revealing the formation of nanoporous crystalline Ag agglomerates partially covered by residual matter. The as-prepared SERS substrates exhibited remarkable SERS activity, demonstrating a high enhancement factor (106) for rhodamine (R6G) detection. Our findings highlight the potential of r-AJP as a scalable and cost-effective fabrication strategy for next-generation SERS sensors, paving the way for the development of a new additive manufacturing tool for noble metal material deposition. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Graphical abstract

25 pages, 659 KiB  
Systematic Review
Mechanical and Physical Properties of Durable Prosthetic Restorations Printed Using 3D Technology in Comparison with Hybrid Ceramics and Milled Restorations—A Systematic Review
by Bettanapalya. V. Swapna, B. Shivamurthy, Vinu Thomas George, Kavishma Sulaya and Vaishnavi M Nayak
Prosthesis 2025, 7(4), 90; https://doi.org/10.3390/prosthesis7040090 (registering DOI) - 1 Aug 2025
Viewed by 115
Abstract
Background/Objectives: Additive manufacturing (AM) technology has emerged as an innovative approach in dentistry. Recently, manufacturers have developed permanent resins engineered explicitly for the fabrication of definitive prostheses using AM techniques. This systematic review evaluated the mechanical and physical properties of 3D-printed permanent resins [...] Read more.
Background/Objectives: Additive manufacturing (AM) technology has emerged as an innovative approach in dentistry. Recently, manufacturers have developed permanent resins engineered explicitly for the fabrication of definitive prostheses using AM techniques. This systematic review evaluated the mechanical and physical properties of 3D-printed permanent resins in comparison to milled resins and hybrid ceramics for the fabrication of indirect dental restorations. Methods: Three electronic databases—Scopus, Web of Science, and PubMed—were searched for English-language articles. Two independent researchers conducted study selection, data extraction, quality assessment, and the evaluation of the certainty of evidence. In vitro studies assessing the mechanical and physical properties of the permanent resins were included in this review. Results: A total of 1779 articles were identified through electronic databases. Following full-text screening and eligibility assessment, 13 studies published between 2023 and 2024 were included in this qualitative review. The investigated outcomes included physical properties (surface roughness, color changes, water sorption/solubility) and mechanical properties (flexural strength, elastic modulus, microhardness). Conclusions: Three-dimensionally printed permanent resins show promising potential for fabricating indirect dental restorations. However, the current evidence regarding their mechanical and physical properties remain limited and inconsistent, mainly due to variability in study methodologies. Full article
(This article belongs to the Section Prosthodontics)
Show Figures

Figure 1

16 pages, 5071 KiB  
Article
Effect of Diatomite Content in a Ceramic Paste for Additive Manufacturing
by Pilar Astrid Ramos Casas, Andres Felipe Rubiano-Navarrete, Yolanda Torres-Perez and Edwin Yesid Gomez-Pachon
Ceramics 2025, 8(3), 96; https://doi.org/10.3390/ceramics8030096 (registering DOI) - 31 Jul 2025
Viewed by 161
Abstract
Ceramic pastes used in additive manufacturing offer several advantages, including low production costs due to the availability of raw materials and efficient processing methods, as well as a reduced environmental footprint through minimized material waste, optimized resource use, and the inclusion of recyclable [...] Read more.
Ceramic pastes used in additive manufacturing offer several advantages, including low production costs due to the availability of raw materials and efficient processing methods, as well as a reduced environmental footprint through minimized material waste, optimized resource use, and the inclusion of recyclable or sustainably sourced components. This study evaluates the effect of diatomite content in a ceramic paste composed of carboxymethyl cellulose, kaolinite, and feldspar on its extrusion behavior and thermal conductivity, with additional analysis of its implications for microstructure, mechanical properties, and thermal performance. Four ceramic pastes were prepared with diatomite additions of 0, 10, 30, and 60% by weight. Thermal conductivity, extrusion behavior, morphology, and distribution were examined using scanning electron microscopy (SEM), while thermal degradation was assessed through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results show that increasing diatomite content leads to a reduction in thermal conductivity, which ranged from 0.719 W/(m·°C) for the control sample to 0.515 W/(m·°C) for the 60% diatomite sample, as well as an improvement in extrusion behavior. The ceramic paste demonstrated adequate extrusion performance for 3D printing at diatomite contents above 30%. These findings lay the groundwork for future research and optimization in the development of functional ceramic pastes for advanced manufacturing applications. Full article
Show Figures

Figure 1

20 pages, 2093 KiB  
Review
A Practical Guide Paper on Bulk and PLD Thin-Film Metals Commonly Used as Photocathodes in RF and SRF Guns
by Alessio Perrone, Muhammad Rizwan Aziz, Francisco Gontad, Nikolaos A. Vainos and Anna Paola Caricato
Chemistry 2025, 7(4), 123; https://doi.org/10.3390/chemistry7040123 - 30 Jul 2025
Viewed by 286
Abstract
This paper serves as a comprehensive and practical resource to guide researchers in selecting suitable metals for use as photocathodes in radio-frequency (RF) and superconducting radio-frequency (SRF) electron guns. It offers an in-depth review of bulk and thin-film metals commonly employed in many [...] Read more.
This paper serves as a comprehensive and practical resource to guide researchers in selecting suitable metals for use as photocathodes in radio-frequency (RF) and superconducting radio-frequency (SRF) electron guns. It offers an in-depth review of bulk and thin-film metals commonly employed in many applications. The investigation includes the photoemission, optical, chemical, mechanical, and physical properties of metallic materials used in photocathodes, with a particular focus on key performance parameters such as quantum efficiency, operational lifetime, chemical inertness, thermal emittance, response time, dark current, and work function. In addition to these primary attributes, this study examines essential parameters such as surface roughness, morphology, injector compatibility, manufacturing techniques, and the impact of chemical environmental factors on overall performance. The aim is to provide researchers with detailed insights to make well-informed decisions on materials and device selection. The holistic approach of this work associates, in tabular format, all photo-emissive, optical, mechanical, physical, and chemical properties of bulk and thin-film metallic photocathodes with experimental data, aspiring to provide unique tools for maximizing the effectiveness of laser cleaning treatment. Full article
(This article belongs to the Section Electrochemistry and Photoredox Processes)
Show Figures

Figure 1

24 pages, 6760 KiB  
Article
Influence of Microstructure and Heat Treatment on the Corrosion Resistance of Mg-1Zn Alloy Produced by Laser Powder Bed Fusion
by Raúl Reyes-Riverol, Ángel Triviño-Peláez, Federico García-Galván, Marcela Lieblich, José Antonio Jiménez and Santiago Fajardo
Metals 2025, 15(8), 853; https://doi.org/10.3390/met15080853 - 30 Jul 2025
Viewed by 246
Abstract
The corrosion behavior of an additively manufactured Mg-1Zn alloy was investigated in both the transverse and longitudinal directions relative to the build direction, in the as-built condition and after annealing at 350 °C for 24 h under high vacuum. Microstructural characterization using XRD [...] Read more.
The corrosion behavior of an additively manufactured Mg-1Zn alloy was investigated in both the transverse and longitudinal directions relative to the build direction, in the as-built condition and after annealing at 350 °C for 24 h under high vacuum. Microstructural characterization using XRD and SEM revealed the presence of magnesium oxide (MgO) and the absence of intermetallic second-phase particles. Optical microscopy (OM) images and Electron Backscatter Diffraction (EBSD) maps showed a highly complex grain morphology with anomalous, anisotropic shapes and a heterogeneous grain size distribution. The microstructure includes grains with a pronounced columnar morphology aligned along the build direction and is therefore characterized by a strong crystallographic texture. Electrochemical techniques, including PDP and EIS, along with gravimetric H2 collection, concluded that the transverse plane exhibited greater corrosion resistance compared to the longitudinal plane. Additionally, an increase in cathodic kinetics was observed when comparing as-built with heat-treated samples. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Figure 1

18 pages, 5270 KiB  
Article
Co-Pyrolysis of Bamboo and Rice Straw Biomass with Polyethylene Plastic: Characterization, Kinetic Evaluation, and Synergistic Interaction Analysis
by Munir Hussain, Vikul Vasudev, Shri Ram, Sohail Yasin, Nouraiz Mushtaq, Menahil Saleem, Hafiz Tanveer Ashraf, Yanjun Duan, Muhammad Ali and Yu Bin
Polymers 2025, 17(15), 2063; https://doi.org/10.3390/polym17152063 - 29 Jul 2025
Viewed by 294
Abstract
This study investigates the co-pyrolysis behavior of two lignocellulosic biomass blends, bamboo (B), and rice straw (R) with a plastic polyethylene (P). A total of 15 samples, including binary and ternary blends, were analyzed. Firstly, X-ray diffraction (XRD) analysis was performed to reveal [...] Read more.
This study investigates the co-pyrolysis behavior of two lignocellulosic biomass blends, bamboo (B), and rice straw (R) with a plastic polyethylene (P). A total of 15 samples, including binary and ternary blends, were analyzed. Firstly, X-ray diffraction (XRD) analysis was performed to reveal high crystallinity in the B25R75 blend (I/Ic = 13.39). Whereas, the polyethylene samples showed persistent ZrP2O7 and lazurite phases (I/Ic up to 3.12) attributed to additives introduced during the manufacturing of the commercial plastic feedstock. In addition, scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) spectroscopy was performed to characterize the surface morphology and elemental composition of the feedstock. Moreover, thermogravimetric analysis (TGA) was employed at temperatures up to 700 °C at three different heating rates (5, 10, and 20 °C/min) under pyrolysis conditions. Kinetic analysis used TGA data to calculate activation energy via Friedman’s isoconversional method, and the blended samples exhibited a decrease in activation energy compared to the individual components. Furthermore, the study evaluated transient interaction effects among the components by assessing the deviation between experimental and theoretical weight loss. This revealed the presence of significant synergistic behavior in certain binary and ternary blends. The results demonstrate that co-pyrolysis of bamboo and rice straw with polyethylene enhances thermal decomposition efficiency and provides a more favorable energy recovery route. Full article
(This article belongs to the Topic Biomass for Energy, Chemicals and Materials)
Show Figures

Figure 1

33 pages, 3709 KiB  
Review
A Review of Methods and Data on the Recycling of Plastics from the European Waste Stream of Electric and Electronic Equipment
by Nicolas Nève, Xavier Mackré-Delannoy, Bruno Fayolle, Matthieu Gervais, Stéphane Pompidou, Carole Charbuillet, Cyrille Sollogoub and Nicolas Perry
Recycling 2025, 10(4), 148; https://doi.org/10.3390/recycling10040148 - 28 Jul 2025
Viewed by 291
Abstract
Plastics make up a significant proportion of the stream of the European Waste of Electric and Electronic Equipment (WEEE), yet the use of recycled plastic materials is very low in new manufactured products. A description of the WEEE waste stream in Europe is [...] Read more.
Plastics make up a significant proportion of the stream of the European Waste of Electric and Electronic Equipment (WEEE), yet the use of recycled plastic materials is very low in new manufactured products. A description of the WEEE waste stream in Europe is given, with a focus on the plastic materials commonly found in WEEE that include four principal polymers: polypropylene (PP), polycarbonate (PC), acrylonitrile-butadiene-styrene (ABS) and polystyrene (PS). Furthermore, the legislative aspects related to WEEE and plastics recycling in Europe are complex, and numerous norms have been dictated by the European Commission. These norms are crucial to the sector of polymer recycling and production in Europe. Moreover, an overview of the entire treatment chain is presented. More specifically, each step of a typical recycling chain is introduced, with a focus on the sorting of plastics and the separation of polymers. Lastly, the influence of contaminants in the plastic fraction is discussed, both in terms of polymer particles and unwanted additives. By showing the impact of the purity rate on the mechanical properties of recycled plastics, the consequences of inadequate end-of-life treatment for WEEE-plastics is highlighted, hence linking the quality of recycled plastics to the separation step and the re-compounding of recycled granulates. Full article
Show Figures

Graphical abstract

16 pages, 1064 KiB  
Article
Tracing the Tin Flows and Stocks in China: A Dynamic Material Flow Analysis from 2001 to 2022
by Wei Chen, Lulu Hu, Yaqi Wang, Ziyan Gao and Yong Geng
Systems 2025, 13(8), 622; https://doi.org/10.3390/systems13080622 - 23 Jul 2025
Viewed by 230
Abstract
Tin is an indispensable metal for contemporary society owing to its extensive application. China is a major tin manufacturer and consumer worldwide. Nonetheless, the crucial characteristics of its tin metabolism remain limited. Therefore, a dynamic material flow analysis (MFA) from 2001 to 2022 [...] Read more.
Tin is an indispensable metal for contemporary society owing to its extensive application. China is a major tin manufacturer and consumer worldwide. Nonetheless, the crucial characteristics of its tin metabolism remain limited. Therefore, a dynamic material flow analysis (MFA) from 2001 to 2022 was performed in this study to trace China’s tin flows and stocks. Findings show that China became a net tin exporter from a life cycle perspective, and annual tin consumption embodied in various final products varied between 49.3 kilo tons (Kt) in 2001 and 161.5 Kt in 2022, with home appliances and electronics being the dominant consumption sectors. A total of 913.3 Kt of tin became in-use stocks. In addition, the imported tin embodied in various final products varied between 13.9 Kt in 2001 and 21.6 Kt in 2022, with machinery being the dominant consumption sector. The exported tin embodied in various final products varied between 12.0 Kt in 2001 and 76.3 Kt in 2022, with machinery being the dominant consumption sector. Finally, this study proposes some suggestions, in view of the Chinese reality, like enhancing tin recycling, promoting tin geological prospecting, optimizing the structure of the tin trade, and promoting regional cooperation, to improve the supply security of tin resources. Full article
Show Figures

Figure 1

27 pages, 36926 KiB  
Article
Comparison of Additive Manufacturing and Injection Molding of Biocomposites Reinforced with Alkali-Treated Wood Flour Derived from Recycled Wooden Pallets
by Mehmet Demir, Nilgül Çetin and Nasır Narlıoğlu
Polymers 2025, 17(15), 2004; https://doi.org/10.3390/polym17152004 - 22 Jul 2025
Viewed by 374
Abstract
Biodegradable polymer composites offer promising alternatives to petroleum-based plastics, supporting the principles of a zero waste and circular economy. This study investigates the reinforcing potential of alkali-treated wood flour derived from recycled pine (Pinus brutia Ten.) and poplar (Populus alba L.) [...] Read more.
Biodegradable polymer composites offer promising alternatives to petroleum-based plastics, supporting the principles of a zero waste and circular economy. This study investigates the reinforcing potential of alkali-treated wood flour derived from recycled pine (Pinus brutia Ten.) and poplar (Populus alba L.) waste wooden pallets in poly(lactic acid) (PLA) biocomposites. Wood flour was initially recovered through grinding and screening during recycling, followed by alkali treatment via a green chemistry approach to enhance interfacial bonding with the PLA matrix. The impact of alkali concentration and two fabrication methods—additive manufacturing (AM) and injection molding (IM)—on the properties of developed biocomposite materials was assessed through mechanical, physical, morphological, and thermal analyses. IM samples outperformed AM counterparts, with the IM PLA containing 30 wt% wood flour (alkali-treated with 10% solution) showing the highest mechanical gains: tensile (+71.35%), flexural (+64.74%), and hardness (+2.62%) compared to untreated samples. Moreover, the AM sample with 10 wt% wood flour and 10% alkali treatment showed a 49.37% decrease in water absorption compared to the untreated sample, indicating improved hydrophobicity. Scanning electron microscopy confirmed that alkali treatment reduced void content and enhanced morphological uniformity, while thermal properties remained consistent across fabrication methods. This work introduces a green composite using non-toxic materials and treatments, facilitating eco-friendly production aligned with zero waste and circular economy principles throughout the manufacturing lifecycle. Full article
(This article belongs to the Special Issue Polymer Composites: Structure, Properties and Processing, 2nd Edition)
Show Figures

Graphical abstract

27 pages, 2034 KiB  
Article
LCFC-Laptop: A Benchmark Dataset for Detecting Surface Defects in Consumer Electronics
by Hua-Feng Dai, Jyun-Rong Wang, Quan Zhong, Dong Qin, Hao Liu and Fei Guo
Sensors 2025, 25(15), 4535; https://doi.org/10.3390/s25154535 - 22 Jul 2025
Viewed by 315
Abstract
As a high-market-value sector, the consumer electronics industry is particularly vulnerable to reputational damage from surface defects in shipped products. However, the high level of automation and the short product life cycles in this industry make defect sample collection both difficult and inefficient. [...] Read more.
As a high-market-value sector, the consumer electronics industry is particularly vulnerable to reputational damage from surface defects in shipped products. However, the high level of automation and the short product life cycles in this industry make defect sample collection both difficult and inefficient. This challenge has led to a severe shortage of publicly available, comprehensive datasets dedicated to surface defect detection, limiting the development of targeted methodologies in the academic community. Most existing datasets focus on general-purpose object categories, such as those in the COCO and PASCAL VOC datasets, or on industrial surfaces, such as those in the MvTec AD and ZJU-Leaper datasets. However, these datasets differ significantly in structure, defect types, and imaging conditions from those specific to consumer electronics. As a result, models trained on them often perform poorly when applied to surface defect detection tasks in this domain. To address this issue, the present study introduces a specialized optical sampling system with six distinct lighting configurations, each designed to highlight different surface defect types. These lighting conditions were calibrated by experienced optical engineers to maximize defect visibility and detectability. Using this system, 14,478 high-resolution defect images were collected from actual production environments. These images cover more than six defect types, such as scratches, plain particles, edge particles, dirt, collisions, and unknown defects. After data acquisition, senior quality control inspectors and manufacturing engineers established standardized annotation criteria based on real-world industrial acceptance standards. Annotations were then applied using bounding boxes for object detection and pixelwise masks for semantic segmentation. In addition to the dataset construction scheme, commonly used semantic segmentation methods were benchmarked using the provided mask annotations. The resulting dataset has been made publicly available to support the research community in developing, testing, and refining advanced surface defect detection algorithms under realistic conditions. To the best of our knowledge, this is the first comprehensive, multiclass, multi-defect dataset for surface defect detection in the consumer electronics domain that provides pixel-level ground-truth annotations and is explicitly designed for real-world applications. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

22 pages, 16125 KiB  
Article
Toward an Efficient and Robust Process–Structure Prediction Framework for Filigree L-PBF 316L Stainless Steel Structures
by Yu Qiao, Marius Grad and Aida Nonn
Metals 2025, 15(7), 812; https://doi.org/10.3390/met15070812 - 20 Jul 2025
Viewed by 570
Abstract
Additive manufacturing (AM), particularly laser powder bed fusion (L-PBF), provides unmatched design flexibility for creating intricate steel structures with minimal post-processing. However, adopting L-PBF for high-performance applications is difficult due to the challenge of predicting microstructure evolution. This is because the process is [...] Read more.
Additive manufacturing (AM), particularly laser powder bed fusion (L-PBF), provides unmatched design flexibility for creating intricate steel structures with minimal post-processing. However, adopting L-PBF for high-performance applications is difficult due to the challenge of predicting microstructure evolution. This is because the process is sensitive to many parameters and has a complex thermal history. Thin-walled geometries present an added challenge because their dimensions often approach the scale of individual grains. Thus, microstructure becomes a critical factor in the overall integrity of the component. This study focuses on applying cellular automata (CA) modeling to establish robust and efficient process–structure relationships in L-PBF of 316L stainless steel. The CA framework simulates solidification-driven grain evolution and texture development across various processing conditions. Model predictions are evaluated against experimental electron backscatter diffraction (EBSD) data, with additional quantitative comparisons based on texture and morphology metrics. The results demonstrate that CA simulations calibrated with relevant process parameters can effectively reproduce key microstructural features, including grain size distributions, aspect ratios, and texture components, observed in thin-walled L-PBF structures. This work highlights the strengths and limitations of CA-based modeling and supports its role in reliably designing and optimizing complex L-PBF components. Full article
Show Figures

Graphical abstract

26 pages, 2731 KiB  
Review
Recent Advances in PEEK for Biomedical Applications: A Comprehensive Review of Material Properties, Processing, and Additive Manufacturing
by Samreen Dallal, Babak Eslami and Saeed Tiari
Polymers 2025, 17(14), 1968; https://doi.org/10.3390/polym17141968 - 17 Jul 2025
Viewed by 772
Abstract
Polyetheretherketone (PEEK) is a high-performance thermoplastic polymer widely recognized for its distinct mechanical strength, chemical resistance, and biocompatibility. These characteristics make it suitable for a wide range of applications, particularly in medical, aerospace, chemical, and electronics fields. Conventional processing techniques, such as 3D [...] Read more.
Polyetheretherketone (PEEK) is a high-performance thermoplastic polymer widely recognized for its distinct mechanical strength, chemical resistance, and biocompatibility. These characteristics make it suitable for a wide range of applications, particularly in medical, aerospace, chemical, and electronics fields. Conventional processing techniques, such as 3D printing, molding, and extrusion, are widely employed for PEEK fabrication. This review critically examines recent advancements in PEEK research, with an emphasis on additive manufacturing techniques that are expanding its applications in the medical field. We provide an in-depth analysis of PEEK’s intrinsic properties, diverse processing methods, and current challenges that hinder its wider adoption. In addition to evaluating PEEK’s performance, this review compares it with alternative biomaterials—such as titanium and ultra-high molecular weight polyethylene (UHMWPE)—to explore its advantages and limitations in biomedical applications. Furthermore, this review discusses cost considerations, regulatory constraints, long-term clinical performance challenges, and failure modes that are essential for validating and ensuring the reliability of PEEK in clinical use. By synthesizing the recent literature, particularly from the last decade, this review highlights the significant potential of PEEK and underscores ongoing research efforts aimed at overcoming its limitations, paving the way for its broader implementation in advanced technological applications. Full article
Show Figures

Figure 1

22 pages, 11295 KiB  
Article
Process-Driven Structural and Property Evolution in Laser Powder Bed Fusion of a Newly Developed AISI 316L Stainless Steel
by Amir Behjat, Morteza Shamanian, Fazlollah Sadeghi, Mohammad Hossein Mosallanejad and Abdollah Saboori
Materials 2025, 18(14), 3343; https://doi.org/10.3390/ma18143343 - 16 Jul 2025
Viewed by 337
Abstract
The lack of new materials with desired processability and functional characteristics remains a challenge for metal additive manufacturing (AM). Therefore, in this work, a new promising AISI 316L-based alloy with better performance compared to the commercially available one is developed via the laser [...] Read more.
The lack of new materials with desired processability and functional characteristics remains a challenge for metal additive manufacturing (AM). Therefore, in this work, a new promising AISI 316L-based alloy with better performance compared to the commercially available one is developed via the laser powder bed fusion (L-PBF) process. Moreover, establishing process–structure–properties linkages is a critical point that should be evaluated carefully before adding newly developed alloys into the AM market. Hence, the current study investigates the influences of various process parameters on the as-built quality and microstructure of the newly developed alloy. The results revealed that increasing laser energy density led to reduced porosity and surface roughness, likely due to enhanced melting and solidification. Microstructural analysis revealed a uniform distribution of copper within the austenite phase without forming any agglomeration or secondary phases. Electron backscatter diffraction analysis indicated a strong texture along the build direction with a gradual increase in Goss texture at higher energy densities. Grain boundary regions exhibited higher local misorientation and dislocation density. These findings suggest that changing the process parameters of the L-PBF process is a promising method for developing tailored microstructures and chemical compositions of commercially available AISI 316L stainless steel. Full article
Show Figures

Figure 1

Back to TopTop