polymers-logo

Journal Browser

Journal Browser

Polymer Composites: Structure, Properties and Processing, 2nd Edition

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Composites and Nanocomposites".

Deadline for manuscript submissions: 20 June 2025 | Viewed by 1464

Special Issue Editor


E-Mail Website
Guest Editor
University of Zagreb Faculty of Mechanical Engineering and Naval Architecture, Ivana Lucica 5, 10000 Zagreb, Croatia
Interests: composites materials; composites production; additive manufacturing; properties of polymers; polymer production; recycling
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We all know that composite materials are homogeneous materials, which are obtained by joining two or more different materials with the aim of achieving specific characteristics and properties that do not possess any of the ingredients by themselves. The combination of two or more phases (single-phase or multiphase), (each of these phases is also used as stand-alone material) and a base material (matrix) and additional material (reinforcement or filler) can form a composite.

Whether fibres or particles are used as a reinforcement in thermoplastics, thermosets, and elastomers, it is necessary to establish their structure in the overall composite and how they affect the properties. When talking about classic fibre-reinforced polymer composites, hybridization (whether mixing with different types of fibres in the weave or in different layers) certainly plays a big role because better properties are achieved. In addition, polymer composites reinforced with natural fibres or particles should also be considered, and how to increase their properties so that they can be comparable to, for example, carbon or aramid fibres.

However, for such materials to be used in industry, an important step is the production itself and how the processing parameters affect the composite products. In addition to the classic methods of processing composites regarding fibres (hand lay-up, vacuum bagging, filament winding, etc.), in recent years, this has also been achieved by additive manufacturing, the so-called 3D printing, and, for particles, by extrusion.

When production is completed, it is certainly important to establish the properties of the composite product in its application, for example, the effect of aging (various atmospheric conditions) on the mechanical properties, etc.

Even at the very end of product use, disposal, recycling, mechanical, chemical, or energy recovery (incineration) is certainly important.

Dr. Ana Pilipović
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymer composites (polymer-polymer composites, polymer-metal composites, polymer-ceramics composites)
  • fibre reinforced polymer composites
  • particle-reinforced polymer composites
  • natural composites
  • structure and characterization of composite
  • properties (mechanical, thermal, rheological, fatigue performance, aging, etc.)
  • simulation of processing and properties of composites
  • processing of composites
  • additive manufacturing of composites
  • recycling

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 1836 KiB  
Article
The Effect of Resin Type and Placement Technique on the Hardness of Resin-Based Composites Polymerized with LED and UV Light-Curing Units
by Ayse Nurcan Duman and Arife Dogan
Polymers 2025, 17(6), 774; https://doi.org/10.3390/polym17060774 - 14 Mar 2025
Viewed by 305
Abstract
The aim of this in vitro study is to evaluate the effect of resin type and placement technique on the hardness of resin-based composites (RBCs). A total of 300 samples consisting of five RBCs (Filtek Z250 microhybrid, Filtek P60 packable, Tetric Ceram hybrid, [...] Read more.
The aim of this in vitro study is to evaluate the effect of resin type and placement technique on the hardness of resin-based composites (RBCs). A total of 300 samples consisting of five RBCs (Filtek Z250 microhybrid, Filtek P60 packable, Tetric Ceram hybrid, Admira ORMOCER, and Tetric Flow flowable RBCs) were prepared. Each RBC was placed into Teflon molds with a 4 mm diameter and 2 or 8 mm depths with standard, bulk and incremental techniques and was polymerized by second-generation LED (Hilux Ledmax 1055, 229.153 mW/cm2) and UV (ELC-410, 26.106 mW/cm2) light-curing units (LCUs) in standard mode (n = 10). The Vickers hardness number (VHN) was measured from the top and bottom surfaces of the RBCs. Data were statistically analyzed with a one-way ANOVA. Multiple comparisons were made using the Tukey, Scheffe, and t-tests (p < 0.05). The VHN of the RBCs polymerized with LED and UV LCUs varied between 110.33 and 25.16 and between 104.86 and 34.20, respectively. The Tetric Flow RBC did not polymerize with the LCUs on either surface. The RBCs placed using the bulk technique could not polymerize with the UV LCU on the top surface, except for the Filtek P60 RBC, but showed a higher VHN on the bottom surface. These significant findings highlight that the hardness is specific to the RBC material and placement technique. Full article
(This article belongs to the Special Issue Polymer Composites: Structure, Properties and Processing, 2nd Edition)
Show Figures

Figure 1

14 pages, 3637 KiB  
Article
Conducting Rubber Anisotropy of Electrophysical and Mechanical Properties
by Stanislav Makhno, Xianpeng Wan, Oksana Lisova, Petro Gorbyk, Dongxing Wang, Hao Tang, Yuli Shi, Mykola Kartel, Kateryna Ivanenko, Sergii Hozhdzinskyi, Galyna Zaitseva, Maksym Stetsenko and Yurii Sementsov
Polymers 2025, 17(4), 492; https://doi.org/10.3390/polym17040492 - 14 Feb 2025
Viewed by 718
Abstract
The aim of this work was to determine the anisotropy of the electrophysical and mechanical properties of rubber reinforced with a hybrid filler CNTs&CB (carbon nanotubes and carbon black) as a function of CNT content and the technological parameters of the production process. [...] Read more.
The aim of this work was to determine the anisotropy of the electrophysical and mechanical properties of rubber reinforced with a hybrid filler CNTs&CB (carbon nanotubes and carbon black) as a function of CNT content and the technological parameters of the production process. A significant difference in electrical conductivity (σ) and dielectric permittivity (ε) in three perpendicular directions was found for CNT concentrations ranging from 0 to 0.007 in volume fraction. The highest values of σ and ε were observed in the calendering direction, with slightly lower values in the perpendicular direction. This effect was attributed to the orientation of polymer molecules and CNTs along the direction of movement during calendering, as well as the disruption of the cluster structure in the transverse direction. Although the calculated percolation threshold values of the investigated system differed slightly, a correlation was observed between the mechanical and electrophysical properties of CNTs&CB rubber. This correlation enables rubber products to be designed with optimal properties tailored to the desired direction. Full article
(This article belongs to the Special Issue Polymer Composites: Structure, Properties and Processing, 2nd Edition)
Show Figures

Figure 1

Back to TopTop