Toward an Efficient and Robust Process–Structure Prediction Framework for Filigree L-PBF 316L Stainless Steel Structures
Abstract
1. Introduction
2. Methodology
2.1. Celluar Automata
2.1.1. Algorithm for Decentered Octahedrons
2.1.2. Interface Reaction Function
2.2. Nucleation of Heterogeneous Grains
2.3. Temperature Profile with CFD Simulation
2.3.1. Heat Source
2.3.2. Boundary Conditions
2.4. Parameters of Numerical Experiments
3. Experimental Details
3.1. Specimen Fabrication
3.2. Electron Backscatter Diffraction Analysis
4. Results
4.1. Comparison of Experimental and Simulated 3D Crystallographic Textures
4.2. Normalized Texture Index
4.3. Quantitative Grain Morphology Analysis: Comparison Between Experiments and Simulations
4.4. Earth Mover’s Distance of Chord Length Distribution
5. Discussion
6. Conclusions
- Simulation 9 () best reproduced the dominant <111> and <101> texture components seen in the experiments, particularly in the Z and X directions. Although Simulation 6 () yielded lower normalized texture index (NTI) scores, visual inspection of inverse pole figures (IPFs) confirmed that Simulation 9 more accurately captured the primary texture features critical for mechanical performance.
- Grain size and aspect ratio distributions from simulations showed good agreement with experiments. A high nucleation density combined with a high absorption rate yielded the closest match to the slightly finer-grained microstructure observed in Experimental 1, whereas Experimental 2 was better matched by simulations with a lower nucleation density at the same absorption rate.
- Earth Mover’s Distance (EMD) analysis of chord length distributions confirmed the morphological similarity between simulations and experiments.
- The CA model demonstrates strong capability in predicting both texture and morphology when calibrated with experimentally relevant parameters. However, limitations remain, particularly regarding the modeling of anisotropic grain growth, melt pool dynamics, and post-process effects such as heat treatment.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
L-PBF | Laser powder bed fusion |
AM | Additive manufacturing |
PSP | Process-structure-property |
CA | Cellular automata |
PFM | Phase field models |
KMC | Kinetic monte carlo |
HAZ | Heat-affected zone |
References
- Ahmed, N.; Barsoum, I.; Haidemenopoulos, G.; Al-Rub, R.K. Process parameter selection and optimization of laser powder bed fusion for 316L stainless steel: A review. J. Manuf. Process. 2022, 75, 415–434. [Google Scholar] [CrossRef]
- Gandin, C.A.; Desbiolles, J.L.; Rappaz, M.; Thévoz, P. A three-dimensional cellular automaton-finite element model for the prediction of solidification grain structures. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 1999, 30, 3153–3165. [Google Scholar] [CrossRef]
- Rappaz, M.; Gandin, C.A. Probabilistic modelling of microstructure formation in solidification processes. Acta Metall. Mater. 1993, 41, 345–360. [Google Scholar] [CrossRef]
- Teferra, K.; Rowenhorst, D.J. Optimizing the cellular automata finite element model for additive manufacturing to simulate large microstructures. Acta Mater. 2021, 213, 116930. [Google Scholar] [CrossRef]
- Baumard, A.; Ayrault, D.; Fandeur, O.; Bordreuil, C.; Deschaux-Beaume, F. Numerical prediction of grain structure formation during laser powder bed fusion of 316 L stainless steel. Mater. Des. 2021, 199, 109434. [Google Scholar] [CrossRef]
- Panwisawas, C.; Qiu, C.; Anderson, M.J.; Sovani, Y.; Turner, R.P.; Attallah, M.M.; Brooks, J.W.; Basoalto, H.C. Mesoscale modelling of selective laser melting: Thermal fluid dynamics and microstructural evolution. Comput. Mater. Sci. 2017, 126, 479–490. [Google Scholar] [CrossRef]
- Baere, D.D.; Mohanty, S.; Hattel, J.H. Microstructural modelling of above β-transus heat treatment of additively manufactured Ti-6Al-4V using cellular automata. Mater. Today Commun. 2020, 24, 101031. [Google Scholar] [CrossRef]
- Zinovieva, O.; Zinoviev, A.; Ploshikhin, V. Three-dimensional modeling of the microstructure evolution during metal additive manufacturing. Comput. Mater. Sci. 2018, 141, 207–220. [Google Scholar] [CrossRef]
- Herriott, C.; Li, X.; Kouraytem, N.; Tari, V.; Tan, W.; Anglin, B.; Rollett, A.D.; Spear, A.D. A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Model. Simul. Mater. Sci. Eng. 2019, 27, 025009. [Google Scholar] [CrossRef]
- Lian, Y.; Lin, S.; Yan, W.; Liu, W.K.; Wagner, G.J. A parallelized three-dimensional cellular automaton model for grain growth during additive manufacturing. Comput. Mech. 2018, 61, 543–558. [Google Scholar] [CrossRef]
- Lian, Y.; Gan, Z.; Yu, C.; Kats, D.; Kam, W.; Wagner, G.J. A cellular automaton finite volume method for microstructure evolution during additive manufacturing. Mater. Des. 2019, 169, 107672. [Google Scholar] [CrossRef]
- Li, X.; Tan, W. Numerical investigation of effects of nucleation mechanisms on grain structure in metal additive manufacturing. Comput. Mater. Sci. 2018, 153, 159–169. [Google Scholar] [CrossRef]
- Rai, A.; Markl, M.; Körner, C. A coupled Cellular Automaton–Lattice Boltzmann model for grain structure simulation during additive manufacturing. Comput. Mater. Sci. 2016, 124, 37–48. [Google Scholar] [CrossRef]
- Rodgers, T.M.; Madison, J.D.; Tikare, V. Simulation of metal additive manufacturing microstructures using kinetic Monte Carlo. Comput. Mater. Sci. 2017, 135, 78–89. [Google Scholar] [CrossRef]
- Eiken, J.; Böttger, B.; Steinbach, I. Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2006, 73, 066122. [Google Scholar] [CrossRef]
- Lu, L.X.; Sridhar, N.; Zhang, Y.W. Phase field simulation of powder bed-based additive manufacturing. Acta Mater. 2018, 144, 801–809. [Google Scholar] [CrossRef]
- Keller, T.; Lindwall, G.; Ghosh, S.; Ma, L.; Lane, B.M.; Zhang, F. Methods to Additive Manufacturing of Ni-based Superalloys. Acta Mater. 2017, 139, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Chou, K. Phase-field modeling of microstructure evolution in electron beam additive manufacturing. Jom 2015, 67, 1176–1182. [Google Scholar] [CrossRef]
- Tourret, D.; Liu, H.; LLorca, J. Phase-field modeling of microstructure evolution: Recent applications, perspectives and challenges. Prog. Mater. Sci. 2022, 123, 100810. [Google Scholar] [CrossRef]
- Kergaßner, A.; Koepf, J.A.; Markl, M.; Körner, C.; Mergheim, J.; Steinmann, P. A Novel Approach to Predict the Process-Induced Mechanical Behavior of Additively Manufactured Materials. J. Mater. Eng. Perform. 2021, 30, 5235–5246. [Google Scholar] [CrossRef]
- Xu, F.; Xiong, F.; Li, M.J.; Lian, Y. Three-Dimensional Numerical Simulation of Grain Growth during Selective Laser Melting of 316L Stainless Steel. Materials 2022, 15, 6800. [Google Scholar] [CrossRef]
- Pinomaa, T.; Lindroos, M.; Walbrühl, M.; Provatas, N.; Laukkanen, A. The significance of spatial length scales and solute segregation in strengthening rapid solidification microstructures of 316L stainless steel. Acta Mater. 2020, 184, 1–16. [Google Scholar] [CrossRef]
- Karayagiz, K.; Johnson, L.; Seede, R.; Attari, V.; Zhang, B.; Huang, X.; Ghosh, S.; Duong, T.; Karaman, I.; Elwany, A.; et al. Finite interface dissipation phase field modeling of Ni–Nb under additive manufacturing conditions. Acta Mater. 2020, 185, 320–339. [Google Scholar] [CrossRef]
- Chadwick, A.F.; Voorhees, P.W. The development of grain structure during additive manufacturing. Acta Mater. 2021, 211, 116862. [Google Scholar] [CrossRef]
- Yang, M.; Wang, L.; Yan, W. Phase-field modeling of grain evolutions in additive manufacturing from nucleation, growth, to coarsening. npj Comput. Mater. 2021, 7, 56. [Google Scholar] [CrossRef]
- Xue, T.; Gan, Z.; Liao, S.; Cao, J. Physics-embedded graph network for accelerating phase-field simulation of microstructure evolution in additive manufacturing. npj Comput. Mater. 2022, 8, 201. [Google Scholar] [CrossRef]
- Liu, P.; Ji, Y.; Wang, Z.; Qiu, C.; Antonysamy, A.; Chen, L.Q.; Cui, X.; Chen, L. Investigation on evolution mechanisms of site-specific grain structures during metal additive manufacturing. J. Mater. Process. Technol. 2018, 257, 191–202. [Google Scholar] [CrossRef]
- Chen, G.; Wang, X.; Yang, X.; Yang, X.; Zhang, Z.; Dai, R.; Gu, J.; Zhang, T.; Wu, G.; Gong, J. An integrated simulation approach for directing the texture control of austenitic stainless steel through laser beam powder bed fusion. J. Mater. Process. Technol. 2025, 336, 118707. [Google Scholar] [CrossRef]
- Xie, Q.; Yan, X.; Yin, S.; Li, X.; Liu, M.; Wang, Y.; Zhuang, L. An extended version of cellular automata model for powder bed fusion to unravel the dependence of microstructure on printing areas for Inconel 625. Addit. Manuf. 2023, 73, 103676. [Google Scholar] [CrossRef]
- Liang, X.; Zhu, J.; Popovich, V.; Hermans, M.; Richardson, I.; Bos, C. A multi-level capture algorithm for accelerating cellular automata predictions of grain structure and texture in additive manufacturing. Addit. Manuf. 2025, 98, 104622. [Google Scholar] [CrossRef]
- Rolchigo, M.; Coleman, J.; Knapp, G.L.; Plotkowski, A. Grain structure and texture selection regimes in metal powder bed fusion. Addit. Manuf. 2024, 81, 104024. [Google Scholar] [CrossRef]
- Rolchigo, M.; Reeve, S.T.; Stump, B.C.; Knapp, G.L.; Coleman, J.; Plotkowski, A.; Belak, J.F. ExaCA: A performance portable exascale cellular automata application for alloy solidification modeling. Comput. Mater. Sci. 2022, 214, 111692. [Google Scholar] [CrossRef]
- Rolchigo, M.; Reeve, S.T.; Stump, B.C.; Coleman, J.; Plotkowski, A. ExaCA v2.0: A versatile, scalable, and performance portable cellular automata application for additive manufacturing solidification. Comput. Mater. Sci. 2025, 251, 113734. [Google Scholar] [CrossRef]
- Coleman, J.; Kincaid, K.; Knapp, G.L.; Stump, B.; Plotkowski, A.J. ORNL/AdditiveFOAM: Release 1.0. Zenodo 2023. [Google Scholar] [CrossRef]
- Gandin, C.A.; Rappaz, M. A 3D Cellular Automaton algorithm for the prediction of dendritic grain growth. Acta Mater. 1997, 45, 2187–2195. [Google Scholar] [CrossRef]
- Trivedi, R.; Kurz, W. Theory of Microstructural Development during Rapid Solidification. Acta Metall. 1986, 34, 823–830. [Google Scholar]
- Goldak, J.A.; Chakravarti, A.P.; Bibby, M. A new finite element model for welding heat sources. Metall. Trans. B 1984, 15, 299–305. [Google Scholar] [CrossRef]
- Lu, N.; Lei, Z.; Yu, X.; Bi, J.; Chen, Y. Effects of melt convection on stray grain formation in single crystal superalloys during directed energy deposition. Addit. Manuf. 2021, 48, 102429. [Google Scholar] [CrossRef]
- Cao, L. Numerical simulation of the impact of laying powder on selective laser melting single-pass formation. Int. J. Heat Mass Transf. 2019. [Google Scholar] [CrossRef]
- Coleman, J.; Plotkowski, A.; Stump, B.C.; Raghavan, N.; Sabau, A.S.; Krane, M.J.M.; Heigel, J.C.; Ricker, R.E.; Levine, L.E.; Babu, S.S. Sensitivity of Thermal Predictions to Uncertain Surface Tension Data in Laser Additive Manufacturing. J. Heat Transf.-Trans. Asme 2020, 142, 122201. [Google Scholar] [CrossRef]
- Antony, K.; Arivazhagan, N.; Senthilkumaran, K. Numerical and experimental investigations on laser melting of stainless steel 316L metal powders. J. Manuf. Process. 2014, 16, 345–355. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J. Modeling of solidification microstructure evolution in laser powder bed fusion fabricated 316L stainless steel using combined computational fluid dynamics and cellular automata. Addit. Manuf. 2019, 28, 750–765. [Google Scholar] [CrossRef]
- Cox, B.; Ghayoor, M.; Doyle, R.P.; Pasebani, S.; Gess, J.L. Numerical model of heat transfer during laser powder bed fusion of 316L stainless steel. Int. J. Adv. Manuf. Technol. 2022, 119, 5715–5725. [Google Scholar] [CrossRef]
- Wiesent, L.; Schultheiß, U.; Lulla, P.; Nonn, A.; Noster, U. Mechanical properties of small structures built by selective laser melting 316 L stainless steel–A phenomenological approach to improve component design. Mater. Werkst. 2020, 51, 1615–1629. [Google Scholar] [CrossRef]
- Beausir, B.; Fundenberger, J.-J. Analysis Tools for Electron and X-Ray Diffraction, ATEX-Software; Université de Lorraine: Metz, France, 2017. Available online: www.atex-software.eu (accessed on 30 May 2025).
- Latypov, M.; Kühbach, M.; Beyerlein, I.J.; Stinville, J.C.; Toth, L.S.; Pollock, T.M.; Kalidindi, S.R. Application of chord length distributions and principal component analysis for quantification and representation of diverse polycrystalline microstructures. Mater. Charact. 2018, 145, 671–685. [Google Scholar] [CrossRef]
Properties | SS316L | Units |
---|---|---|
Reference Density, [40] | ||
Thermal conductivity of solid metal, | ||
Thermal conductivity of liquid metal, | ||
Thermal conductivity of powder metal, [41] | ||
Specific heat of solid metal, | ||
Specific heat of liquid metal, | 775 | |
Specific heat of powder metal, | ||
Solidus temperature, | 1648 | |
Liquidus temperature, | 1673 | |
Surface tension, | ||
Dendrite arm spacing, * | ||
Latent heat of fusion, [42] | ||
Viscosity of liquid metal, | ||
Temperature of surface tension, | ||
Emmisivity, [43] | - | |
Convective heat transfer coefcient, h [43] | 10 | |
Absorption Rate, | - | |
SuperGassian k | 2 | - |
SuperGassian dim |
Parameter | Value | Units |
---|---|---|
Nucleation Density, [4] | ||
Nucleation Undercooling (mean) | 5 | |
Nucleation Undercooling (std) | ||
Substrate grain mean size | ||
Substrate powder density | ||
Interfacial function coefficient | ||
A | 0.000007325 | - |
B | 3.12 | - |
C | 0 | - |
Process Parameters | Values | Units |
---|---|---|
Layer Thickness | 0.02 | mm |
Laser Power | 195 | W |
Beam Size | 0.04 | mm |
Scanning Speed | 1083 | mm/s |
Chamber Temperature | 353 | K |
Layer Rotation | 67 | deg |
Sim. Nr. | ||||||
---|---|---|---|---|---|---|
Exp 1 | Exp 2 | Exp 1 | Exp 2 | |||
6 | 0.35 | 1200 | 0.437 | 0.545 | 0.138 | 0.087 |
5 | 0.35 | 600 | 0.450 | 0.595 | 0.118 | 0.052 |
3 | 0.30 | 1200 | 0.457 | 0.547 | 0.127 | 0.081 |
2 | 0.30 | 600 | 0.501 | 0.570 | 0.501 | 0.057 |
4 | 0.35 | 300 | 0.508 | 0.639 | 0.110 | 0.041 |
1 | 0.30 | 300 | 0.521 | 0.615 | 0.116 | 0.047 |
8 | 0.40 | 600 | 0.533 | 0.632 | 0.115 | 0.048 |
9 | 0.40 | 1200 | 0.553 | 0.637 | 0.137 | 0.079 |
7 | 0.40 | 300 | 0.563 | 0.664 | 0.120 | 0.039 |
12 | 0.45 | 1200 | 0.594 | 0.740 | 0.101 | 0.030 |
11 | 0.45 | 600 | 0.696 | 0.853 | 0.103 | 0.031 |
10 | 0.45 | 300 | 0.702 | 0.854 | 0.107 | 0.027 |
Plane | Sim. Nr. | Grain Size (μm) | Aspect Ratio | ||||||
---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Std | ||||||
XY | 1 | 0.30 | 300 | 6.04 | 92.28 | 17.82 | 13.82 | 0.54 | 0.17 |
2 | 0.30 | 600 | 6.01 | 73.77 | 17.57 | 12.72 | 0.54 | 0.17 | |
3 | 0.30 | 1200 | 6.01 | 83.61 | 15.83 | 11.59 | 0.55 | 0.17 | |
4 | 0.35 | 300 | 6.01 | 85.30 | 16.91 | 13.87 | 0.55 | 0.17 | |
5 | 0.35 | 600 | 6.00 | 97.93 | 16.48 | 12.55 | 0.55 | 0.16 | |
6 | 0.35 | 1200 | 6.01 | 82.43 | 15.01 | 10.79 | 0.57 | 0.17 | |
7 | 0.40 | 300 | 6.00 | 106.73 | 17.47 | 15.66 | 0.57 | 0.17 | |
8 | 0.40 | 600 | 6.02 | 84.14 | 16.94 | 13.68 | 0.56 | 0.17 | |
9 | 0.40 | 1200 | 6.01 | 134.02 | 15.00 | 12.20 | 0.56 | 0.17 | |
10 | 0.45 | 300 | 6.02 | 113.45 | 17.53 | 16.29 | 0.55 | 0.16 | |
11 | 0.45 | 600 | 6.01 | 134.31 | 17.16 | 16.06 | 0.57 | 0.18 | |
12 | 0.45 | 1200 | 6.00 | 112.45 | 16.15 | 14.24 | 0.57 | 0.16 | |
- | Exp 1 | Exp 1 | 6.01 | 97.63 | 16.41 | 13.75 | 0.44 | 0.18 | |
- | Exp 2 | Exp 2 | 6.04 | 134.14 | 19.84 | 17.90 | 0.40 | 0.18 | |
XZ | 1 | 0.30 | 300 | 6.00 | 96.89 | 19.43 | 16.07 | 0.51 | 0.19 |
2 | 0.30 | 600 | 6.00 | 93.14 | 18.70 | 14.78 | 0.51 | 0.19 | |
3 | 0.30 | 1200 | 6.01 | 75.05 | 17.15 | 13.07 | 0.49 | 0.18 | |
4 | 0.35 | 300 | 6.04 | 120.59 | 18.99 | 18.12 | 0.50 | 0.17 | |
5 | 0.35 | 600 | 6.04 | 95.46 | 19.00 | 15.53 | 0.48 | 0.18 | |
6 | 0.35 | 1200 | 6.01 | 97.16 | 17.00 | 13.81 | 0.49 | 0.17 | |
7 | 0.40 | 300 | 6.03 | 142.12 | 19.05 | 18.60 | 0.48 | 0.18 | |
8 | 0.40 | 600 | 6.01 | 118.26 | 18.00 | 17.61 | 0.49 | 0.18 | |
9 | 0.40 | 1200 | 6.01 | 141.09 | 17.38 | 15.51 | 0.48 | 0.18 | |
10 | 0.45 | 300 | 6.00 | 231.44 | 19.66 | 24.13 | 0.48 | 0.18 | |
11 | 0.45 | 600 | 6.00 | 193.78 | 18.98 | 22.09 | 0.47 | 0.18 | |
12 | 0.45 | 1200 | 6.02 | 168.51 | 17.88 | 18.62 | 0.46 | 0.18 | |
- | Exp 1 | Exp 1 | 6.01 | 138.62 | 18.97 | 17.26 | 0.36 | 0.18 | |
- | Exp 2 | Exp 2 | 6.08 | 127.06 | 20.20 | 17.92 | 0.37 | 0.18 | |
YZ | 1 | 0.30 | 300 | 6.01 | 97.33 | 19.33 | 15.25 | 0.51 | 0.18 |
2 | 0.30 | 600 | 6.00 | 85.05 | 18.24 | 13.68 | 0.51 | 0.18 | |
3 | 0.30 | 1200 | 6.04 | 87.91 | 16.82 | 12.36 | 0.51 | 0.17 | |
4 | 0.35 | 300 | 6.00 | 132.78 | 19.20 | 16.58 | 0.49 | 0.18 | |
5 | 0.35 | 600 | 6.01 | 105.00 | 18.58 | 15.03 | 0.50 | 0.17 | |
6 | 0.35 | 1200 | 6.01 | 88.95 | 17.03 | 12.23 | 0.49 | 0.17 | |
7 | 0.40 | 300 | 6.03 | 95.45 | 19.55 | 17.33 | 0.49 | 0.18 | |
8 | 0.40 | 600 | 6.00 | 115.42 | 18.18 | 15.71 | 0.49 | 0.18 | |
9 | 0.40 | 1200 | 6.02 | 129.86 | 16.80 | 13.75 | 0.49 | 0.18 | |
10 | 0.45 | 300 | 6.00 | 159.16 | 20.18 | 18.95 | 0.47 | 0.18 | |
11 | 0.45 | 600 | 6.01 | 178.48 | 19.60 | 21.16 | 0.48 | 0.17 | |
12 | 0.45 | 1200 | 6.04 | 137.21 | 18.19 | 17.88 | 0.48 | 0.18 | |
- | Exp 1 | Exp 1 | 6.01 | 197.78 | 19.61 | 20.96 | 0.36 | 0.19 | |
- | Exp 2 | Exp 2 | 6.04 | 160.62 | 18.92 | 17.74 | 0.39 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, Y.; Grad, M.; Nonn, A. Toward an Efficient and Robust Process–Structure Prediction Framework for Filigree L-PBF 316L Stainless Steel Structures. Metals 2025, 15, 812. https://doi.org/10.3390/met15070812
Qiao Y, Grad M, Nonn A. Toward an Efficient and Robust Process–Structure Prediction Framework for Filigree L-PBF 316L Stainless Steel Structures. Metals. 2025; 15(7):812. https://doi.org/10.3390/met15070812
Chicago/Turabian StyleQiao, Yu, Marius Grad, and Aida Nonn. 2025. "Toward an Efficient and Robust Process–Structure Prediction Framework for Filigree L-PBF 316L Stainless Steel Structures" Metals 15, no. 7: 812. https://doi.org/10.3390/met15070812
APA StyleQiao, Y., Grad, M., & Nonn, A. (2025). Toward an Efficient and Robust Process–Structure Prediction Framework for Filigree L-PBF 316L Stainless Steel Structures. Metals, 15(7), 812. https://doi.org/10.3390/met15070812