Co-Pyrolysis of Bamboo and Rice Straw Biomass with Polyethylene Plastic: Characterization, Kinetic Evaluation, and Synergistic Interaction Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Experimental Procedures
2.2.1. Characterization
2.2.2. Pyrolysis Experiments
2.3. Kinetic Modelling
2.4. Interaction Analysis
3. Results and Discussion
3.1. Mineral Analysis Using XRD
3.2. SEM-EDX Characterization
3.3. Morphological Analysis of Biomass and Its Biochar
3.4. Thermogravimetric Analysis
3.5. Kinetic Analysis
3.6. Synergistic Effects
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Demirbas, M.F.; Balat, M.; Balat, H. Potential contribution of biomass to the sustainable energy development. Energy Convers. Manag. 2009, 50, 1746–1760. [Google Scholar] [CrossRef]
- Ram, S.; Yadav, S.K.; Yadav, A.; Chauhan, A.S. Recent Advancements in Thermochemical Conversion of Biomass and Technologies Used to Eliminate the Tar Formation. In Advances in Fluid and Thermal Engineering, Proceedings of the Biennial International Conference on Future Learning Aspects of Mechanical Engineering, Noida, India, 3–5 August 2022; Springer: Singapore, 2023. [Google Scholar] [CrossRef]
- Ryu, H.W.; Tsang, Y.F.; Lee, H.W.; Jae, J.; Jung, S.-C.; Lam, S.S.; Park, E.D.; Park, Y.-K. Catalytic co-pyrolysis of cellulose and linear low-density polyethylene over MgO-impregnated catalysts with different acid-base properties. Chem. Eng. J. 2019, 373, 375–381. [Google Scholar] [CrossRef]
- Fytili, D.; Zabaniotou, A. Social acceptance of bioenergy in the context of climate change and sustainability—A review. Curr. Opin. Green Sustain. Chem. 2017, 8, 5–9. [Google Scholar] [CrossRef]
- Patil, Y.; Ku, X.; Vasudev, V. Pyrolysis Characteristics and Determination of Kinetic and Thermodynamic Parameters of Raw and Torrefied Chinese Fir. ACS Omega 2023, 8, 34938–34947. [Google Scholar] [CrossRef]
- Saxena, R.C.; Adhikari, D.K.; Goyal, H.B. Biomass-based energy fuel through biochemical routes: A review. Renew. Sustain. Energy Rev. 2009, 13, 167–178. [Google Scholar] [CrossRef]
- Singh, R.K.; Pandey, D.; Patil, T.; Sawarkar, A.N. Pyrolysis of banana leaves biomass: Physico-chemical characterization, thermal decomposition behavior, kinetic and thermodynamic analyses. Bioresour. Technol. 2020, 310, 123464. [Google Scholar] [CrossRef]
- Zhi, Y.; Xu, D.; Sun, S.; Ma, M.; Liu, H.; Yang, L.; Zhao, J. Co-pyrolysis of low-rank coal and rice stalk: A comprehensive study on product distributions, product properties, and synergistic effects. J. Anal. Appl. Pyrolysis 2024, 178, 106434. [Google Scholar] [CrossRef]
- Niu, M.; Sun, R.; Ding, K.; Gu, H.; Cui, X.; Wang, L.; Hu, J. Synergistic effect on thermal behavior and product characteristics during co-pyrolysis of biomass and waste tire: Influence of biomass species and waste blending ratios. Energy 2022, 240, 122808. [Google Scholar] [CrossRef]
- Ram, S.; Ku, X.; Vasudev, V. Catalytic pyrolysis of lignocellulosic and algal biomass using NaOH as a catalyst. Biofuels Bioprod. Biorefining 2024, 18, 482–494. [Google Scholar] [CrossRef]
- Aznar, M.P.; Caballero, M.A.; Sancho, J.A.; Francés, E. Plastic waste elimination by co-gasification with coal and biomass in fluidized bed with air in pilot plant. Fuel Process. Technol. 2006, 87, 409–420. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, H.; Li, Y.; Deng, S.; Ma, Z.; Tan, Y.; Liu, T. Boosting light olefin production from pyrolysis of low-density polyethylene: A two-stage catalytic process. J. Energy Inst. 2024, 117, 101872. [Google Scholar] [CrossRef]
- Gan, B.; Gao, W.; Jiang, H.; Li, Y.; Zhang, Q.; Bi, M. Flame propagation behaviors and temperature characteristics in polyethylene dust explosions. Powder Technol. 2018, 328, 345–357. [Google Scholar] [CrossRef]
- Memon, T.A.; Ku, X.; Vasudev, V.; Ram, S. Experimental investigation of co-pyrolysis of fruit peel waste: Impact of blending on thermal degradation behavior, kinetics, and products. Biomass-Convers. Biorefinery 2025, 15, 18783–18797. [Google Scholar] [CrossRef]
- Wang, W.; Luo, G.; Zhao, Y.; Tang, Y.; Wang, K.; Li, X.; Xu, Y. Kinetic and thermodynamic analyses of co-pyrolysis of pine wood and polyethylene plastic based on Fraser-Suzuki deconvolution procedure. Fuel 2022, 322, 124200. [Google Scholar] [CrossRef]
- Gou, X.; Zhao, X.; Singh, S.; Qiao, D. Tri-pyrolysis: A thermo-kinetic characterisation of polyethylene, cornstalk, and anthracite coal using TGA-FTIR analysis. Fuel 2019, 252, 393–402. [Google Scholar] [CrossRef]
- Timilsina, M.S.; Chaudhary, Y.; Bhattarai, P.; Uprety, B.; Khatiwada, D. Optimizing pyrolysis and Co-Pyrolysis of plastic and biomass using Artificial Intelligence. Energy Convers. Manag. X 2024, 24, 100783. [Google Scholar] [CrossRef]
- Wang, G.; Li, A. Thermal Decomposition and Kinetics of Mixtures of Polylactic Acid and Biomass during Copyrolysis. Chin. J. Chem. Eng. 2008, 16, 929–933. [Google Scholar] [CrossRef]
- Hernowo, P.; Steven, S.; Restiawaty, E.; Bindar, Y. Nature of mathematical model in lignocellulosic biomass pyrolysis process kinetic using volatile state approach. J. Taiwan Inst. Chem. Eng. 2022, 139, 104520. [Google Scholar] [CrossRef]
- Huang, Z.; Li, Y.-S.; Zhao, C.-X.; Liu, Y.-J. Co-pyrolysis of poly (lactic acid) and sugar cane bagasse: Kinetic and thermodynamic studies. Fuel 2024, 372, 132228. [Google Scholar] [CrossRef]
- Bhushan, D.; Hooda, S.; Chitransh, S.; Mondal, P. Insights into catalytic co-pyrolysis of spent coffee grounds and high density polyethylene (HDPE) using acid mine drainage (AMD) treated sludge based catalyst: Analysis of kinetics, mechanism and thermodynamic properties. Sustain. Chem. Clim. Action 2024, 5, 100051. [Google Scholar] [CrossRef]
- Ram, S.; Vasudev, V.; Ku, X. Characterization and kinetic analysis of lignocellulosic and algal biochar combustion. Int. J. Fluid Eng. 2024, 1, 024302. [Google Scholar] [CrossRef]
- Azam, M.Z.; Ashraf, M.; Aslam, Z.; Kamal, M.S.; Aslam, U. Combustion and pyrolysis of dairy waste: A kinetic analysis and prediction of experimental data through Artificial Neural Network (ANN). Therm. Sci. Eng. Prog. 2024, 53, 102746. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, S.; Bao, G.; Wang, H. Pyrolysis of macadamia nut peel using multicomponent Gaussian kinetic modeling and ANN analysis. Biomass-Bioenergy 2024, 183, 107170. [Google Scholar] [CrossRef]
- Cheng, Z.; Gao, X.; Ma, Z.; Guo, X.; Wang, J.; Luan, P.; He, S.; Yan, B.; Chen, G. Studies on synergistic effects in co-pyrolysis of sargassum and poplar: Thermal behavior and kinetics. J. Anal. Appl. Pyrolysis 2022, 167, 105660. [Google Scholar] [CrossRef]
- Liu, X.; Burra, K.R.G.; Wang, Z.; Li, J.; Che, D.; Gupta, A.K. Towards enhanced understanding of synergistic effects in co-pyrolysis of pinewood and polycarbonate. Appl. Energy 2021, 289, 116662. [Google Scholar] [CrossRef]
- Yuan, P.; Hu, X.; Ma, J.; Guo, T.; Guo, Q. Thermogravimetric characteristics of corn straw and bituminous coal copyrolysis based the ilmenite oxygen carriers. Chin. J. Chem. Eng. 2024, 68, 8–15. [Google Scholar] [CrossRef]
- Chen, Y.; Fu, M.; Wang, J.; Hou, D.; Lu, Y.; Yang, F.; Liu, C.; Lin, X.; Zheng, Z.; Zheng, Y. In-depth understanding of the synergistic effect in catalytic copyrolysis of lignin-plastic mixtures with lignin-tailored hierarchical HZSM-5 catalysts. Fuel 2024, 368, 131623. [Google Scholar] [CrossRef]
- Bhattacharyya, M.; Shadangi, K.P.; Purkayastha, R.; Mahanta, P.; Mohanty, K. Co-pyrolysis of coal and biomass blends: Impact of pyrolysis temperature and biomass blending on thermal stability of coal, and composition of pyrolysis products. Process. Saf. Environ. Prot. 2024, 187, 1010–1021. [Google Scholar] [CrossRef]
- Patil, Y.; Ku, X. Comparison and characterization of torrefaction performance and pyrolysis behaviour of softwood and hardwood. Energy Sources Part A Recover. Util. Environ. Eff. 2022, 44, 8860–8877. [Google Scholar] [CrossRef]
- Vasudev, V.; Ku, X.; Lin, J. Kinetic study and pyrolysis characteristics of algal and lignocellulosic biomasses. Bioresour. Technol. 2019, 288, 121496. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 2011, 520, 1–19. [Google Scholar] [CrossRef]
- Friedman, H.L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci. Part C Polym. Symp. 1964, 6, 183–195. [Google Scholar] [CrossRef]
- Vasudev, V.; Ku, X.; Lin, J. Pyrolysis of algal biomass: Determination of the kinetic triplet and thermodynamic analysis. Bioresour. Technol. 2020, 317, 124007. [Google Scholar] [CrossRef] [PubMed]
- Vyazovkin, S.; Burnham, A.K.; Favergeon, L.; Koga, N.; Moukhina, E.; Pérez-Maqueda, L.A.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics. Thermochim. Acta 2020, 689, 178597. [Google Scholar] [CrossRef]
- Ram, S.; Ku, X.; Vasudev, V.; Wang, Z. Pyrolytic performance and kinetic analysis of non-catalytic and catalytic pyrolysis of bamboo powder and red algae. Biomass-Convers. Biorefinery 2025, 1–13. [Google Scholar] [CrossRef]
- Vasudev, V.; Ku, X.; Lin, J. Combustion Behavior of Algal Biochars Obtained at Different Pyrolysis Heating Rates. ACS Omega 2021, 6, 19144–19152. [Google Scholar] [CrossRef] [PubMed]
- Patil, Y.; Ku, X. Pyrolysis kinetics and thermodynamic behavior of pseudo components of raw and torrefied maple wood. Energy Sources Part A Recover. Util. Environ. Eff. 2023, 46, 462–474. [Google Scholar] [CrossRef]
- Chen, L.; Wang, S.; Meng, H.; Wu, Z.; Zhao, J. Synergistic effect on thermal behavior and char morphology analysis during co-pyrolysis of paulownia wood blended with different plastics waste. Appl. Therm. Eng. 2017, 111, 834–846. [Google Scholar] [CrossRef]
- Tauseef, M.; Ansari, A.A.; Khoja, A.H.; Naqvi, S.R.; Liaquat, R.; Nimmo, W.; Daood, S.S. Thermokinetics synergistic effects on co-pyrolysis of coal and rice husk blends for bioenergy production. Fuel 2022, 318, 123685. [Google Scholar] [CrossRef]
- Niu, Y.; Tan, H.; Hui, S. Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures. Prog. Energy Combust. Sci. 2016, 52, 1–61. [Google Scholar] [CrossRef]
- Xiang, W.; Gan, L.; Wang, Y.; Yang, N.; Wang, W.; Li, L.; Liu, Z.; Feng, Y.; Chen, D.; Wang, R. Enhanced adsorption performance of phosphoric acid activated biochar from in-situ pre-carbonized bamboo shoot shells. Ind. Crops Prod. 2025, 226, 120719. [Google Scholar] [CrossRef]
- Popov, K.V.; Knyazev, V.D. Initial Stages of the Pyrolysis of Polyethylene. J. Phys. Chem. A 2015, 119, 11737–11760. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Xue, Y.; Kelkar, A.; Bai, X. Catalytic co-pyrolysis of biomass and polyethylene in a tandem micropyrolyzer. Fuel 2015, 166, 227–236. [Google Scholar] [CrossRef]
Sample | Phase Number | Mineral Composites | Maximum Angle (2θ) | Intensity Ratio (I/Ic) | Diffraction Plane (hkl) | Density (g/cm3) | Crystal System |
---|---|---|---|---|---|---|---|
B100 | 1 | SiO2 | 22.15° | 1.21 | (2 −1 0) | 3.36 ± 0.02 | Triclinic |
2 | C8H7MnO3 | 16.17° | 0.99 | (1 1 −1) | 1.67 ± 0.03 | Monoclinic | |
P100 | 1 | ZrP2O7 | 21.55° | 1.56 | (0 6 0) | 3.14 ± 0.02 | Orthorhombic |
2 | Lazurite | 24.05° | 0.87 | (2 0 6) | 2.40 ± 0.05 | Orthorhombic | |
R100 | 1 | C42H30Na6O12 | 40.55° | 2.38 | (1 2 6) | 1.52 ± 0.06 | Triclinic |
2 | NaNO3 | 22.68° | 2.28 | (1 0 −2) | 2.20 ± 0.02 | Trigonal | |
3 | SiO2 | 22.59° | 3.33 | (1 0 0) | 3.24 ± 0.04 | Trigonal | |
B25R75 | 1 | KCa(H1.764F1.236) | 28.46° | 3.40 | (2 0 0) | 1.99 ± 0.01 | Orthorhombic |
2 | (CeI)0.12(Ce6MnI9) | 28.51° | 13.39 | (3 −2 −2) | 5.35 ± 0.05 | Trigonal | |
3 | C0.25I3N0.25Ne1.412Pb | 15.81° | 4.57 | (0 0 2) | 5.91 ± 0.01 | Orthorhombic | |
B50R50 | 1 | Na0.24K0.76NbO3 | 22.36° | 0.19 | (1 0 0) | 3.35 ± 0.04 | Orthorhombic |
2 | Mo8O44P8 | 16.43° | 4.97 | (2 1 −2) | 3.47 ± 0.03 | Monoclinic | |
3 | BaCa(CO3)2 | 28.35° | 3.40 | (1 1 −1) | 3.67 ± 0.02 | Monoclinic | |
B75R25 | 1 | C12H18N4O3 | 22.41° | 0.65 | (0 0 4) | 1.31 ± 0.01 | Monoclinic |
2 | 2(C17H15N2OP)H2O | 15.21° | 0.74 | (1 1 0) | 1.35 ± 0.03 | Monoclinic | |
3 | C15H3CrF18O6 | 22.31° | 0.71 | (1 2 3) | 2.08 ± 0.04 | Monoclinic | |
B25P75 | 1 | ZrP2O7 | 24.13° | 1.56 | (0 6 3) | 3.14 ± 0.03 | Orthorhombic |
2 | Lazurite | 24.15° | 0.87 | (2 2 1) | 2.40 ± 0.07 | Orthorhombic | |
3 | Nb2O15P4 | 21.74° | 1.98 | (1 −2 −2) | 3.18 ± 0.03 | Triclinic | |
B50P50 | 1 | ZrP2O7 | 24.12° | 1.56 | (2 5 4) | 3.14 ± 0.06 | Orthorhombic |
2 | Lazurite | 24.15° | 0.87 | (2 2 1) | 2.40 ± 0.02 | Orthorhombic | |
B75P25 | 1 | ZrP2O7 | 24.13° | 1.56 | (0 6 3) | 3.14 ± 0.04 | Orthorhombic |
2 | Lazurite | 21.78° | 0.26 | (0 3 2) | 2.38 ± 0.06 | Triclinic | |
R25P75 | 1 | ZrP2O7 | 24.13° | 1.56 | (0 6 3) | 3.14 ± 0.06 | Orthorhombic |
2 | Lazurite | 21.78° | 0.26 | (0 3 2) | 2.38 ± 0.05 | Triclinic | |
R50P50 | 1 | ZrP2O7 | 21.55° | 1.56 | (0 6 0) | 3.14 ± 0.04 | Orthorhombic |
2 | Lazurite | 24.02° | 0.26 | (2 2 0) | 2.38 ± 0.03 | Triclinic | |
3 | AlLiO10Si4 | 24.23° | 1.31 | (2 0 1) | 2.38 ± 0.01 | Monoclinic | |
4 | 2(C32H12BF24)C24H48FeO6 3(C4H8O) | 21.60° | 0.60 | (4 3 −3) | 1.54 ± 0.05 | Monoclinic | |
R75P25 | 1 | ZrP2O7 | 24.13° | 1.56 | (0 6 3) | 3.14 ± 0.05 | Orthorhombic |
2 | 2(C11H9NS)C5H8O4 | 24.10° | 1.65 | (0 2 0) | 1.33 ± 0.03 | Monoclinic | |
3 | (CH3)4NClO4 | 21.65° | 1.64 | (2 0 1) | 1.45 ± 0.03 | Orthorhombic | |
4 | (C4H9)4N 1+, C2HO4 1−, 2CS (NH2)2 | 21.66° | 0.76 | (2 0 2) | 1.14 ± 0.06 | Monoclinic | |
B25P25R50 | 1 | ZrP2O7 | 24.11° | 1.56 | (4 2 5) | 3.14 ± 0.02 | Orthorhombic |
2 | Lazurite | 24.02° | 0.26 | (2 2 0) | 2.38 ± 0.01 | Triclinic | |
B25P50R25 | 1 | ZrP2O7 | 21.55° | 1.56 | (0 6 0) | 3.14 ± 0.05 | Orthorhombic |
2 | Li(AlSi4O10) | 24.21° | 1.28 | (2 0 −2) | 2.40 ± 0.02 | Monoclinic | |
B50P25R25 | 1 | ZrP2O7 | 21.55° | 1.56 | (0 6 0) | 3.14 ± 0.04 | Orthorhombic |
2 | Lazurite | 24.01° | 0.87 | (1 3 3) | 2.40 ± 0.06 | Orthorhombic |
Elements | Bamboo (B100) | Rice Straw (R100) | Polyethylene (P100) | Bamboo Biochar | Rice Straw Biochar | |||||
---|---|---|---|---|---|---|---|---|---|---|
Weight (%) | Atom (%) | Weight (%) | Atom (%) | Weight (%) | Atom (%) | Weight (%) | Atom (%) | Weight (%) | Atom (%) | |
C | 48.36 | 63.87 | 43.22 | 60.39 | 7.26 | 15.69 | 88.60 | 94.74 | 35.31 | 56.54 |
O | 20.77 | 20.60 | 19.02 | 19.95 | 1.79 | 2.90 | 5.10 | 4.09 | 5.86 | 7.05 |
Mg | - | - | - | - | - | - | 0.28 | 0.15 | - | - |
Si | 26.93 | 15.21 | 30.24 | 18.07 | 87.61 | 80.97 | 0.25 | 0.11 | 48.55 | 33.25 |
S | - | - | - | - | - | - | 0.43 | 0.17 | 0.35 | 0.21 |
Cl | - | - | 1.03 | 0.49 | - | - | - | - | 1.48 | 0.80 |
K | - | - | 1.61 | 0.69 | - | - | 0.43 | 0.14 | 3.34 | 1.64 |
Pt | 3.94 | 0.32 | 4.88 | 0.42 | 3.34 | 0.44 | - | - | 5.10 | 0.50 |
Zr | - | - | - | - | - | - | 3.55 | 0.50 | - | - |
Au | - | - | - | - | - | - | 1.36 | 0.09 | - | - |
Sample/Conversion (α) | B100 | P100 | R100 | B25R75 | B50R50 | B75R25 | B25P75 | B50P50 | B75P25 | R25P75 | R50P50 | R75P25 | B25P25R50 | B25P50R25 | B50P25R25 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.05 | 194.987 | 183.044 | 228.873 | 152.808 | 153.709 | 192.846 | 304.699 | 176.863 | 163.922 | 181.399 | 162.357 | 135.330 | 97.843 | 130.788 | 160.246 |
0.10 | 190.611 | 228.938 | 226.722 | 185.807 | 167.462 | 194.705 | - | 196.253 | 163.899 | 194.971 | 184.789 | 151.595 | 111.641 | 144.818 | 166.450 |
0.15 | 195.770 | 240.203 | 238.501 | 185.506 | 177.264 | 207.030 | - | 211.399 | 169.522 | 162.417 | 188.167 | 150.032 | 110.275 | 148.710 | 165.273 |
0.20 | 198.071 | 265.393 | 238.087 | 184.925 | 179.677 | 211.673 | - | 203.550 | 163.930 | 87.487 | 185.344 | 151.588 | 112.526 | 155.624 | 165.160 |
0.25 | 197.589 | 295.553 | 241.859 | 186.456 | 177.157 | 214.083 | - | 190.868 | 171.151 | 155.276 | 197.743 | 144.735 | 112.752 | 192.197 | 163.197 |
0.30 | 204.797 | 308.560 | 238.077 | 180.807 | 176.598 | 208.793 | - | 217.428 | 179.280 | 186.013 | 220.487 | 139.706 | 110.387 | 188.287 | 167.973 |
0.35 | 204.196 | 289.467 | 239.280 | 179.431 | 171.767 | 205.572 | 205.672 | 231.758 | 186.954 | 200.642 | 217.319 | 124.550 | 107.529 | - | 182.200 |
0.40 | 205.169 | 288.734 | 233.809 | 177.277 | 173.009 | 188.683 | 221.148 | - | 170.287 | 204.790 | - | 105.121 | 98.960 | 130.630 | 181.257 |
0.45 | 208.857 | 274.678 | 228.388 | 176.481 | 176.867 | 188.616 | 218.702 | 186.281 | 169.873 | 212.528 | 163.703 | - | 77.127 | 190.997 | 195.652 |
0.50 | 217.425 | 297.955 | 238.814 | 178.270 | 171.883 | 196.819 | 230.337 | 186.102 | 161.227 | 219.516 | 193.086 | - | - | 198.702 | 176.606 |
0.55 | 198.222 | 286.885 | 240.624 | 185.333 | 181.638 | 228.942 | 224.205 | 201.188 | 162.524 | 226.704 | 200.625 | - | 71.199 | 210.242 | 161.440 |
0.60 | 205.359 | 299.706 | 240.144 | 192.696 | 187.368 | 231.422 | 223.266 | 214.819 | 170.871 | 231.541 | 215.377 | - | - | 218.050 | 148.852 |
0.65 | 194.454 | 258.173 | 256.379 | 208.482 | 176.891 | 211.773 | 202.789 | 224.586 | 158.327 | 262.315 | 221.978 | 77.591 | - | 222.571 | 186.470 |
0.70 | 183.047 | 259.639 | 278.643 | 234.870 | 178.591 | 211.283 | 211.914 | 225.580 | 221.636 | 217.092 | 225.051 | 210.457 | 187.178 | 228.566 | 211.535 |
0.75 | 187.131 | 239.370 | - | 239.066 | 202.869 | 212.733 | 219.788 | 252.174 | 224.392 | 222.964 | 231.223 | 271.097 | 243.642 | 227.958 | 225.631 |
0.80 | 174.710 | 207.020 | - | 293.192 | 237.954 | 214.111 | 257.612 | 255.836 | 246.912 | 218.561 | 253.108 | 282.266 | 244.172 | 234.468 | 221.916 |
0.85 | 215.276 | 201.992 | - | - | - | 238.206 | 248.228 | 244.732 | 262.859 | 217.594 | 239.296 | 291.225 | 249.035 | 233.707 | 234.403 |
0.90 | - | 255.061 | - | - | - | 236.702 | 241.667 | 275.869 | 272.805 | 210.556 | 250.882 | 329.127 | 259.797 | 238.299 | 284.640 |
0.95 | - | 245.881 | - | - | - | - | 258.947 | - | - | - | 303.479 | - | 300.229 | 264.794 | 329.642 |
Average (E0) | 198.57 | 259.28 | 240.59 | 196.34 | 180.67 | 210.78 | 233.50 | 217.37 | 190.02 | 200.69 | 214.11 | 183.17 | 155.89 | 197.74 | 196.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, M.; Vasudev, V.; Ram, S.; Yasin, S.; Mushtaq, N.; Saleem, M.; Ashraf, H.T.; Duan, Y.; Ali, M.; Bin, Y. Co-Pyrolysis of Bamboo and Rice Straw Biomass with Polyethylene Plastic: Characterization, Kinetic Evaluation, and Synergistic Interaction Analysis. Polymers 2025, 17, 2063. https://doi.org/10.3390/polym17152063
Hussain M, Vasudev V, Ram S, Yasin S, Mushtaq N, Saleem M, Ashraf HT, Duan Y, Ali M, Bin Y. Co-Pyrolysis of Bamboo and Rice Straw Biomass with Polyethylene Plastic: Characterization, Kinetic Evaluation, and Synergistic Interaction Analysis. Polymers. 2025; 17(15):2063. https://doi.org/10.3390/polym17152063
Chicago/Turabian StyleHussain, Munir, Vikul Vasudev, Shri Ram, Sohail Yasin, Nouraiz Mushtaq, Menahil Saleem, Hafiz Tanveer Ashraf, Yanjun Duan, Muhammad Ali, and Yu Bin. 2025. "Co-Pyrolysis of Bamboo and Rice Straw Biomass with Polyethylene Plastic: Characterization, Kinetic Evaluation, and Synergistic Interaction Analysis" Polymers 17, no. 15: 2063. https://doi.org/10.3390/polym17152063
APA StyleHussain, M., Vasudev, V., Ram, S., Yasin, S., Mushtaq, N., Saleem, M., Ashraf, H. T., Duan, Y., Ali, M., & Bin, Y. (2025). Co-Pyrolysis of Bamboo and Rice Straw Biomass with Polyethylene Plastic: Characterization, Kinetic Evaluation, and Synergistic Interaction Analysis. Polymers, 17(15), 2063. https://doi.org/10.3390/polym17152063