Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (253)

Search Parameters:
Keywords = ab initio phasing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7533 KB  
Article
Theoretical Investigation of Ca2+ Intercalation in WS2 as a Negative Electrode Material for Calcium-Ion Batteries: Supported by Experimental Evaluation
by Seunga Yang, SangYup Lee, Paul Maldonado Nogales, Yangsoo Kim and Soon-Ki Jeong
Int. J. Mol. Sci. 2025, 26(16), 8005; https://doi.org/10.3390/ijms26168005 - 19 Aug 2025
Viewed by 1124
Abstract
Tungsten disulfide (WS2), a two-dimensional layered material with favorable electronic properties, has been explored as a promising negative electrode material for calcium-ion batteries (CIBs). Despite its use in monovalent systems, its performance in divalent Ca2+ intercalation remains poorly understood. Herein, [...] Read more.
Tungsten disulfide (WS2), a two-dimensional layered material with favorable electronic properties, has been explored as a promising negative electrode material for calcium-ion batteries (CIBs). Despite its use in monovalent systems, its performance in divalent Ca2+ intercalation remains poorly understood. Herein, a combined theoretical and experimental framework is used to elucidate the electronic mechanisms underlying Ca2+ intercalation. Theoretical insights were obtained through density functional theory calculations, incorporating periodic simulations using the Vienna Ab initio Simulation Package, and localized orbital-level analysis using the discrete variational Xα method. These approaches reveal that Ca2+ insertion induces significant interlayer expansion, lowers diffusion barriers, and narrows the bandgap compared to Li+. Orbital analysis revealed strengthened W–S bonding and diminished antibonding interactions, which may contribute to the improved structural resilience. Electrochemical tests validated these predictions; the CaWS2 electrode delivered an initial discharge capacity of 208 mAh·g−1 at 0.1C, with 61% retention after 50 cycles at 1C. The voltage profile exhibits a distinct plateau near 0.7 V, consistent with a two-phase-like intercalation mechanism, contrasting with the gradual slope observed for Li+. These findings suggest that Ca2+ intercalation facilitates both rapid ion transport and enhanced structural robustness. This study offers mechanistic insights into multivalent-ion storage and supports the design of high-performance CIB electrodes. Full article
(This article belongs to the Special Issue Molecular Advances in Electrochemical Materials)
Show Figures

Figure 1

15 pages, 3913 KB  
Article
Diffusion of Alkaline Metals in Two-Dimensional β1-ScSi2N4 and β2-ScSi2N4 Materials: A First-Principles Investigation
by Ying Liu, Han Fu, Wanting Han, Rui Ma, Lihua Yang and Xin Qu
Nanomaterials 2025, 15(16), 1268; https://doi.org/10.3390/nano15161268 - 16 Aug 2025
Viewed by 529
Abstract
The MA2Z4 family represents a class of two-dimensional materials renowned for their outstanding mechanical properties and excellent environmental stability. By means of elemental substitution, we designed two novel phases of ScSi2N4, namely β1 and β [...] Read more.
The MA2Z4 family represents a class of two-dimensional materials renowned for their outstanding mechanical properties and excellent environmental stability. By means of elemental substitution, we designed two novel phases of ScSi2N4, namely β1 and β2. Their dynamical, thermal, and mechanical stabilities were thoroughly verified through phonon dispersion analysis, ab initio molecular dynamics (AIMD) simulations, and calculations of mechanical parameters such as Young’s modulus and Poisson’s ratio. Electronic structure analysis using both PBE and HSE06 methods further revealed that both the β1 and β2 phases exhibit metallic behavior, highlighting their potential for battery-related applications. Based on these outstanding properties, the climbing image nudged elastic band (CI-NEB) method was employed to investigate the diffusion behavior of Li, Na, and K ions on the material surfaces. Both structures demonstrate extremely low diffusion energy barriers (Li: 0.38 eV, Na: 0.22 eV, K: 0.12 eV), indicating rapid ion migration—especially for K—and excellent rate performance. The lowest barrier for K ions (0.12 eV) suggests the fastest diffusion kinetics, making it particularly suitable for high-power potassium-ion batteries. The significantly lower barrier for Na ions (0.22 eV) compared with Li (0.38 eV) implies that both β1 and β2 phases may be more favorable for fast-charging/discharging sodium-ion battery applications. First-principles calculations were applied to determine the open-circuit voltage (OCV) of the battery materials. The β2 phase exhibits a higher OCV in Li/Na systems, while the β1 phase shows more prominent voltage for K. The results demonstrate that both phases possess high theoretical capacities and suitable OCVs. Full article
Show Figures

Figure 1

18 pages, 4003 KB  
Article
Understanding the Paradigm of Molecular-Network Conformations in Nanostructured Se-Rich Arsenoselenides AsxSe100−x (x < 10)
by Oleh Shpotyuk, Zdenka Lukáčová Bujňáková, Yaroslav Shpotyuk and Andriy Kovalskiy
Molecules 2025, 30(16), 3380; https://doi.org/10.3390/molecules30163380 - 14 Aug 2025
Viewed by 443
Abstract
The paradigm of molecular-network conformations in Se-rich glassy arsenoselenides AsxSe100−x compositionally approaching pure Se (x < 10) is considered, employing comprehensive XRD analysis of diffuse peak-halos and nanocrystalline reflections from the known Se polymorphs in their XRD patterns. Within a [...] Read more.
The paradigm of molecular-network conformations in Se-rich glassy arsenoselenides AsxSe100−x compositionally approaching pure Se (x < 10) is considered, employing comprehensive XRD analysis of diffuse peak-halos and nanocrystalline reflections from the known Se polymorphs in their XRD patterns. Within a modified microcrystalline model, the changes with growing Se content in these alloys are interpreted in terms of suppression in intermediate range ordering due to shifting to high diffraction angles and a narrowed FSDP (first sharp diffraction peak)-related diffuse peak-halo, accompanied by enhancement in extended range ordering due to a shift to low diffraction angles and a broadened SSDP (second sharp diffraction peak)-related peak-halo. Overlapping of these peak-halos is enhanced in Se-rich alloys, tending towards unified FSDP-SSDP-related halos with characteristic doublet asymmetry due to the remnants of nanocrystalline trigonal t-Se. Drastic enhancement of the crystallization processes related to the trigonal t-Se phase is a principal feature of nanostructurization effects in Se-rich glassy arsenoselenides driven by nanomilling. The nanostructurization response in these alloys is revealed as a fragmentation impact on the correlation length of the FSDP-responsible entities, accompanied by an agglomeration impact on the correlation length of the SSDP-responsible entities. The FSDP- and SSDP-related diffuse peak-halos become more distinguishable in the XRD patterning of nanostructured arsenoselenides, being associated with other contributions from crystalline remnants, such as those expected in transition to glassy arsenoselenides with higher Se content. An irregular sequence of randomly distributed cis- and trans-configurated multiatomic Se linkages is visualized by ab initio quantum-chemical modeling of Sen chain- and ring-like conformations. The most critical point of molecular-network disproportionality analysis in the examined arsenoselenide AsxSe100−x glassy alloys obeying the chain-crossing model corresponds to x = 7 (equivalent to 93 at. % of Se in the binary As-Se system), as an equilibrium point between mixed cis-trans-configurated Se7 chains and exceptionally cis-configurated molecular Se8 rings. At the basis of developed models, the paradigm of thermodynamically stable molecular-network conformations in the nanostructured Se-rich arsenoselenides AsxSe100−x (x < 10) is surely resolved in favor of chain-like network-forming conformations composed of mixed cis-trans-configurated network-forming multiatomic Se fragments. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 3rd Edition)
Show Figures

Graphical abstract

19 pages, 2474 KB  
Article
Unraveling the Role of Aluminum in Boosting Lithium-Ionic Conductivity of LLZO
by Md Mozammal Raju, Yi Ding and Qifeng Zhang
Electrochem 2025, 6(3), 29; https://doi.org/10.3390/electrochem6030029 - 4 Aug 2025
Viewed by 1056
Abstract
The development of high-performance solid electrolytes is critical to advancing solid-state lithium-ion batteries (SSBs), with lithium lanthanum zirconium oxide (LLZO) emerging as a leading candidate due to its chemical stability and wide electrochemical window. In this study, we systematically investigated the effects of [...] Read more.
The development of high-performance solid electrolytes is critical to advancing solid-state lithium-ion batteries (SSBs), with lithium lanthanum zirconium oxide (LLZO) emerging as a leading candidate due to its chemical stability and wide electrochemical window. In this study, we systematically investigated the effects of cation dopants, including aluminum (Al3+), tantalum (Ta5+), gallium (Ga3+), and rubidium (Rb+), on the structural, electronic, and ionic transport properties of LLZO using density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. It appeared that, among all simulated results, Al-LLZO exhibits the highest ionic conductivity of 1.439 × 10−2 S/cm with reduced activation energy of 0.138 eV, driven by enhanced lithium vacancy concentrations and preserved cubic-phase stability. Ta-LLZO follows, with a conductivity of 7.12 × 10−3 S/cm, while Ga-LLZO and Rb-LLZO provide moderate conductivity of 3.73 × 10−3 S/cm and 3.32 × 10−3 S/cm, respectively. Charge density analysis reveals that Al and Ta dopants facilitate smoother lithium-ion migration by minimizing electrostatic barriers. Furthermore, Al-LLZO demonstrates low electronic conductivity (1.72 × 10−8 S/cm) and favorable binding energy, mitigating dendrite formation risks. Comparative evaluations of radial distribution functions (RDFs) and XRD patterns confirm the structural integrity of doped systems. Overall, Al emerges as the most effective and economically viable dopant, optimizing LLZO for scalable, durable, and high-conductivity solid-state batteries. Full article
Show Figures

Graphical abstract

22 pages, 5743 KB  
Article
Effect of Grain Boundary Characteristics on Mechanical Properties and Irradiation Response in 3C-SiC: A Molecular Dynamics Simulation Study
by Wenying Liu, Fugen Deng, Jiajie Yu, Lin Chen, Yuyang Zhou, Yulu Zhou and Yifang Ouyang
Materials 2025, 18(15), 3545; https://doi.org/10.3390/ma18153545 - 29 Jul 2025
Viewed by 458
Abstract
Molecular dynamics (MD) simulations have been performed on the energetics, mechanical properties, and irradiation response of seventy-three 3C-SiC symmetric tilt grain boundaries (STGBs) with three tilt axes (<100>, <110> and <111>). The effect of GB characteristics on the STGB properties has been investigated. [...] Read more.
Molecular dynamics (MD) simulations have been performed on the energetics, mechanical properties, and irradiation response of seventy-three 3C-SiC symmetric tilt grain boundaries (STGBs) with three tilt axes (<100>, <110> and <111>). The effect of GB characteristics on the STGB properties has been investigated. The GB energy is positively and linearly correlated with the excess volume, but the linearity in SiC is not as good as in metals, which stems from the inhomogeneous structural relaxation near GBs induced by orientation-sensitive covalent bonding. For <110>STGBs, the shear strength exhibits symmetry with respect to the misorientation angle of 90°, which is consistent with ab initio calculations for Al in similar shear orientations. Cascades are performed with 8 keV silicon as the primary knock-on atom (PKA). No direct correlation is found between the sink efficiency of GBs for defects and GB characteristics, which comes from the complexity of the diatomic system during the recovery phase. For GBs with smaller values of Σ, the GBs exhibit a weaker blocking effect on the penetration of irradiated defects, resulting in a lower number of defects in GBs and a higher number of total surviving defects. In particular, it is seen that the percentage decrease in tensile strength after irradiation is positively correlated with the Σ value. Taken together, these results help to elucidate the impact of GB behavior on the mechanical properties of as well as the primary irradiation damage in SiC and provide a reference for creating improved materials through GB engineering. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

30 pages, 11919 KB  
Article
Unveiling Vibrational Couplings in Model Peptides in Solution by a Theoretical Approach
by Federico Coppola, Fulvio Perrella, Alessio Petrone, Greta Donati, Luciana Marinelli and Nadia Rega
Molecules 2025, 30(13), 2854; https://doi.org/10.3390/molecules30132854 - 4 Jul 2025
Viewed by 602
Abstract
Vibrational analysis of peptides in solution and the theoretical determination of the effects of the microenvironment on infrared and Raman spectra are of key importance in many fields of chemical interest. In this work, we present a computational study combining static quantum mechanical [...] Read more.
Vibrational analysis of peptides in solution and the theoretical determination of the effects of the microenvironment on infrared and Raman spectra are of key importance in many fields of chemical interest. In this work, we present a computational study combining static quantum mechanical calculations with ab initio molecular dynamics simulations to investigate the vibrational behavior of three peptide models in both the gas phase and in explicit water, under non-periodic boundary conditions. The vibrational spectra of the main amide bands, namely amide I-III and A, were analyzed using a time–frequency approach based on the wavelet transform, which allows the resolution of transient frequency shifts and mode couplings along the trajectories. This combined approach enabled us to perform a time-resolved vibrational analysis revealing how vibrational frequencies, especially of the C=O and N–H stretching modes, evolve over time due to dynamical microsolvation. These fluctuations modulate vibrational couplings and lead to spectral broadening and frequency shifts that correlate with the local structuring of the solvent. In conclusion, our results highlight how the proposed protocol allows for the direct connection between vibrational modes and local structural changes, providing a link from the spectroscopic observable to the structure, the peptide backbone, and its microenvironment. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

22 pages, 3862 KB  
Article
Composition-Dependent Structural, Phonon, and Thermodynamical Characteristics of Zinc-Blende BeZnO
by Devki N. Talwar and Piotr Becla
Materials 2025, 18(13), 3101; https://doi.org/10.3390/ma18133101 - 1 Jul 2025
Cited by 1 | Viewed by 426
Abstract
Both ZnO and BeO semiconductors crystallize in the hexagonal wurtzite (wz), cubic rock salt (rs), and zinc-blende (zb) phases, depending upon their growth conditions. Low-dimensional heterostructures ZnO/BexZn1-xO and BexZn1-xO ternary alloy-based devices have recently gained [...] Read more.
Both ZnO and BeO semiconductors crystallize in the hexagonal wurtzite (wz), cubic rock salt (rs), and zinc-blende (zb) phases, depending upon their growth conditions. Low-dimensional heterostructures ZnO/BexZn1-xO and BexZn1-xO ternary alloy-based devices have recently gained substantial interest to design/improve the operations of highly efficient and flexible nano- and micro-electronics. Attempts are being made to engineer different electronic devices to cover light emission over a wide range of wavelengths to meet the growing industrial needs in photonics, energy harvesting, and biomedical applications. For zb materials, both experimental and theoretical studies of lattice dynamics ωjq have played crucial roles for understanding their optical and electronic properties. Except for zb ZnO, inelastic neutron scattering measurement of ωjq for BeO is still lacking. For the BexZn1-xO ternary alloys, no experimental and/or theoretical studies exist for comprehending their structural, vibrational, and thermodynamical traits (e.g., Debye temperature ΘDT; specific heat CvT). By adopting a realistic rigid-ion model, we have meticulously simulated the results of lattice dynamics, and thermodynamic properties for both the binary zb ZnO, BeO and ternary BexZn1-xO alloys. The theoretical results are compared/contrasted against the limited experimental data and/or ab initio calculations. We strongly feel that the phonon/thermodynamic features reported here will encourage spectroscopists to perform similar measurements and check our theoretical conjectures. Full article
(This article belongs to the Special Issue Advanced Additive Manufacturing Processing of Ceramic Materials)
Show Figures

Figure 1

11 pages, 3150 KB  
Article
Calorimetric Studies of the Mg-Pt System
by Adam Dębski, Magda Pęska, Sylwia Terlicka, Julita Dworecka-Wójcik, Władysław Gąsior, Wojciech Gierlotka, Andrzej Budziak and Marek Polański
Materials 2025, 18(13), 3075; https://doi.org/10.3390/ma18133075 - 28 Jun 2025
Viewed by 407
Abstract
This study presents the limiting partial enthalpy of a solution of Pt in liquid Sn and Al baths, as well as, for the first time, the standard enthalpies of the formation of intermetallic phases and alloys of the Mg–Pt system, obtained using solution [...] Read more.
This study presents the limiting partial enthalpy of a solution of Pt in liquid Sn and Al baths, as well as, for the first time, the standard enthalpies of the formation of intermetallic phases and alloys of the Mg–Pt system, obtained using solution calorimetry. The alloys were prepared via mechanical alloying and subsequently examined via X-ray diffraction (XRD) and scanning electron microscopy (SEM). The limiting partial enthalpy of a solution of Pt in liquid baths was measured at 931 K and 1033 K in the Sn bath and at 1036 K in the Al bath. The measured values are negative and equal to −126.0 ± 3.4 kJ/mol and −126.3 ± 3.5 kJ/mol at 931 K and 1033 K, respectively, in the Sn bath and −217.9 ± 1.2 kJ/mol in the Al bath. Subsequently, the measured heat effects were used to calculate the standard enthalpies of the formation of the intermetallic phases. The resulting values are as follows: −29.5 ± 1.8 kJ/mol·at. for Mg6Pt, −53.9 ± 1.6 kJ/mol·at. for Mg3Pt, −65.2 ± 0.4 kJ/mol·at. for Mg2Pt, −78.7 ± 2.1 kJ/mol·at. for MgPt, −44.5 ± 0.4 kJ/mol·at. for MgPt3, and −26.4 ± 1.0 kJ/mol·at. for MgPt7. These values of the standard enthalpies of the formation of the intermetallic phases were compared with available ab initio data and those calculated using Miedema’s model. The data obtained using Miedema’s model were the least exothermic compared to the data obtained from calorimetric measurements and other theoretical calculations. Full article
Show Figures

Graphical abstract

12 pages, 2076 KB  
Article
A Density Functional Theory-Based Particle Swarm Optimization Investigation of Metal Sulfide Phases for Ni-Based Catalysts
by Houyu Zhu, Xiaohan Li, Xiaoxin Zhang, Yucheng Fan, Xin Wang, Dongyuan Liu, Zhennan Liu, Xiaoxiao Gong, Wenyue Guo and Hao Ren
Nanomaterials 2025, 15(11), 788; https://doi.org/10.3390/nano15110788 - 23 May 2025
Viewed by 545
Abstract
Nickel (Ni) catalysts have numerous applications in the chemical industry, but they are susceptible to sulfurization, with their sulfurized structures and underlying formation mechanisms remaining unclear. Herein, density functional theory (DFT) combined with the particle swarm optimization (PSO) algorithm is employed to investigate [...] Read more.
Nickel (Ni) catalysts have numerous applications in the chemical industry, but they are susceptible to sulfurization, with their sulfurized structures and underlying formation mechanisms remaining unclear. Herein, density functional theory (DFT) combined with the particle swarm optimization (PSO) algorithm is employed to investigate the low-energy structures and formation mechanisms of sulfide phases on Ni(111) surfaces, especially under high-sulfur-coverage conditions where traditional DFT calculations fail to reach convergence. Using (3×3 ) Ni(111) slab models, we identify a sulfurization limit, finding that each pair of deposited sulfur atoms can sulfurize one layer of three Ni atoms at most (Ni:S = 3:2), with additional sulfur atoms penetrating deeper layers until saturation. Under typical reactive adsorption desulfurization conditions, the ab initio thermodynamics analysis indicates that Ni3S2 is the most stable sulfide phase, consistent with sulfur K-edge XANES data. Unsaturated phases, including Ni3S, Ni2S, and Ni9S5, represent intermediate states towards saturation, potentially explaining the diverse Ni sulfide compositions observed in experiments. Full article
(This article belongs to the Special Issue Catalysis at the Nanoscale: Insights from Theory and Simulation)
Show Figures

Graphical abstract

25 pages, 3962 KB  
Review
Tailoring the Functional Properties of Ferroelectric Perovskite Thin Films: Mechanisms of Dielectric and Photoelectrochemical Enhancement
by Ioan-Mihail Ghitiu, George Alexandru Nemnes and Nicu Doinel Scarisoreanu
Crystals 2025, 15(6), 496; https://doi.org/10.3390/cryst15060496 - 23 May 2025
Cited by 1 | Viewed by 1007
Abstract
Various types of strain, as well as chemical pressure induced by dopants, can effectively tailor the performance of perovskite thin films, including their optical, electrical or photoelectrochemical properties. The control of these functional properties through such engineering techniques is key to fulfilling the [...] Read more.
Various types of strain, as well as chemical pressure induced by dopants, can effectively tailor the performance of perovskite thin films, including their optical, electrical or photoelectrochemical properties. The control of these functional properties through such engineering techniques is key to fulfilling the application-specific requirements of ferroelectric devices in various fields. Numerous models and experimental data have been published on this subject, especially on ferrite-based ferroelectric materials. Within this paper, the mechanisms of tuning ferroelectric intrinsic properties, such as polarization and ferroelectric domain configurations, through epitaxial strain and doping, as well as the role of these techniques in influencing functional properties such as dielectric and photoelectrochemical ones, are presented. This review examines the significant improvements in dielectric properties and photoelectrochemical efficiency achieved by the strategical control of key functionalities including dielectric losses, domain structures, charge separation and surface reactions in strained/doped ferroelectric thin films, highlighting the advancements and research progress made in this field in recent years. Full article
Show Figures

Figure 1

16 pages, 1805 KB  
Article
Diversity of Molecular–Network Conformations in the Over-Stoichiometric Arsenoselenides Covering a Full Thioarsenides Row As4Sen (0 ≤ n ≤ 6)
by Oleh Shpotyuk, Malgorzata Hyla, Zdenka Lukáčová Bujňáková, Yaroslav Shpotyuk and Vitaliy Boyko
Molecules 2025, 30(9), 1963; https://doi.org/10.3390/molecules30091963 - 29 Apr 2025
Cited by 1 | Viewed by 485
Abstract
Molecular network conformations in the over-stoichiometric arsenoselenides of canonical AsxSe100−x system (40 ≤ x ≤ 100) covering a full row of thioarsenide-type As4Sen entities (0 ≤ n ≤ 6) are analyzed with ab initio quantum-chemical modeling employing [...] Read more.
Molecular network conformations in the over-stoichiometric arsenoselenides of canonical AsxSe100−x system (40 ≤ x ≤ 100) covering a full row of thioarsenide-type As4Sen entities (0 ≤ n ≤ 6) are analyzed with ab initio quantum-chemical modeling employing cluster-simulation code CINCA. Native (melt-quenching-derived) and nanostructurization-driven (activated by nanomilling) polymorphic and polyamorphic transitions initiated by decomposition of the thioarsenide-type As4Sen cage molecules and incorporation of their remnants into a newly polymerized arsenoselenide network are identified on the developed map of molecular network clustering in a binary As-Se system. Within this map, compositional counter lines corresponding to preferential molecular or network-forming tendencies in the examined arsenoselenides are determined, explaining that network-crystalline conformations prevail in the boundary compositions corresponding to n = 6 and n = 0, while molecular-crystalline ones dominate inside the rows corresponding to n = 4 and n = 3. A set of primary and secondary equilibrium lines is introduced in the developed clustering map to account for inter-phase equilibria between the most favorable (regular) and competitive (irregular) thioarsenide phases. Straightforward interpretation of decomposition reactions accompanying induced crystallization and amorphization (reamorphization) in the arsenoselenides is achieved, employing disproportionality analysis of thioarsenide-type molecular network conformations within the reconstructed clustering map. The preference of network clustering at the boundaries of the As4Sen row (at n = 6 and n = 0) disturbs inter-phase equilibria inside this row, leading to unexpected anomalies, such as absence of stable tetra-arsenic triselenide As4Se5 molecular-crystalline species; polyamorphism in mechanoactivated As4Sen alloys (2 ≤ n ≤ 6); breakdown in the glass-forming ability of melt-quenching-derived arsenoselenides in the vicinity of tetra-arsenic biselenide As4Se2 composition; plastically and normally crystalline polymorphism in tetra-arsenic triselenide As4Se3-based thioarsenides, and so on. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 3rd Edition)
Show Figures

Graphical abstract

17 pages, 2533 KB  
Article
Unveiling the Dynamics of NO3 at the Air–Water Interface and in Bulk Water: A Comparative Study with Cl and ClO
by Yongxia Hu, Ying Zhou, Mohammad Hassan Hadizadeh and Fei Xu
Molecules 2025, 30(8), 1724; https://doi.org/10.3390/molecules30081724 - 11 Apr 2025
Cited by 1 | Viewed by 691
Abstract
The interaction of nitrate radicals (NO3) with the air–water interface is a critical aspect of atmospheric chemistry, influencing processes such as secondary organic aerosol (SOA) formation, pollutant transformation, and nighttime oxidation. This study investigates the behavior of NO3 radicals at [...] Read more.
The interaction of nitrate radicals (NO3) with the air–water interface is a critical aspect of atmospheric chemistry, influencing processes such as secondary organic aerosol (SOA) formation, pollutant transformation, and nighttime oxidation. This study investigates the behavior of NO3 radicals at the air–water interface and in bulk water environments through ab initio molecular dynamics simulations, directly comparing them with Cl and ClO radicals. Three distinct configurations of NO3 in water droplets were analyzed: surface-parallel, surface-perpendicular, and bulk-phase. The results reveal environment-dependent dynamics, with surface-localized NO3 radicals exhibiting fewer but more flexible hydrogen bonds compared to bulk-solvated radicals. Analysis of radial distribution functions, coordination numbers, and population distributions demonstrates that NO3 radicals maintain distinct interfacial and bulk-phase preferences, with rapid equilibration in both environments. Electronic structure analysis shows significant modulation of spin density and molecular orbital distributions between surface and bulk environments. The comparative analysis with Cl and ClO radicals highlights how the unique planar geometry and delocalized π-system of NO3 influence its hydration patterns and interfacial activity. These results offer fundamental molecular-level insights into NO3 radical behavior at the air–water interface and in aqueous environments, enhancing our understanding of their role in heterogeneous atmospheric processes and nocturnal chemistry. Full article
Show Figures

Figure 1

18 pages, 6294 KB  
Article
Predicting the Pressure-Induced Isosymmetric Phase Transition of Sulfamic Acid by Applying Periodic Density Functional Theory Calculations
by Anna Maria Mazurek, Monika Franczak-Rogowska and Łukasz Szeleszczuk
Appl. Sci. 2025, 15(8), 4185; https://doi.org/10.3390/app15084185 - 10 Apr 2025
Viewed by 450
Abstract
Sulfamic acid (SA) is extensively utilised in industry as a component in the production of flameproof materials, a catalyst for swift and highly efficient synthesis, in dye and pigment manufacturing processes, or as herbicide. Under ambient conditions, this compound exists as a solid [...] Read more.
Sulfamic acid (SA) is extensively utilised in industry as a component in the production of flameproof materials, a catalyst for swift and highly efficient synthesis, in dye and pigment manufacturing processes, or as herbicide. Under ambient conditions, this compound exists as a solid in zwitterionc form, undergoing pressure-induced isosymmetric polymorphic phase transition (IPT), starting at approximately 10.0 GPa. In this work, multiple computational approaches were used to predict and describe this transition. While geometry optimisation at an increased pressure using periodic DFT-level calculations have not resulted in the anticipated IPT, the comparison of the experimental and theoretical Raman spectra confirmed this transformation. Thermodynamic calculations enabled the comparison of the stability of the modelled phases and explained the experimental observations. Ab initio molecular dynamics simulations revealed the mechanisms behind the observed transition. This work presents a complex methodology that can be successfully used to predict the IPT of molecular crystals. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

18 pages, 5181 KB  
Article
Analytic Model for U-Nb Liquidus and U-6Nb Melting Curve
by Leonid Burakovsky, Dean L. Preston and Andrew A. Green
Appl. Sci. 2025, 15(7), 3763; https://doi.org/10.3390/app15073763 - 29 Mar 2025
Cited by 1 | Viewed by 499
Abstract
Uranium–niobium (U-Nb) alloys, used in a variety of industrial and energy applications that require high density, ductility, and good corrosion resistance, comprise a highly complex, multiphasic system with a phase diagram well established through decades of extensive experimental and theoretical research. They are [...] Read more.
Uranium–niobium (U-Nb) alloys, used in a variety of industrial and energy applications that require high density, ductility, and good corrosion resistance, comprise a highly complex, multiphasic system with a phase diagram well established through decades of extensive experimental and theoretical research. They are also one of the best candidates for a metallic fuel alloy with high-temperature strength sufficient to support the core, acceptable nuclear properties, good fabricability, and compatibility with usable coolant media. The key factor determining the performance and safety of a metallic fuel such as U-Nb is its operational limits in the application environment, which are closely related to material’s structure and thermodynamic stability. They are in turn closely related to the ambient (zero-pressure) melting point (Tm); thus, Tm is an important engineering parameter. However, the current knowledge of Tm of the U-Nb system is limited, as the only experimental study of its Nb-rich portion dates back to 1958. In addition, it has not yet been adequately modeled based on general thermodynamics principles or using an equation-of-state approach. In this study, we present a theoretical model for the melting curve (liquidus) of a mixture, and apply it to U-Nb, which is considered as a mixture of pure U and pure Nb. The model uses the known melting curves of pure constituents as an input and predicts the melting curve of their mixture. It has only one free parameter, which must be determined independently. The ambient liquidus of U-Nb predicted by the model appears to be in good agreement with the available experimental data. We calculate the melting curve (the pressure dependence of Tm) of pure U using ab initio quantum molecular dynamics (QMD), the knowledge of which is required for obtaining the model parameters for U. We also generalize the new model to nonzero pressure and consider the melting curve of U-6 wt.% Nb (U-6Nb) alloy as an example. The melting curve of U-6Nb alloy predicted by the model appears to be in good agreement with the ab initio melting curve obtained from our QMD simulations. We suggest that the U-18Nb alloy can be considered as a proxy for protactinium (Pa) and demonstrate that the melting curves of U-18Nb and Pa are in good agreement with each other. Full article
Show Figures

Figure 1

28 pages, 4096 KB  
Article
Spontaneous and Piezo Polarization Versus Polar Surfaces: Fundamentals and Ab Initio Calculations
by Pawel Strak, Pawel Kempisty, Konrad Sakowski, Jacek Piechota, Izabella Grzegory, Eva Monroy, Agata Kaminska and Stanislaw Krukowski
Materials 2025, 18(7), 1489; https://doi.org/10.3390/ma18071489 - 26 Mar 2025
Cited by 1 | Viewed by 703
Abstract
In this study, the fundamental properties of spontaneous and piezo polarization and surface polarity were defined. It was demonstrated that the Landau definition of polarization as a dipole density could be used in infinite systems. Differences between bulk polarization and surface polarity were [...] Read more.
In this study, the fundamental properties of spontaneous and piezo polarization and surface polarity were defined. It was demonstrated that the Landau definition of polarization as a dipole density could be used in infinite systems. Differences between bulk polarization and surface polarity were distinguished, thus creating a clear identification of both components. This identification is in agreement with numerous experimental data—red shift presence and absence for wurtzite and zinc blende multiquantum wells (MQWs), respectively. A local model of spontaneous polarization was created and used to calculate spontaneous polarization as electric dipole density. The proposed local model correctly predicted the c-axis spontaneous polarization values of nitride wurtzite semiconductors. In addition, the model’s results are in accordance with a polarization equal to zero for the zinc blende lattice. The spontaneous polarization values obtained for all wurtzite III nitrides are in basic agreement with earlier calculations using the Berry phase. Ab initio calculations of wurtzite nitride superlattices in Heyd–Scuseria–Ernzerhof (HSE) approximation were performed to derive polarization-induced fields in coherently strained lattices, showing good agreement with the polarization values. Strained superlattice data were used to determine the piezoelectric parameters of wurtzite nitrides, obtaining values that are in basic agreement with earlier data. Zinc blende superlattices were also modeled using ab initio HSE calculations, showing results that are in agreement with the absence of polarization in all nitrides in zinc blende symmetry. Full article
Show Figures

Graphical abstract

Back to TopTop