Diffusion of Alkaline Metals in Two-Dimensional β1-ScSi2N4 and β2-ScSi2N4 Materials: A First-Principles Investigation
Abstract
1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Structural Information and Stability of 2D β1-ScSi2N4 and β2-ScSi2N4
3.2. Electronic Properties of 2D β1-ScSi2N4 and β2-ScSi2N4
3.3. β1-ScSi2N4 and β2-ScSi2N4 Performance as Anode Materials
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Lee, G.H.; Yu, Y.J.; Cui, X.; Petrone, N.; Lee, C.H.; Choi, M.S.; Lee, D.Y.; Lee, C.; Yoo, W.J.; Watanabe, K.; et al. Flexible and Transparent MoS2 Field-Effect Transistors on Hexagonal Boron Nitride-Graphene Heterostructures. ACS Nano 2013, 7, 7931–7936. [Google Scholar] [CrossRef]
- Ji, H.G.; Solís-Fernández, P.; Erklllç, U.; Ago, H. Stacking Orientation-Dependent Photoluminescence Pathways in Artificially Stacked Bilayer WS2Nanosheets Grown by Chemical Vapor Deposition: Implications for Spintronics and Valleytronics. ACS Appl. Nano Mater. 2021, 4, 3717–3724. [Google Scholar] [CrossRef]
- Wang, X.; Jones, A.M.; Seyler, K.L.; Tran, V.; Jia, Y.; Zhao, H.; Wang, H.; Yang, L.; Xu, X.; Xia, F. Highly Anisotropic and Robust Excitons in Monolayer Black Phosphorus. Nat. Nanotechnol. 2015, 10, 517–521. [Google Scholar] [CrossRef] [PubMed]
- Tho, C.C.; Guo, S.-D.; Liang, S.-J.; Ong, W.-L.; Lau, C.S.; Cao, L.; Wang, G.; Ang, Y.S. MA2Z4 Family Heteorstructures: Promises and Prospects. arXiv 2023, arXiv:2304.02802. [Google Scholar] [CrossRef]
- Yin, Y.; Gong, Q.; Yi, M.; Guo, W. Emerging Versatile Two-Dimensional MoSi2N4 Family. Adv. Funct. Mater. 2023, 33, 2214050. [Google Scholar] [CrossRef]
- Hong, Y.-L.; Liu, Z.; Wang, L.; Zhou, T.; Ma, W.; Xu, C.; Feng, S.; Chen, L.; Chen, M.-L.; Sun, D.-M.; et al. Chemical Vapor Deposition of Layered Two-Dimensional MoSi2N4 Materials. Science 2020, 369, 670–674. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Gao, S.; Jia, B.; Hao, J.; Chen, C.; Abduryim, E.; Guo, S.; Gao, L.; Lu, P. First-Principles Computational Study of Janus van Der Waals Layered VSiGeN4 as Anode Material for Li-Ion Battery. Colloids Surf. A Physicochem. Eng. Asp. 2024, 681, 132777. [Google Scholar] [CrossRef]
- Wang, L.; Shi, Y.; Liu, M.; Zhang, A.; Hong, Y.-L.; Li, R.; Gao, Q.; Chen, M.; Ren, W.; Cheng, H.-M.; et al. Intercalated Architecture of MA2Z4 Family Layered van Der Waals Materials with Emerging Topological, Magnetic and Superconducting Properties. Nat. Commun. 2021, 12, 2361. [Google Scholar] [CrossRef]
- Piquemal-Banci, M.; Galceran, R.; Godel, F.; Caneva, S.; Martin, M.B.; Weatherup, R.S.; Kidambi, P.R.; Bouzehouane, K.; Xavier, S.; Anane, A.; et al. Insulator-to-Metallic Spin-Filtering in 2D-Magnetic Tunnel Junctions Based on Hexagonal Boron Nitride. ACS Nano 2018, 12, 4712–4718. [Google Scholar] [CrossRef]
- Sivadas, N.; Okamoto, S.; Xu, X.; Fennie, C.J.; Xiao, D. Stacking-Dependent Magnetism in Bilayer CrI3. Nano Lett. 2018, 18, 7658–7664. [Google Scholar] [CrossRef]
- Fei, Z.; Huang, B.; Malinowski, P.; Wang, W.; Song, T.; Sanchez, J.; Yao, W.; Xiao, D.; Zhu, X.; May, A.F.; et al. Two-Dimensional Itinerant Ferromagnetism in Atomically Thin Fe3GeTe2. Nat. Mater. 2018, 17, 778–782. [Google Scholar] [CrossRef]
- Zhao, Z.; Duan, X.; Fang, X.; Wang, X.; Mi, W. Prediction of Electronic Structure and Magnetic Anisotropy of Two-Dimensional MSi2N4 (M = 3d Transition-Metal) Monolayers. Appl. Surf. Sci. 2023, 611, 155693. [Google Scholar] [CrossRef]
- Gao, S.; Wei, F.; Jia, B.; Chen, C.; Wu, G.; Hao, J.; Chen, W.; Wu, L.; Zou, W.; Lu, P. Two-Dimensional van Der Waals Layered VSi2N4 as Anode Materials for Alkali Metal (Li, Na and K) Ion Batteries. J. Phys. Chem. Solids 2023, 178, 111339. [Google Scholar] [CrossRef]
- Cui, Z.; Yang, K.; Ren, K.; Zhang, S.; Wang, L. Adsorption of Metal Atoms on MoSi2N4 Monolayer: A First Principles Study. Mater. Sci. Semicond. Process. 2022, 152, 107072. [Google Scholar] [CrossRef]
- Xu, J.; Wu, Q.; Sun, Z.; Mwankemwa, N.; Zhang, W.-B.; Yang, W.-X. First-Principles Investigations of Electronic, Optical, and Photocatalytic Properties of Au-Adsorbed MoSi2N4 Monolayer. J. Phys. Chem. Solids 2022, 162, 110494. [Google Scholar] [CrossRef]
- Huang, H.; Zhao, W.; Yang, M.; Xue, S.; He, Z.; Laref, A. Half-Metallic Behavior and Anisotropy of Two-Dimensional MoSi2N4/ScSi2N4 Heterojunction. J. Magn. Magn. Mater. 2024, 610, 172592. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, X.; Mi, W. Ferroelectric Polarization Tailored Spin Polarized Electronic Structure and Magnetic Anisotropy in Two-Dimensional ScSi2N4/CuInP2S6 Multiferroic Heterostructures. J. Phys. D Appl. Phys. 2023, 56, 505001. [Google Scholar] [CrossRef]
- Shepelin, N.A.; Sherrell, P.C.; Skountzos, E.N.; Goudeli, E.; Zhang, J.; Lussini, V.C.; Imtiaz, B.; Usman, K.A.S.; Dicinoski, G.W.; Shapter, J.G.; et al. Interfacial Piezoelectric Polarization Locking in Printable Ti3C2Tx MXene-Fluoropolymer Composites. Nat. Commun. 2021, 12, 3171. [Google Scholar] [CrossRef]
- Cohen, A.J.; Mori-Sánchez, P.; Yang, W. Challenges for Density Functional Theory. Chem. Rev. 2012, 112, 289–320. [Google Scholar] [CrossRef]
- Allouche, A.R. Gabedita—A Graphical User Interface for Computational Chemistry Softwares. J. Comput. Chem. 2011, 32, 174–182. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Paier, J.; Hirschl, R.; Marsman, M.; Kresse, G. The Perdew-Burke-Ernzerhof Exchange-Correlation Functional Applied to the G2-1 Test Set Using a Plane-Wave Basis Set. J. Chem. Phys. 2005, 122, 234102. [Google Scholar] [CrossRef]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid Functionals Based on a Screened Coulomb Potential. J. Chem. Phys. 2003, 118, 8207–8215. [Google Scholar] [CrossRef]
- Togo, A.; Tanaka, I. First Principles Phonon Calculations in Materials Science. Scr. Mater. 2015, 108, 1–5. [Google Scholar] [CrossRef]
- Martyna, G.J.; Klein, M.L.; Tuckerman, M. Nosé-Hoover Chains: The Canonical Ensemble via Continuous Dynamics. J. Chem. Phys. 1992, 97, 2635–2643. [Google Scholar] [CrossRef]
- Wang, V.; Xu, N.; Liu, J.-C.; Tang, G.; Geng, W.-T. VASPKIT: A User-Friendly Interface Facilitating High-Throughput Computing and Analysis Using VASP Code. Comput. Phys. Commun. 2021, 267, 108033. [Google Scholar] [CrossRef]
- Zhang, X.; Jin, L.; Dai, X.; Chen, G.; Liu, G. A Record-High Ion Storage Capacity of T-Graphene as Two-Dimensional Anode Material for Li-Ion and Na-Ion Batteries. Appl. Surf. Sci. 2020, 527, 146849. [Google Scholar] [CrossRef]
- Jing, Y.; Zhou, Z.; Cabrera, C.R.; Chen, Z. Metallic VS2 Monolayer: A Promising 2D Anode Material for Lithium Ion Batteries. J. Phys. Chem. C 2013, 117, 25409–25413. [Google Scholar] [CrossRef]
- Molina-Sánchez, A.; Wirtz, L. Phonons in Single-Layer and Few-Layer MoS2 and WS2. Phys. Rev. B 2011, 84, 155413. [Google Scholar] [CrossRef]
- Yu, Q.; Huang, H.; Zhao, W.; Xue, S.; Tong, R.; Chen, J.; Hu, Y.; Laref, A.; Luo, S. Electronic and Half-Metallic Properties of Novel Two-Dimensional YSi2N4 Monolayer by Theoretical Exploration. Mater. Sci. Semicond. Process. 2024, 169, 107862. [Google Scholar] [CrossRef]
- Yan, X.; Han, F.; Yao, Y.; Zhang, X.; Liu, Y.; Yang, G. Semiconducting Cr2BN Monolayer with Antiferromagnetic Order. Phys. Rev. B 2023, 108, 174402. [Google Scholar] [CrossRef]
- Sun, Y.; Zhuo, Z.; Wu, X.; Yang, J. Room-Temperature Ferromagnetism in Two-Dimensional Fe2Si Nanosheet with Enhanced Spin-Polarization Ratio. Nano Lett. 2017, 17, 2771–2777. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, J.; Wang, Q.; Chen, X.; Kawazoe, Y.; Jena, P. Penta-Graphene: A New Carbon Allotrope. Proc. Natl. Acad. Sci. USA 2015, 112, 2372–2377. [Google Scholar] [CrossRef]
- Waller, I. Dynamical Theory of Crystal Lattices by M. Born and K. Huang. Acta Crystallogr. 1956, 9, 837–838. [Google Scholar] [CrossRef]
- Wang, S.; Li, J.X.; Du, Y.L.; Cui, C. First-Principles Study on Structural, Electronic and Elastic Properties of Graphene-like Hexagonal Ti2C Monolayer. Comput. Mater. Sci. 2014, 83, 290–293. [Google Scholar] [CrossRef]
- Cooper, R.C.; Lee, C.; Marianetti, C.A.; Wei, X.; Hone, J.; Kysar, J.W. Nonlinear Elastic Behavior of Two-Dimensional Molybdenum Disulfide. Phys. Rev. B 2013, 87, 035423. [Google Scholar] [CrossRef]
- Hu, T.; Wan, W.; Ge, Y.; Liu, Y. Strain-Tunable Magnetic Order and Electronic Structure in 2D CrAsS4. J. Magn. Magn. Mater. 2020, 497, 165941. [Google Scholar] [CrossRef]
- Henkelman, G.; Arnaldsson, A.; Jónsson, H. A Fast and Robust Algorithm for Bader Decomposition of Charge Density. Comput. Mater. Sci. 2006, 36, 354–360. [Google Scholar] [CrossRef]
- Huang, S.Y.; Kavan, L.; Exnar, I.; Grätzel, M. Rocking Chair Lithium Battery Based on Nanocrystalline TiO2 (Anatase). J. Electrochem. Soc. 1995, 142, L142–L144. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, S.; Yuan, X.; Gan, X.; Zhou, N. A Comparative Study of M2CS2 and M2CO2 MXenes as Anode Materials for Lithium Ion Batteries. Appl. Surf. Sci. 2021, 544, 148861. [Google Scholar] [CrossRef]
- Guo, Y.; Bo, T.; Wu, Y.; Zhang, J.; Lu, Z.; Li, W.; Li, X.; Zhang, P.; Wang, B. YS2 Monolayer as a High-Efficient Anode Material for Rechargeable Li-Ion and Na-Ion Batteries. Solid. State Ion. 2020, 345, 115187. [Google Scholar] [CrossRef]
- Zhang, C.; Jiao, Y.; He, T.; Ma, F.; Kou, L.; Liao, T.; Bottle, S.; Du, A. Two-Dimensional GeP3 as a High Capacity Electrode Material for Li-Ion Batteries. Phys. Chem. Chem. Phys. 2017, 19, 25886–25890. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Zhao, Z.; Liu, L.; Zhang, S.; Xu, H.; Yang, G. TiC3 Monolayer with High Specific Capacity for Sodium-Ion Batteries. J. Am. Chem. Soc. 2018, 140, 5962–5968. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Fu, H.; Han, W.; Ma, R.; Yang, L.; Qu, X. Diffusion of Alkaline Metals in Two-Dimensional β1-ScSi2N4 and β2-ScSi2N4 Materials: A First-Principles Investigation. Nanomaterials 2025, 15, 1268. https://doi.org/10.3390/nano15161268
Liu Y, Fu H, Han W, Ma R, Yang L, Qu X. Diffusion of Alkaline Metals in Two-Dimensional β1-ScSi2N4 and β2-ScSi2N4 Materials: A First-Principles Investigation. Nanomaterials. 2025; 15(16):1268. https://doi.org/10.3390/nano15161268
Chicago/Turabian StyleLiu, Ying, Han Fu, Wanting Han, Rui Ma, Lihua Yang, and Xin Qu. 2025. "Diffusion of Alkaline Metals in Two-Dimensional β1-ScSi2N4 and β2-ScSi2N4 Materials: A First-Principles Investigation" Nanomaterials 15, no. 16: 1268. https://doi.org/10.3390/nano15161268
APA StyleLiu, Y., Fu, H., Han, W., Ma, R., Yang, L., & Qu, X. (2025). Diffusion of Alkaline Metals in Two-Dimensional β1-ScSi2N4 and β2-ScSi2N4 Materials: A First-Principles Investigation. Nanomaterials, 15(16), 1268. https://doi.org/10.3390/nano15161268