Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (720)

Search Parameters:
Keywords = ZIF−8

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4761 KB  
Article
High-Performance CoxNiy@NC/SiO2 Catalysts Derived from ZIF-67 for Enhanced Hydrogenation of 1-Nitronaphthalene
by Xuedong Lan, Ming Zhong, Weidi Dai and Pingle Liu
Catalysts 2026, 16(1), 93; https://doi.org/10.3390/catal16010093 - 16 Jan 2026
Abstract
A series of silica-supported, nitrogen-doped carbon-encapsulated cobalt–nickel alloy catalysts (CoxNiy@NC/SiO2) was successfully synthesized and systematically evaluated for the liquid-phase hydrogenation of 1-nitronaphthalene to 1-naphthylamine. Physicochemical characterization confirmed that the incorporation of nickel promotes the formation of Co–Ni [...] Read more.
A series of silica-supported, nitrogen-doped carbon-encapsulated cobalt–nickel alloy catalysts (CoxNiy@NC/SiO2) was successfully synthesized and systematically evaluated for the liquid-phase hydrogenation of 1-nitronaphthalene to 1-naphthylamine. Physicochemical characterization confirmed that the incorporation of nickel promotes the formation of Co–Ni alloys and modulates the electronic structure of the catalysts. The catalytic performance was found to be highly sensitive to the Co/Ni ratio, with Co2Ni1@NC/SiO2 exhibiting the most outstanding activity. Under optimized reaction conditions (90 °C, 0.6 MPa H2, 5.5 h), both the conversion of 1-nitronaphthalene and the selectivity toward 1-naphthylamine reached approximately 99%. The catalyst also demonstrated excellent stability and recyclability, attributed to the protective nitrogen-doped carbon shell and the synergistic interaction between the Co–Ni alloy and M–Nx active sites. This work provides a new strategy for designing efficient and robust non-noble-metal catalysts for hydrogenation reactions. Full article
(This article belongs to the Special Issue Catalysis and Sustainable Green Chemistry)
Show Figures

Graphical abstract

21 pages, 5367 KB  
Article
Fluorescent Nanoporous Gene Drugs with Fenton-like Catalysis Vector Research
by Yulin Li, Jianjun Pan, Lili Xu, Yan Sun and Tong Li
Nanomaterials 2026, 16(2), 120; https://doi.org/10.3390/nano16020120 - 16 Jan 2026
Abstract
A multifunctional diagnosis and treatment carrier, ZIF-8@CDs, based on carbon quantum dots (CDs) and the zeolitic imidazolate framework-8 (ZIF-8) metal–organic framework which serves as a core structure for constructing the responsive delivery platform, is developed in this paper. The anticancer drug doxorubicin (DOX) [...] Read more.
A multifunctional diagnosis and treatment carrier, ZIF-8@CDs, based on carbon quantum dots (CDs) and the zeolitic imidazolate framework-8 (ZIF-8) metal–organic framework which serves as a core structure for constructing the responsive delivery platform, is developed in this paper. The anticancer drug doxorubicin (DOX) and Survivin oligo (siRNA) are loaded to form a ZIF-8@CDs/DOX@siRNA dual loading platform. CDs of 5–10 nm are synthesized by the solvent method and combined with ZIF-8. Electron microscopy shows that the composites are nearly spherical particles of approximately 200 nm, and the surface potential decreases from +36 mV before loading CDs to +25.7 mV after loading. The composite system shows unique advantages: (1) It has Fenton-like catalytic activity, catalyzes H2O2 to generate hydroxyl radicals, and consumes glutathione in the tumor microenvironment. The level of reactive oxygen species (ROS) in the ZIF-8@CDs group is significantly higher than that in the control group. (2) To achieve visual diagnosis and treatment, its fluorescence intensity is superior to that of the traditional Fluorescein isothiocyanate (FITC)-labeled vector; (3) It has a high loading capacity, with the loading amount of small nucleic acids reaching 36.25 μg/mg, and the uptake rate of siRNA by liver cancer cells is relatively ideal. The ZIF-8@CDs/DOX@siRNA dual-loading system is further constructed. Flow cytometry shows that the apoptosis rate of HepG2 cells induced by the ZIF-8@CDs/DOX@siRNA dual-loading system is 49%, which is significantly higher than that of the single-loading system (ZIF-8@CDs/DOX: 34.3%, ZIF-8@CDs@siRNA: 24.2%) and the blank vector (ZIF-8@CDs: 12.6%). The platform provides a new strategy for the integration of tumor diagnosis and treatment through the multi-mechanism synergy of chemical kinetic therapy, gene silencing and chemotherapy. Full article
(This article belongs to the Topic Advanced Nanocarriers for Targeted Drug and Gene Delivery)
Show Figures

Graphical abstract

11 pages, 1910 KB  
Article
In Situ Growth of Metal–Organic Frameworks (MOFs) Within Porous Silicon Carbide (p-SiC) for Constructing Hierarchical Porous Composites
by Long Zhou, Guangzhi Liao, Tingting Lin, Wensong Huang, Jiawei Zhang, Ruiqi Fan, Yanghui Li, Xiaolin Zhang, Ziyun Cheng and Lizhi Xiao
Nanomaterials 2026, 16(2), 117; https://doi.org/10.3390/nano16020117 - 15 Jan 2026
Viewed by 76
Abstract
Metal–organic frameworks (MOFs) typically exist in the form of powders or dispersed crystals, which limits their direct application in practical engineering scenarios that require monolithic structures and processability. To address this issue, the present study successfully anchored MOF (zeolitic imidazolate framework-8, ZIF-8) nanocrystals [...] Read more.
Metal–organic frameworks (MOFs) typically exist in the form of powders or dispersed crystals, which limits their direct application in practical engineering scenarios that require monolithic structures and processability. To address this issue, the present study successfully anchored MOF (zeolitic imidazolate framework-8, ZIF-8) nanocrystals within a porous silicon carbide (p-SiC) substrate via a facile in situ growth strategy, achieving both stable macroscopic loading and intimate microscopic interfacial bonding. The resulting ZIF-8/p-SiC composite exhibits a hierarchical porous structure, with a specific surface area approximately 183 times higher than that of the raw p-SiC, alongside a substantially enhanced CO2 adsorption capacity. By utilizing a low-cost p-SiC support and mild ZIF-8 synthesis conditions, this work demonstrates excellent reproducibility and scalability, providing a facile and effective pathway for fabricating MOF/porous media composite systems that possess both superior mechanical properties and tailored pore structures. Additionally, the developed MOF/p-SiC composites can serve as controllable rock-analog porous media, offering new perspectives for investigating MOF-rock interfacial interactions and CO2 geological sequestration mechanisms, thereby establishing an organic link between fundamental materials science and geological engineering applications. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

18 pages, 2590 KB  
Article
Co-Embedded N-Doped Carbon Composites Derived from CoZn-ZIFs for Peroxymonosulfate Activation Toward Efficient Tetracycline Degradation
by Hao Liu, Haoyue Shi, Qianyu Ma, Liwen Yin, Yuxin Li, Wei Wang, Huijun Yu and Zuoli He
Coatings 2026, 16(1), 89; https://doi.org/10.3390/coatings16010089 - 11 Jan 2026
Viewed by 120
Abstract
Zeolite imidazolate frameworks (ZIFs)-derived carbon materials have garnered widespread attention as peroxymonosulfate (PMS) activators in removing antibiotics because of their excellent catalytic performance. However, most carbon materials derived from ZIFs exhibit limited efficacy in treating high-concentration (>10 ppm) antibiotic wastewater, and their synthesis [...] Read more.
Zeolite imidazolate frameworks (ZIFs)-derived carbon materials have garnered widespread attention as peroxymonosulfate (PMS) activators in removing antibiotics because of their excellent catalytic performance. However, most carbon materials derived from ZIFs exhibit limited efficacy in treating high-concentration (>10 ppm) antibiotic wastewater, and their synthesis methods are environmentally unfriendly. Herein, we develop a simple and environmentally friendly preparation method to synthesize a new type of nitrogen-doped carbon-supported carbon nanotubes coated with cobalt nanoparticle (Co-CNTs@NC) composites via high-temperature calcination of cobalt–zinc bimetallic ZIFs. The material characterization results confirm the successful preparation of Co-CNTs@NC composites featuring a high specific surface area (512.13 m2/g) and a Co content of 5.38 wt%. Across an initial pH range of 3.24–9.00, the Co-CNTs@NC/PMS catalytic system achieved over 84.17% degradation of 20 mg/L tetracycline hydrochloride within 90 min, demonstrating its favorable pH tolerance. The singlet oxygen-dominated degradation mechanism was confirmed by quenching experiments and electron paramagnetic resonance characterization. This work can provide technical guidance and reference significance for the preparation of metal–carbon materials derived from ZIFs with excellent efficiency of removal of high-concentration antibiotics. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

14 pages, 1524 KB  
Article
One-Step Encapsulation of Sulfonated Palladium Phthalocyanine in ZIF-8 for Photocatalytic Degradation of Organic Pollutants
by Rong Xing, Xinyu Zhang, Zhiqian Li, Yingna Chang, Rongguan Lv, Yuzhen Sun, Zhiyuan Zhao, Kefan Song, Jindi Wang, Huayu Wu, Fangfang Ren, Yu Liu, Jing Tang and Peng Wu
Catalysts 2026, 16(1), 80; https://doi.org/10.3390/catal16010080 - 9 Jan 2026
Viewed by 250
Abstract
Photocatalysis driven by the visible light of solar energy has received considerable attention in the field of environmental remediation and clean energy production. In this work, monomeric sulfonated palladium phthalocyanine (PdPcS) was encapsulated in zeolitic imidazolate frameworks-8 (ZIF-8) crystals (denoted PdPcS@ZIF-8) through electrostatic [...] Read more.
Photocatalysis driven by the visible light of solar energy has received considerable attention in the field of environmental remediation and clean energy production. In this work, monomeric sulfonated palladium phthalocyanine (PdPcS) was encapsulated in zeolitic imidazolate frameworks-8 (ZIF-8) crystals (denoted PdPcS@ZIF-8) through electrostatic interaction in the ammonia system, while their photocatalytic activity was well-maintained together with the structural regularity of ZIF-8 crystals. For comparison, a PdPcS/ZIF-8 sample was obtained from the traditional impregnation method. The 13C NMR and UV-DRS spectra confirmed the difference between PdPcS@ZIF-8 and PdPcS/ZIF-8 in terms of the chemical environment effect for PdPcS. Under visible light, the optimal PdPcS@ZIF-8 catalyst achieved complete degradation of 0.1 mM bisphenol A in 120 min. It also exhibited excellent stability, retaining 81.5% activity after four cycles, far outperforming the impregnated sample (32.5%) due to effective encapsulation preventing PdPcS leaching. This versatile one-step synthetic strategy is expected to be useful for designing novel macromolecules@MOF composite materials. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Figure 1

26 pages, 4071 KB  
Article
Enhanced Hydrogen Production via Photocatalysis Using g-C3N4/ZIF-67 Hybrid Composites
by Jesús Sebastián Rodríguez-Girón, Bryan Emmanuel Alvarez-Serna, Diana Berenice Hernández-Uresti, Daniel Sánchez-Martínez, Ruby Sheila Gines-Palestino, Luis Antonio Velázquez-Herrera, Alfredo Alberto Morales-Tapia, Rodolfo Peña-Rodríguez, Delfino Hernández-Lascares and Adán Cabal-Prieto
Processes 2026, 14(2), 219; https://doi.org/10.3390/pr14020219 - 8 Jan 2026
Viewed by 326
Abstract
This research reports the development of photocatalytic active composites for hydrogen evolution obtained through high-energy mechanical milling of a mixture of the organic semiconductor g-C3N4 (CN) and the metal–organic framework ZIF-67. These composites, called CNZ-x (X = mass proportion of [...] Read more.
This research reports the development of photocatalytic active composites for hydrogen evolution obtained through high-energy mechanical milling of a mixture of the organic semiconductor g-C3N4 (CN) and the metal–organic framework ZIF-67. These composites, called CNZ-x (X = mass proportion of ZIF-67), were characterized using powder XRD, which showed that the crystalline phases of both the g-C3N4 and ZIF-67 precursors are present in the composites. SEM was used to determine the morphology, revealing that the ZIF-67 octahedral particles adhere to the surface of the CN sheets due to the intimate interfacial contact induced by high-energy mechanical grinding. The results of the photocatalytic evolution of H2 indicate that the CNZ-50 composite produced 261 μmol g−1 of H2, which is higher than the 229.5 and 124 μmol g−1 produced by the precursors ZIF-67 and CN, respectively. The higher efficiency in H2 evolution is due to the composite having better electron-hole separation than the precursor materials. Full article
Show Figures

Figure 1

17 pages, 1279 KB  
Review
Polysulfone Membranes: Here, There and Everywhere
by Pere Verdugo, Iwona Gulaczyk, Magdalena Olkiewicz, Josep M. Montornes, Marta Woźniak-Budych, Filip F. Pniewski, Iga Hołyńska-Iwan and Bartosz Tylkowski
Membranes 2026, 16(1), 35; https://doi.org/10.3390/membranes16010035 - 5 Jan 2026
Viewed by 374
Abstract
Polysulfone (PSU) membranes are widely recognized for their thermal stability, mechanical strength, and chemical resistance, making them suitable for diverse separation applications. This review highlights recent advances in PSU membrane development, focusing on fabrication techniques, structural modifications, and emerging applications. Phase inversion remains [...] Read more.
Polysulfone (PSU) membranes are widely recognized for their thermal stability, mechanical strength, and chemical resistance, making them suitable for diverse separation applications. This review highlights recent advances in PSU membrane development, focusing on fabrication techniques, structural modifications, and emerging applications. Phase inversion remains the predominant method for membrane synthesis, allowing precise control over morphology and performance. Functional enhancements through blending, chemical grafting, and incorporation of nanomaterials—such as metal–organic frameworks (MOFs), carbon nanotubes, and zwitterionic polymers—have significantly improved gas separation, and water purification., In gas separation, PSU-based mixed matrix membranes demonstrate enhanced CO2/CH4 selectivity, particularly when integrated with MOFs like ZIF-7 and ZIF-8. In water treatment, PSU membranes effectively remove algal toxins and heavy metals, with surface modifications improving hydrophilicity and antifouling properties. Despite these advancements, challenges remain in optimizing cross-linking strategies and understanding structure–property relationships. This review provides a comprehensive overview of PSU membrane technologies and outlines future directions for their development in sustainable and high-performance separation systems. Full article
Show Figures

Figure 1

21 pages, 4770 KB  
Article
Novel Phosphorylethanolamine-Modified ZIF-67 for Crystal Violet Dye Removal
by Mohamad A. S. Ebrahim, Sagheer A. Onaizi and Muhammad S. Vohra
ChemEngineering 2026, 10(1), 6; https://doi.org/10.3390/chemengineering10010006 - 5 Jan 2026
Viewed by 180
Abstract
The elimination of toxic and long-lasting dyes like crystal violet (CV) from wastewater continues to be a major environmental challenge. Considering this, in this study, a novel amine-modified adsorbent was synthesized by functionalizing ZIF-67 with phosphorylethanolamine (PEA@ZIF-67) nanocomposite to enhance dye removal efficiency. [...] Read more.
The elimination of toxic and long-lasting dyes like crystal violet (CV) from wastewater continues to be a major environmental challenge. Considering this, in this study, a novel amine-modified adsorbent was synthesized by functionalizing ZIF-67 with phosphorylethanolamine (PEA@ZIF-67) nanocomposite to enhance dye removal efficiency. Comprehensive characterization of PEA@ZIF-67 nanocomposite using FTIR, XRD, TGA, and BET techniques confirmed the successful incorporation of PEA into ZIF-67 without compromising the structural integrity of the ZIF-67. The BET specific surface area of PEA@ZIF-67 nanocomposite was noted to be 145.3 m2/g. Furthermore, the application of PEA@ZIF-67 nanocomposite for CV adsorption was investigated and optimized using the Response Surface Methodology (RSM) technique, with the adsorbent dosage, initial dye concentration, and temperature as the operational variables. Under optimized conditions, qmax was 4348 mg/g. Adsorption kinetic studies showed the Avrami model to best fit the respective CV adsorption results, suggesting a heterogeneous and time-dependent mechanism. On the other hand, the Redlich–Peterson adsorption isotherm, which signifies a hybrid adsorption behavior, was noted to be effective. The thermodynamic studies confirmed that the CV adsorption onto PEA@ZIF-67 is spontaneous, endothermic, and entropy-driven. The post-adsorption FTIR and XRD analyses indicated that the used PEA@ZIF-67 was stable, thus supporting its reuse capability. Full article
Show Figures

Graphical abstract

14 pages, 4219 KB  
Article
In Situ Metal Sulfide-Modified N/S-Doped Carbon for High-Performance Oxygen Reduction
by Mingyuan Zhang, Jinru Wang, Caihan Zhu, Yuning Zhang, Dewei Li and Shuozhen Hu
Int. J. Mol. Sci. 2026, 27(1), 434; https://doi.org/10.3390/ijms27010434 - 31 Dec 2025
Cited by 1 | Viewed by 227
Abstract
Developing efficient and durable oxygen reduction reaction (ORR) catalysts is crucial for advancing fuel cell technology and sustainable energy conversion. In this study, a scalable strategy was employed to synthesize ZIF-derived nitrogen-sulfur co-doped carbon nanosheets embedded with in situ generated ZnS and Co [...] Read more.
Developing efficient and durable oxygen reduction reaction (ORR) catalysts is crucial for advancing fuel cell technology and sustainable energy conversion. In this study, a scalable strategy was employed to synthesize ZIF-derived nitrogen-sulfur co-doped carbon nanosheets embedded with in situ generated ZnS and Co9S8 nanoparticles. The synergistic effect of heteroatom doping and metal sulfide modification effectively modulated the electronic structure, optimized charge transfer pathways, and enhanced structural stability. The optimized catalyst exhibited a half-wave potential of 0.83 V vs. RHE, close to that of commercial 20 wt% Pt/C (0.85 V), excellent 4e ORR selectivity, and exceptional stability, with only a ~15 mV degradation after 10,000 cycles. These results demonstrate that the combination of nitrogen sulfur co-doping and in situ metal sulfide addition pro-vides an effective approach for designing highly active and durable non-precious metal catalysts for the ORR. This synthetic concept provides practical guidance for the scalable preparation of multifunctional nanomaterial-based catalysts for electrochemical energy applications. Full article
(This article belongs to the Special Issue Molecular Insight into Catalysis of Nanomaterials)
Show Figures

Figure 1

14 pages, 1184 KB  
Article
Highly Efficient Electrochemical Degradation of Dyes via Oxygen Reduction Reaction Intermediates on N-Doped Carbon-Based Composites Derived from ZIF-67
by Maja Ranković, Nemanja Gavrilov, Anka Jevremović, Aleksandra Janošević Ležaić, Aleksandra Rakić, Danica Bajuk-Bogdanović, Maja Milojević-Rakić and Gordana Ćirić-Marjanović
Processes 2026, 14(1), 130; https://doi.org/10.3390/pr14010130 - 30 Dec 2025
Viewed by 251
Abstract
A cobalt-containing zeolitic imidazolate framework (ZIF-67) was carbonized by different routes to composite materials (cZIFs) composed of metallic Co, Co3O4, and N-doped carbonaceous phase. The effect of the carbonization procedure on the water pollutant removal properties of cZIFs was [...] Read more.
A cobalt-containing zeolitic imidazolate framework (ZIF-67) was carbonized by different routes to composite materials (cZIFs) composed of metallic Co, Co3O4, and N-doped carbonaceous phase. The effect of the carbonization procedure on the water pollutant removal properties of cZIFs was studied. Higher temperature and prolonged thermal treatment resulted in more uniform particle size distribution (as determined by nanoparticle tracking analysis, NTA) and surface charge lowering (as determined by zeta potential measurements). Surface-governed environmental applications of prepared cZIFs were tested using physical (adsorption) and electrochemical methods for dye degradation. Targeted dyes were methylene blue (MB) and methyl orange (MO), chosen as model compounds to establish the specificity of selected remediation procedures. Electrodegradation was initiated via an intermediate reactive oxygen species formed during oxygen reduction reaction (ORR) on cZIFs serving as electrocatalysts. The adsorption test showed relatively uniform adsorption sites at the surface of cZIFs, reaching a removal of over 70 mg/g for both dyes while governed by pseudo-first-order kinetics favored by higher mesoporosity. In the electro-assisted degradation process, cZIF samples demonstrated impressive efficiency, achieving almost complete degradation of MB and MO within 4.5 h. Detailed analysis of energy consumption in the degradation process enabled the calculation of the current conversion efficiency index and the amount of charge associated with O2•−/OH generation, normalized by the quantity of removed dye, for tested materials. Here, the proposed method will assist similar research studies on the removal of organic water pollutants to discriminate among electrode materials and procedures based on energy efficiency. Full article
Show Figures

Figure 1

15 pages, 3521 KB  
Article
Magnetic Biochar from Almond Shell@ZIF-8 Composite for the Adsorption of Fluoroquinolones from Water
by Diego Barzallo, Carlos Medina, Zayda Herrera and Paul Palmay
Water 2026, 18(1), 82; https://doi.org/10.3390/w18010082 - 29 Dec 2025
Viewed by 273
Abstract
This study aimed to synthesize a magnetic biochar@ZIF-8 composite derived from almond shell biomass for the adsorption of fluoroquinolones (FQs) from aqueous media. The biochar was prepared under different pyrolysis conditions using a central composite design (CCD) based on temperature and residence time, [...] Read more.
This study aimed to synthesize a magnetic biochar@ZIF-8 composite derived from almond shell biomass for the adsorption of fluoroquinolones (FQs) from aqueous media. The biochar was prepared under different pyrolysis conditions using a central composite design (CCD) based on temperature and residence time, with biochar yield (%) and ofloxacin adsorption capacity selected as the response variables. Subsequently, the composite was obtained by combining KOH-activated biochar with ZIF-8 and magnetic particles, producing a hierarchically porous material with enhanced surface area and functional groups favorable for adsorption. The physicochemical and morphological properties of the composite were characterized by SEM–EDS, FTIR, BET, TGA, and XRD analyses, confirming the successful incorporation of ZIF-8 and magnetic phases onto the biochar surface. The adsorption performance was systematically evaluated by studying the effects of pH and contact time. The kinetic data fitted well to the pseudo-second-order model, suggesting that chemisorption predominates through π–π stacking, hydrogen bonding, and coordination interactions between FQ molecules and the active sites of the composite. Furthermore, the material exhibited high reusability, maintaining over 84% of its adsorption capacity after four cycles, with efficient magnetic recovery without the need for filtration or centrifugation. Overall, the magnetic biochar@ZIF-8 composite demonstrates a sustainable, cost-effective, and magnetically separable adsorbent for water remediation, transforming almond shell waste into a high-value material within the framework of circular economy principles. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

21 pages, 7661 KB  
Article
ZIF-8 Hydrogel-Mediated Regulation of Macrophage Phenotype Accelerates Frostbite Wound Healing
by Ge Lou, Yutong Li, Jinyu Zhao, Huihui Shao, Xianfu Wu, Heying Jin, Jianpeng Guo, Zhonggao Gao, Xing Jin, Mingji Jin and Shuangqing Wang
Biomedicines 2026, 14(1), 51; https://doi.org/10.3390/biomedicines14010051 - 25 Dec 2025
Viewed by 458
Abstract
Background: Frostbite injury creates an ischemic, hypoxic, and acidic microenvironment that often triggers severe oxidative stress and inflammation. Current therapeutic approaches are limited by low drug delivery efficiency and an inability to adequately regulate multiple pathological pathways. Although oxyresveratrol (OR) exhibits excellent [...] Read more.
Background: Frostbite injury creates an ischemic, hypoxic, and acidic microenvironment that often triggers severe oxidative stress and inflammation. Current therapeutic approaches are limited by low drug delivery efficiency and an inability to adequately regulate multiple pathological pathways. Although oxyresveratrol (OR) exhibits excellent antioxidant and anti-inflammatory activities, its application is hampered by poor aqueous solubility and low stability. Methods: We constructed Oxyresveratrol@Zeolitic Imidazolate Framework-8 nanoparticles (OR@ZIF-8) and further embedded them in a sodium hyaluronate (HA) matrix to form an OR@ZIF-8@HA composite hydrogel. The physicochemical properties and pH-responsive drug release behavior of the system were characterized. Its antioxidant activity, ability to promote cell migration, and capacity to modulate macrophage polarization were evaluated in cellular assays. The therapeutic efficacy was further investigated using a mouse frostbite model, with wound repair analyzed via histological staining. Results: The OR@ZIF-8 nanoparticles achieved a cumulative release rate of 75.46 ± 3.68% under acidic conditions within 36 h. In vitro experiments demonstrated that the formulation significantly scavenged TNF-α and IL-6, by 161.85 ± 19.43% and 125.37 ± 12.65%, respectively, and increased the level of IL-10 by 44.97 ± 4.57%. In a scratch assay, it promoted wound healing, achieving a closure rate of 97.55 ± 2.77% after 36 h. In vivo studies revealed that the OR@ZIF-8@HA treatment group achieved a wound healing rate of 96.14 ± 4.12% on day 14. Conclusions: The OR@ZIF-8@HA composite hydrogel effectively overcomes the limitations of OR application via intelligent pH-responsive delivery. Through synergistic multi-mechanistic actions, it significantly accelerates frostbite wound healing, offering a novel and efficient therapeutic strategy for frostbite management. Full article
(This article belongs to the Special Issue The Latest Advancements in Tumor Drug Delivery Systems)
Show Figures

Graphical abstract

16 pages, 3852 KB  
Article
ATP-Responsive ZIF-90 Nanocontainers Encapsulating Natural Antifoulants for Intelligent Marine Coatings
by Yanrong Chao, Xingyan Feng, Bingui Wang, Linghong Meng, Peng Qi, Yan Zeng and Peng Wang
Coatings 2026, 16(1), 7; https://doi.org/10.3390/coatings16010007 - 19 Dec 2025
Viewed by 315
Abstract
Marine biofouling presents a persistent challenge for maritime industries, necessitating the development of eco-friendly and intelligent antifouling strategies. In this work, an ATP-responsive nanocontainer was developed by encapsulating a natural organic compound (CS106-10), isolated from Talaromyces trachyspermus in cold seep sediments, together with [...] Read more.
Marine biofouling presents a persistent challenge for maritime industries, necessitating the development of eco-friendly and intelligent antifouling strategies. In this work, an ATP-responsive nanocontainer was developed by encapsulating a natural organic compound (CS106-10), isolated from Talaromyces trachyspermus in cold seep sediments, together with D-phenylalanine (D-Phe) into ZIF-90 nanoparticles (D-Phe/CS106-10@ZIF-90). These nanoparticles were incorporated into zinc acrylate resin to fabricate a novel self-polishing antifouling coating. CS106-10, as a natural antifoulant, provided efficient and environmentally sustainable bactericidal activity, while D-Phe acted as a synergistic adjuvant to inhibit and disrupt biofilm formation. More importantly, the ATP-responsive ZIF-90 framework enabled controlled, on-demand release of antifouling agents in response to local metabolic signals associated with biofilm growth. Laboratory and real-sea evaluations confirmed that the composite coating effectively suppressed biofilm formation and significantly reduced the required dosage of conventional toxic antifoulants. This study integrates a natural antifoulant with an ATP-responsive metal–organic framework, providing new insight for developing antifouling coatings. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

20 pages, 6970 KB  
Article
Electrochemical Immunosensor Based on CS@AuNPs/ZIF-8/rGO Composite for Detecting CA15-3 in Human Serum
by Yuanyue Lu, Yong Mei, Yingying Gu, Ye Tao, Yuhan Yang, Jiao Yu, Yang Zhang, Lin Liu and Xin Li
Sensors 2025, 25(24), 7462; https://doi.org/10.3390/s25247462 - 8 Dec 2025
Viewed by 490
Abstract
An electrochemical immunosensor was fabricated to identify CA15-3, a biomarker for breast cancer (BC). A composite sensor substrate made of “zeolitic imidazolate framework-8” (ZIF-8) and “reduced graphene oxide” (rGO) was chosen and its conductivity was further improved by the addition of chitosan (CS)-doped [...] Read more.
An electrochemical immunosensor was fabricated to identify CA15-3, a biomarker for breast cancer (BC). A composite sensor substrate made of “zeolitic imidazolate framework-8” (ZIF-8) and “reduced graphene oxide” (rGO) was chosen and its conductivity was further improved by the addition of chitosan (CS)-doped gold nanoparticles (AuNPs). The CS@AuNPs are able to conjugate with antibodies via the strong Au-S interaction, which offers multiple active sites for antibody immobilization and enhances the sensor performance. This immunosensor is capable of ultrasensitive detection of CA15-3 by specific antigen–antibody –interactions. In healthy people, normal serum CA15-3 is up to 25 U/mL. Under optimized experimental conditions, the alteration in the signal intensity measured by the sensor was related to the CA15-3 activity. The quantitative relationship was linear over 0.001–400 U/mL with a limit of detection (LOD) of 0.0031 U/mL at a “signal-to-noise ratio” (S/N) of 3 and a “correlation coefficient” (r2) of 0.9983. The developed immunosensor showed great accuracy, stability, and selectivity, and was able to detect CA15-3 in human serum samples. These results validate its potential as a reliable analytical platform for BC diagnosis and early clinical screening. Full article
Show Figures

Figure 1

12 pages, 1750 KB  
Article
Laser-Fabricated GO/ZIF-67 Hybrid Nanocomposites for High-Performance 3D-Printed Supercapacitors
by Mahshid Mokhtarnejad, Erick L. Ribeiro, Karen Y. Patino Jaimes, Mariana Milano-Benitez and Bamin Khomami
Nanoenergy Adv. 2025, 5(4), 20; https://doi.org/10.3390/nanoenergyadv5040020 - 4 Dec 2025
Viewed by 404
Abstract
This study introduces a modified Laser Ablation Synthesis in Solution (LASiS), a surfactant-free and rapid synthesis approach that enables uniform MOF nucleation on graphene oxide (GO) and precise control over crystallinity, for fabricating graphene oxide (GO)-integrated cobalt-based ZIF-67 hybrid nanocomposites tailored for supercapacitor [...] Read more.
This study introduces a modified Laser Ablation Synthesis in Solution (LASiS), a surfactant-free and rapid synthesis approach that enables uniform MOF nucleation on graphene oxide (GO) and precise control over crystallinity, for fabricating graphene oxide (GO)-integrated cobalt-based ZIF-67 hybrid nanocomposites tailored for supercapacitor applications. By tuning LASiS parameters, we precisely controlled framework size, morphology, and crystallinity, enabling sustainable and scalable production. The incorporation of GO during synthesis markedly enhances the uniform dispersion of ZIF-67 frameworks, minimizing aggregation and establishing interconnected conductive pathways via strong π-π stacking interactions. Following thermal reduction at 250 °C, the Co/ZIF-67–rGO composites exhibit outstanding electrochemical performance, achieving a specific capacitance of 1152 Fg−1 at 1 Ag−1 in a three-electrode configuration, driven by the synergistic combination of pseudocapacitive cobalt centers and double-layer capacitance from rGO. Structural analyses confirm the preservation of ZIF crystallinity and robust interfacial integration with the graphene sheets. Embedding these nanocomposites into fully 3D-printed supercapacitors yields a specific capacitance of 875 Fg−1, demonstrating their suitability for additive manufacturing despite minor increases in interfacial resistance. The 3D-printed supercapacitor devices delivered an energy density of 77.7 Wh/kg at a power density of 399.6 W/kg. Collectively, these results highlight the potential of LASiS-engineered MOF-based nanocomposites as scalable, high-performance materials for next-generation energy storage devices. Full article
(This article belongs to the Special Issue Hybrid Energy Storage Systems Based on Nanostructured Materials)
Show Figures

Graphical abstract

Back to TopTop