In Situ Metal Sulfide-Modified N/S-Doped Carbon for High-Performance Oxygen Reduction
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Synthesis of CuZn-NC and CuCo-NC Catalyst
3.3. Synthesis of ZnS/Cu-SNC and Co9S8/Cu-SNC
3.4. Structural Characterization
3.5. Electrochemical Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| PEMFC | Proton Exchange Membrane Fuel Cells |
| jR | The current density of the ring electrode in the Rotating Ring-Disk Electrode |
| jD | The current density of the disk electrode in the Rotating Ring-Disk Electrode |
| jk | Dynamic current density |
| jL | Limit diffusion current density |
| ORR | Oxygen reduction reaction |
| RHE | Reversible Hydrogen Electrode |
| ID/IG | D peak and G peak intensity ratio |
| TA | Transverse acoustic |
| 1LO | First-order longitudinal optical |
| 2LO | Second-order longitudinal optical |
References
- Ayiania, M.; Smith, M.; Hensley, A.J.R.; Scudiero, L.; McEwen, J.-S.; Garcia-Perez, M. Deconvoluting the XPS spectra for nitrogen-doped chars: An analysis from first principles. Carbon 2020, 162, 528–544. [Google Scholar] [CrossRef]
- Cha, M.S.; Lee, J.Y.; Kim, T.-H.; Jeong, H.Y.; Shin, H.Y.; Oh, S.-G.; Hong, Y.T. Preparation and characterization of crosslinked anion exchange membrane (AEM) materials with poly(phenylene ether)-based short hydrophilic block for use in electrochemical applications. J. Membr. Sci. 2017, 530, 73–83. [Google Scholar] [CrossRef]
- Chen, C.J.; Wu, Y.L.; Li, X.L.; Ye, Y.T.; Li, Z.L.; Zhou, Y.F.; Chen, J.; Yang, M.Z.; Xie, F.Y.; Jin, Y.S.; et al. Modulating Fe spin state in FeNC catalysts by adjacent Fe atomic clusters to facilitate oxygen reduction reaction in proton exchange membrane fuel cell. Appl. Catal. B Environ. Energy 2024, 342, 123407. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, Z.; Liang, W.; Qin, X.; Zhang, Z.; Jiang, L. Synthesis of Co4S3/Co9S8 nanosheets and comparison study toward the OER properties induced by different metal ion doping. Chin. Chem. Lett. 2022, 33, 1395–1402. [Google Scholar] [CrossRef]
- Han, W.; Li, C.; Jiang, Y.; Ma, Z.; Zhang, Y.; Yan, X.; Zheng, X. Atomically-dispersed Fe-Nx and C–S–C ordered mesoporous carbons as efficient catalysts for the oxygen reduction reaction in a microbial fuel cell. J. Alloys Compd. 2021, 852, 156994. [Google Scholar] [CrossRef]
- Yang, G.; Zhu, J.; Yuan, P.; Hu, Y.; Qu, G.; Lu, B.A.; Xue, X.; Yin, H.; Cheng, W.; Cheng, J.; et al. Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity. Nat. Commun. 2021, 12, 1734. [Google Scholar] [CrossRef]
- Huang, L.; Zaman, S.; Tian, X.; Wang, Z.; Fang, W.; Xia, B.Y. Advanced Platinum-Based Oxygen Reduction Electrocatalysts for Fuel Cells. Acc. Chem. Res. 2021, 54, 311–322. [Google Scholar] [CrossRef]
- Jam, J.E.; Dizaji, H.R.; Molaei, M. Synthesis of ZnS and rGO/ZnS Nanocomposite, Application for Photodegradation of Methylene Blue and Heavy Metal Ions Detection in Water. J. Fluoresc. 2025. [Google Scholar] [CrossRef]
- Kim, H.C.; Huh, S. Porous Carbon-Based Supercapacitors Directly Derived from Metal-Organic Frameworks. Materials 2020, 13, 4215. [Google Scholar] [CrossRef]
- Yan, D.; Kong, L.A.-O.; Xu, B.; Yang, B. One-Step Synthesis Strategy for a Platinum-Based Alloy Catalyst Designed via Crystal-Structure Prediction. Molecules 2024, 29, 5634. [Google Scholar] [CrossRef]
- Liao, M.; Chin, T.K.; Luo, X.F.; Chuang, Y.C.; Perng, T. Formation Characteristics of Pt-Ni Alloy Nanoparticles Fabricated by Nanolamination of Atomic Layer Deposition in Hydrogen. Small 2024, 20, 2404943. [Google Scholar] [CrossRef]
- Liu, C.; Li, H.; Chen, J.; Yu, Z.; Ru, Q.; Li, S.; Henkelman, G.; Wei, L.; Chen, Y. 3d Transition-Metal-Mediated Columbite Nanocatalysts for Decentralized Electrosynthesis of Hydrogen Peroxide. Small 2021, 17, 2007249. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fu, F.; Salmon, L.; Espuche, B.; Moya, S.; Berlande, M.; Pozzo, J.L.; Hamon, J.-R.; Astruc, D. Facile MOF Support Improvement in Synergy with Light Acceleration for Efficient Nanoalloy-Catalyzed H2 Production from Formic Acid. ACS Appl. Mater. Interfaces 2023, 15, 23343–23352. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Hu, Z.; Wang, Y.; Wang, X.; Gu, D.; Wu, Z. Facile synthesis of mesoporous carbon materials with a three-dimensional ordered mesostructure and rich FeNX/C-S-C sites for efficient electrocatalytic oxygen reduction. Colloids Surf. A Physicochem. Eng. Asp. 2022, 654, 130103. [Google Scholar] [CrossRef]
- Mandal, M. Recent advancement on anion exchange membranes for fuel cell and water electrolysis. ChemElectroChem 2021, 8, 36–45. [Google Scholar] [CrossRef]
- Meng, L.; Wang, B.; Rong, Y.; Zhang, S.; Cai, T.; Ding, C.F.; Yan, Y. Metal/heteroatom-doped carbon-based hybrid material as the matrix for rapid and high-throughput identification of phthalate esters in complex samples by laser desorption/ionization. Mikrochim. Acta 2025, 192, 327. [Google Scholar] [CrossRef]
- Paul, S.; Kao, Y.-L.; Ni, L.; Ehnert, R.; Herrmann-Geppert, I.; van de Krol, R.; Stark, R.W.; Jaegermann, W.; Kramm, U.I.; Bogdanoff, P. Influence of the Metal Center in M-N-C Catalysts on the CO2 Reduction Reaction on Gas Diffusion Electrodes. ACS Catal. 2021, 11, 5850–5864. [Google Scholar] [CrossRef]
- Xiao, W.; Huang, J.; Yu, C.; Xiang, X.; Lin, M.; Wen, L.; Liang, W.; Shen, P.K.; Tian, Z.Q. Atomically dispersed rare earth dysprosium-nitrogen-carbon for boosting oxygen reduction reaction. J. Colloid Interface Sci. 2025, 684, 87–96. [Google Scholar] [CrossRef]
- Sarma, S.C.; Mishra, V.; Vemuri, V.; Peter, S.C. “Breaking the O=O Bond”: Deciphering the Role of Each Element in Highly Durable CoPd2Se2 toward Oxygen Reduction Reaction. ACS Appl. Energy Mater. 2022, 3, 231–239. [Google Scholar] [CrossRef]
- Sazali, N.; Salleh, W.N.W.; Jamaludin, A.S.; Mhd Razali, M.N. New Perspectives on Fuel Cell Technology: A Brief Review. Membranes 2020, 10, 99. [Google Scholar] [CrossRef]
- Wang, D.; Pan, X.; Yang, P.; Li, R.; Xu, H.; Li, Y.; Meng, F.; Zhang, J.; An, M. Transition Metal and Nitrogen Co-Doped Carbon-based Electrocatalysts for the Oxygen Reduction Reaction: From Active Site Insights to the Rational Design of Precursors and Structures. ChemSusChem 2021, 14, 33–55. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Badreldin, A.; Li, Y. Metal-nitrogen-carbon catalysts for electrochemical CO2 reduction: From design to industrial applications. Chem. Commun. 2025, 61, 10484–10504. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, T.; Komarneni, S.; Lu, X.; Liu, B. Recent advances in Co-based co-catalysts for efficient photocatalytic hydrogen generation. J. Colloid Interface Sci. 2022, 608, 1553–1575. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Wang, Q.; Xu, G.L.; Qin, X.; Hwang, I.; Sun, C.J.; Liu, M.; Hua, W.; Wu, H.W.; Zhu, S.; et al. Atomically dispersed Pt and Fe sites and Pt–Fe nanoparticles for durable proton exchange membrane fuel cells. Nat. Catal. 2022, 5, 503–512. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, F.; Zhang, Y.; Luo, X.; Chen, L.; Shi, Y. N,S-Doped hollow carbon nanosheet-encapsulated Co9S8 nanoparticles as a highly efficient bifunctional electrocatalyst for rechargeable zinc–air batteries. Dalton Trans. 2022, 51, 12630–12640. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Cui, M.; Chen, S.; Gao, L.; Liu, A.; Ma, T. Facile synthesis of ZnS decorated N, S co-doped carbon polyhedron as high efficiency oxygen reduction reaction catalyst for Zn-air battery. Appl. Surf. Sci. 2020, 509, 145367. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, W.; Devasenathipathy, R.; Yang, Z.; Zhang, X.; Wang, X.; Chen, D.-H.; Fan, Y.; Chen, W. Co nanoparticles and ZnS decorated N, S co-doped carbon nanotubes as an efficient oxygen reduction catalyst in zinc-air batteries. Int. J. Hydrogen Energy 2021, 46, 30090–30100. [Google Scholar] [CrossRef]
- Yang, Q.; Li, L.; Lin, C.X.; Gao, X.L.; Zhao, C.H.; Zhang, Q.G.; Zhu, A.M.; Liu, Q.L. Hyperbranched poly(arylene ether ketone) anion exchange membranes for fuel cells. J. Membr. Sci. 2018, 560, 77–86. [Google Scholar] [CrossRef]
- Yang, Z.G.; Xu, H.M.; Shuai, T.Y.; Zhan, Q.N.; Zhang, Z.J.; Huang, K.; Dai, C.; Li, G. Recent progress in the synthesis of transition metal nitride catalysts and their applications in electrocatalysis. Nanoscale 2023, 15, 11777–11800. [Google Scholar] [CrossRef]
- Yuan, S.; Weng, M.; Liu, D.; He, X.; Cui, L.; Asefa, T. Hollow Spherical (Co, Zn)/N, S-Doped Carbons: Efficient Catalysts for Oxygen Reduction in Both Alkaline and Acidic Media. ACS Sustain. Chem. Eng. 2019, 7, 18912–18925. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, W.; Pei, Y.; Liu, Y.; Qin, Y.; Zhang, X.; Wang, Q.; Yin, Y.; Guiver, M. Hierarchically Porous Co-N-C Cathode Catalyst Layers for Anion Exchange Membrane Fuel Cells. ChemSusChem 2019, 12, 4165–4169. [Google Scholar] [CrossRef]
- Zhang, M.; Hu, S.; Zhang, X. In situ synthesis of N/S co-doped Cu-based graphene-like nanosheets as high efficiency electrocatalysts for oxygen reduction reaction. Int. J. Hydrogen Energy 2023, 48, 18268–18279. [Google Scholar] [CrossRef]
- Zhang, W.; Yao, X.; Zhou, S.; Li, X.; Li, L.; Yu, Z.; Gu, L. ZIF-8/ZIF-67-Derived Co-N(x)-Embedded 1D Porous Carbon Nanofibers with Graphitic Carbon-Encased Co Nanoparticles as an Efficient Bifunctional Electrocatalyst. Small 2018, 14, 1800423. [Google Scholar] [CrossRef]
- Zhang, X.; Jia, L.; Liu, Y.; Wang, Z.; Qin, J.; Wang, Q.; Zhao, X.; Zhong, M.; Lang, J.; Xu, G.; et al. Power Production and Degradation of Pesticide Wastewater Through Microbial Fuel Cells with the Modified Activated Carbon Air Cathode by Hollow-Carbon and Carbon-Encapsulated Structures. Molecules 2024, 29, 5675. [Google Scholar] [CrossRef]
- Lv, Q.; Si, W.; He, J.; Sun, L.; Zhang, C.; Wang, N.; Yang, Z.; Li, X.; Wang, X.; Deng, W.; et al. Selectively nitrogen-doped carbon materials as superior metal-free catalysts for oxygen reduction. Nat. Commun. 2018, 9, 3376. [Google Scholar] [CrossRef]
- Zhang, W.; van Dijk, B.; Wu, L.; Maheu, C.; Tudor, V.; Hofmann, J.P.; Jiang, L.; Hetterscheid, D.; Schneider, G.F. Role of vacancy defects and nitrogen dopants for the reduction of oxygen on graphene. ACS Catal. 2024, 14, 11065–11075. [Google Scholar] [CrossRef]









| Sample | Pyridinic-N | M−N | Pyrrolic-N | Graphitic-N | Oxidized-N |
|---|---|---|---|---|---|
| CuZn-NC | 37.08% | 15.18% | 15.96% | 21.93% | 9.84% |
| ZnS/Cu-SNC | 27.25% | 12.74% | 17.02% | 24.09% | 18.9% |
| CuCo-NC | 21.07% | 15.74% | 28.90% | 29.22% | 5.34% |
| Co9S8/Cu-SNC | 17.39% | 12.34% | 21.73% | 30.91% | 17.63% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, M.; Wang, J.; Zhu, C.; Zhang, Y.; Li, D.; Hu, S. In Situ Metal Sulfide-Modified N/S-Doped Carbon for High-Performance Oxygen Reduction. Int. J. Mol. Sci. 2026, 27, 434. https://doi.org/10.3390/ijms27010434
Zhang M, Wang J, Zhu C, Zhang Y, Li D, Hu S. In Situ Metal Sulfide-Modified N/S-Doped Carbon for High-Performance Oxygen Reduction. International Journal of Molecular Sciences. 2026; 27(1):434. https://doi.org/10.3390/ijms27010434
Chicago/Turabian StyleZhang, Mingyuan, Jinru Wang, Caihan Zhu, Yuning Zhang, Dewei Li, and Shuozhen Hu. 2026. "In Situ Metal Sulfide-Modified N/S-Doped Carbon for High-Performance Oxygen Reduction" International Journal of Molecular Sciences 27, no. 1: 434. https://doi.org/10.3390/ijms27010434
APA StyleZhang, M., Wang, J., Zhu, C., Zhang, Y., Li, D., & Hu, S. (2026). In Situ Metal Sulfide-Modified N/S-Doped Carbon for High-Performance Oxygen Reduction. International Journal of Molecular Sciences, 27(1), 434. https://doi.org/10.3390/ijms27010434

