Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = Ti/Sb-SnO2/PbO2 electrode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1808 KB  
Article
Holmium Metal Nanoparticle PbO2 Anode Formed by Electrodeposition for Efficient Removal of Insecticide Acetamiprid and Improved Oxygen Evolution Reaction
by Milica Kaludjerović, Sladjana Savić, Danica Bajuk-Bogdanović, Aleksandar Jovanović, Lazar Rakočević, Goran Roglić, Jadranka Milikić and Dalibor Stanković
Micromachines 2025, 16(8), 960; https://doi.org/10.3390/mi16080960 - 20 Aug 2025
Cited by 1 | Viewed by 1154
Abstract
This work examines the possibility of using a PbO2-based electrode doped with the rare-earth metal holmium in the field of oxygen evolution and the development of an efficient method for the degradation of acetamiprid. Acetamiprid is a widely used insecticide and, [...] Read more.
This work examines the possibility of using a PbO2-based electrode doped with the rare-earth metal holmium in the field of oxygen evolution and the development of an efficient method for the degradation of acetamiprid. Acetamiprid is a widely used insecticide and, as such, it very often reaches waterways, where it can cause many problems for wildlife and the environment. X-ray powder diffraction analysis, Raman spectroscopy, and energy-dispersive X-ray spectroscopy results confirmed the structure of Ti/SnO2-Sb2O3/Ho-PbO2, while the morphology of its surface was investigated by scanning electron microscopy with energy-dispersive X-ray spectroscopy. Ti/SnO2-Sb2O3/Ho-PbO2 showed good OER activity in alkaline media with a Tafel slope of 138 mV dec−1. The Ti/SnO2-Sb2O3/Ho-PbO2 electrode shows very good efficiency in removing acetamiprid. By optimizing the degradation procedure, the following operating conditions were obtained: a current density of 20 mA cm−2, a pH value of the supporting electrolyte (sodium sulfate) of 2, and a concentration of the supporting electrolyte of 0.035 M. After optimization, the maximum efficiency of removing acetamiprid (10 mg L−1, 4.5 × 10−5 mol) from water was achieved, 96.8%, after only 90 min of treatment, which represents an efficiency of 1.125 mol cm−2 of the electrode. Additionally, it was shown that the degradation efficiency is strictly related to the concentration of the treated substance. Full article
Show Figures

Figure 1

21 pages, 5046 KB  
Article
Samarium-Doped PbO2 Electrocatalysts for Environmental and Energy Applications: Theoretical Insight into the Mechanisms of Action Underlying Their Carbendazim Degradation and OER Properties
by Milica Kaluđerović, Slađana Savić, Danica Bajuk-Bogdanović, Aleksandar Z. Jovanović, Lazar Rakočević, Filip Vlahović, Jadranka Milikić and Dalibor Stanković
Processes 2025, 13(5), 1459; https://doi.org/10.3390/pr13051459 - 10 May 2025
Cited by 3 | Viewed by 1673
Abstract
This study presents the fabrication of a samarium-doped Ti/Sb-SnO2/PbO2 electrode and investigates its applications in polluted water treatment and energy conversion. Physicochemical properties were characterized by scanning electron microscopy with energy-dispersive X-ray spectroscopy, X-ray powder diffraction analysis, and Raman spectroscopy. [...] Read more.
This study presents the fabrication of a samarium-doped Ti/Sb-SnO2/PbO2 electrode and investigates its applications in polluted water treatment and energy conversion. Physicochemical properties were characterized by scanning electron microscopy with energy-dispersive X-ray spectroscopy, X-ray powder diffraction analysis, and Raman spectroscopy. The Ti/Sb-SnO2/Sm-PbO2 electrode showed 2.5 times higher oxygen evolution potential activity than the Ti/Sb-SnO2/PbO2 electrode. Density Functional Theory was used to conduct first-principles calculations, and the obtained results indicated that Sm doping enhances the production of reactive oxygen species. The application of the Ti/Sb-SnO2/Sm-PbO2 electrode in carbendazim (CBZ) removal was investigated, since CBZ is a fungicide whose presence in the environment, including food, water, and soil, poses a threat. After 60 min of the treatment under optimized working parameters, the degradation rate of CBZ reached 94.2% in the presence of 7.2 g/L Na2SO4 with an applied current density of 10 mA/cm2 in an acidic medium (pH 4). Of the four investigated parameters, the current density had the most significant influence on the degradation process. At the same time, the initial pH value of the solution was shown to have the least impact on degradation efficiency. These results imply a potential use of the proposed treatment for CBZ removal from wastewater. Full article
Show Figures

Figure 1

17 pages, 6216 KB  
Article
Efficient Electro-Catalytic Oxidation of Ultra-High-Concentration Organic Dye with Ce-Doped Titanium-Based Composite Electrode
by Chunyang Ni, Yan Zhao, Qiao Li, Zhihui Wang, Shumei Dou, Wei Wang and Feng Zhang
Coatings 2025, 15(3), 276; https://doi.org/10.3390/coatings15030276 - 26 Feb 2025
Cited by 1 | Viewed by 1337
Abstract
Removing high-concentration organic dye from wastewater is of great concern because the hazards can cause serious damage to the environment and human health. In this study, the hybrid dimensionally stable anode (DSA) with a Ce-doped and SnO2-Sb2O5 intermediate [...] Read more.
Removing high-concentration organic dye from wastewater is of great concern because the hazards can cause serious damage to the environment and human health. In this study, the hybrid dimensionally stable anode (DSA) with a Ce-doped and SnO2-Sb2O5 intermediate layer was fabricated and used for the electro-catalytic oxidation of three kinds of ultra-high-concentration organic dyes. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) confirmed the denser surface structure and morphology of the composite Ti/SnO2-Sb2O5/Ce-PbO2 electrode. Moreover, the electrode exhibited an excellent oxygen evolution potential of 1.58 V. The effect on the removal efficiencies of high concentrations of up to 1 g/L of methyl orange, methylene blue, and neutral red solutions with the above composite electrode was investigated. The research results illustrated that target molecules in the three different dye solutions were rapidly decolorized and decomposed by electro-catalytic oxidation in less than 35 min. Additionally, the degradation process still followed pseudo-first-order kinetics for high-concentration dye solutions. The removal efficiency of Total Organic Carbon (TOC) and Chemical Oxygen Demand (COD) for the three dye solutions was more than 98%, and the results of the gas chromatography–mass spectrometry (GC-MS) analysis showed that it had the best degradation effects for neutral red, which decomposed more thoroughly. More than 80 h of accelerated life also revealed excellent performance of the composite electrode in the face of high-concentration dye solution degradation. Considering these results, the Ti/SnO2-Sb2O5/Ce-PbO2 anode could be utilized to treat wastewater containing high-concentration dyes with high efficiency. Full article
Show Figures

Figure 1

18 pages, 9174 KB  
Article
Influence of Bi3+ Doping on Electrochemical Properties of Ti/Sb-SnO2/PbO2 Electrode for Zinc Electrowinning
by Jia Wu, Xuanqi Kang, Shuangwen Xu, Zhen Wei, Shangyuan Xu, Kang Liu, Qing Feng, Bo Jia and Yunhai Wang
Molecules 2024, 29(17), 4062; https://doi.org/10.3390/molecules29174062 - 27 Aug 2024
Cited by 2 | Viewed by 1679
Abstract
Bi3+ doped Ti/Sb-SnO2/PbO2 electrode materials were fabricated by electrodeposition to improve their electrochemical performance in zinc electrowinning. The surface morphology, chemical composition, and hydrophilicity of the as-prepared electrodes were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy [...] Read more.
Bi3+ doped Ti/Sb-SnO2/PbO2 electrode materials were fabricated by electrodeposition to improve their electrochemical performance in zinc electrowinning. The surface morphology, chemical composition, and hydrophilicity of the as-prepared electrodes were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and contact angle. An electrochemical measurement and an accelerated lifetime experiment were also conducted to investigate the electrocatalytic performance and stability of the electrodes. The results show that the Bi3+ modification electrode has an important effect on the coating morphology, the crystal structure, the surface hydrophilicity, the electrocatalytic activity, and the stability. The electrode prepared from the solution containing 2 mmol·L−1 Bi(NO3)3 (marked as the Ti/Sb-SnO2/2Bi-PbO2 electrode) exhibits the best hydrophilicity performance (θ = 21.6°) and the longest service life (1196 h). During the electrochemical characterization analysis, the Ti/Sb-SnO2/2Bi-PbO2 electrode showed the highest oxygen evolution activity, which can be attributed to it having the highest electroactive surface (qT* = 21.20 C·cm−2) and the best charge-transfer efficiency. The DFT calculation demonstrated that the doping of Bi3+ leads to a decrease in the OER reaction barrier and an increase in the DOS of the electrode, which further enhances the catalytic activity and the conductivity of the electrode. Moreover, the simulated zinc electrowinning experiment demonstrated that the Ti/Sb-SnO2/2Bi-PbO2 electrode consumes less energy than other electrodes. Therefore, it is expected that the Bi3+ modified electrode will become a very promising electrode material for zinc electrowinning in the future. Full article
(This article belongs to the Special Issue Electroanalysis of Biochemistry and Material Chemistry—2nd Edition)
Show Figures

Figure 1

13 pages, 4826 KB  
Article
Modification of Ti/Sb-SnO2/PbO2 Electrode by Active Granules and Its Application in Wastewater Containing Copper Ions
by Xuanqi Kang, Jia Wu, Zhen Wei, Bo Jia, Qing Feng, Shangyuan Xu and Yunhai Wang
Catalysts 2023, 13(3), 515; https://doi.org/10.3390/catal13030515 - 3 Mar 2023
Cited by 7 | Viewed by 2541
Abstract
Active granule (WC/Co3O4) doping Ti/Sb-SnO2/PbO2 electrodes were successfully synthesized by composite electrodeposition. The as-prepared electrodes were systematically characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electrochemical performance, [...] Read more.
Active granule (WC/Co3O4) doping Ti/Sb-SnO2/PbO2 electrodes were successfully synthesized by composite electrodeposition. The as-prepared electrodes were systematically characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electrochemical performance, zeta potential, and accelerated lifetime. It was found that the doping of active granules (WC/Co3O4) can reduce the average grain size and increase the number of active sites on the electrode surface. Moreover, it can improve the proportion of surface oxygen vacancies and non-stoichiometric PbO2, resulting in an outstanding conductivity, which can improve the electron transfer and catalytic activity of the electrode. Electrochemical measurements imply that Ti/Sb-SnO2/Co3O4-PbO2 and Ti/Sb-SnO2/WC-Co3O4-PbO2 electrodes have superior oxygen evolution reactions (OERs) relative to those of Ti/Sb-SnO2/PbO2 and Ti/Sb-SnO2/WC-PbO2 electrodes. A Ti/Sb-SnO2/Co3O4-PbO2 electrode is considered as the optimal modified electrode due to its long lifetime (684 h) and the remarkable stability of plating solutions. The treatment of copper wastewater suggests that composite electrodes exhibit low cell voltage and excellent extraction efficiency. Furthermore, pilot simulation tests verified that a composite electrode consumes less energy than other electrodes. Therefore, it is inferred that composite electrodes may be promising for the treatment of wastewater containing high concentrations of copper ions. Full article
Show Figures

Figure 1

14 pages, 1703 KB  
Article
Electrochemical Degradation of Nitrobenzene Wastewater: From Laboratory Experiments to Pilot-Scale Industrial Application
by Dunyi Liu, Zhangjiu Liao, Ziyi Hu and Enxiang Shang
Catalysts 2022, 12(2), 190; https://doi.org/10.3390/catal12020190 - 2 Feb 2022
Cited by 18 | Viewed by 3985
Abstract
In this study, the electrochemical degradation of nitrobenzene (NB) was conducted on the Ti/SnO2-Sb/Ce-PbO2 anode with excellent functional performance. The effect of applied current density, electrode distance, pH value and initial concentration on the reaction kinetics of NB was systematically [...] Read more.
In this study, the electrochemical degradation of nitrobenzene (NB) was conducted on the Ti/SnO2-Sb/Ce-PbO2 anode with excellent functional performance. The effect of applied current density, electrode distance, pH value and initial concentration on the reaction kinetics of NB was systematically studied. The total organic carbon (TOC) removal rate reached 91.5% after 60 min of electrolysis under optimal conditions. Eight aromatic intermediate products of NB were identified by using a gas chromatography coupled with a mass spectrometer, and two aliphatic carboxylic acids were qualitatively analyzed using a high-performance liquid chromatograph. The electrochemical mineralization mechanism of NB was proposed based on the detected intermediates and the identified key active oxygen specie. It was supposed that the hydroxyl radical produced on an anode attacked NB to form hydroxylated NB derivatives, followed by the benzene ring opening reactions with the formation of aliphatic carboxylic acids, which mineralized to CO2 and H2O. In addition, NB was reduced to less stable aniline on the cathode surface, which resulted in actualized mineralization. The successful pilot-scale industrial application in combination with wastewater containing NB with the influent concentration of 80–120 mg L−1 indicated that electrochemical oxidation has great potential to abate NB in practical wastewater treatment. Full article
(This article belongs to the Special Issue Advanced Functional Materials for Environmental Catalysis)
Show Figures

Figure 1

10 pages, 2676 KB  
Article
A Novel Porous Ni, Ce-Doped PbO2 Electrode for Efficient Treatment of Chloride Ion in Wastewater
by Sheng Liu, Lin Gui, Ruichao Peng and Ping Yu
Processes 2020, 8(4), 466; https://doi.org/10.3390/pr8040466 - 16 Apr 2020
Cited by 22 | Viewed by 4142
Abstract
The porous Ti/Sb-SnO2/Ni-Ce-PbO2 electrode was prepared by using a porous Ti plate as a substrate, an Sb-doped SnO2 as an intermediate, and a PbO2 doped with Ni and Ce as an active layer. The surface morphology and crystal [...] Read more.
The porous Ti/Sb-SnO2/Ni-Ce-PbO2 electrode was prepared by using a porous Ti plate as a substrate, an Sb-doped SnO2 as an intermediate, and a PbO2 doped with Ni and Ce as an active layer. The surface morphology and crystal structure of the electrode were characterized by scanning electron microscope(SEM), energy dispersive spectrometer(EDS), and X-Ray diffraction(XRD). The electrochemical performance of the electrodes was tested by linear sweep voltammetry (LSV), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and electrode life test. The results show that the novel porous Ni-Ce-PbO2 electrodes with larger active surface area have better electrochemical activity and longer electrode life than porous undoped PbO2 electrodes and flat Ni-Ce-PbO2 electrodes. In this work, the removal of Cl in simulated wastewater on three electrodes was also studied. The results show that the removal effect of the porous Ni-Ce-PbO2 electrode is obviously better than the other two electrodes, and the removal rate is 87.4%, while the removal rates of the other two electrodes were 72.90% and 80.20%, respectively. In addition, the mechanism of electrochemical dechlorinating was also studied. With the progress of electrolysis, we find that the increase of OH- inhibits the degradation of Cl, however, the porous Ni-Ce-PbO2 electrode can effectively improve the removal of Cl. Full article
(This article belongs to the Special Issue Electrolysis Processes)
Show Figures

Figure 1

14 pages, 6427 KB  
Article
A 2.5D Electrode System Constructed of Magnetic Sb–SnO2 Particles and a PbO2 Electrode and Its Electrocatalysis Application on Acid Red G Degradation
by Mengmeng Yuan, Nasir Muhammad Salman, Hua Guo, Zhicheng Xu, Hao Xu, Wei Yan, Zhengwei Liao and Yu Wang
Catalysts 2019, 9(11), 875; https://doi.org/10.3390/catal9110875 - 23 Oct 2019
Cited by 35 | Viewed by 4054
Abstract
A novel electrode consisting of a Ti/PbO2 shell and Fe3O4/Sb–SnO2 particles was developed for electrochemical oxidation treatment of wastewater. Scanning electron microscope (SEM), X-ray diffraction (XRD), the current limiting method, toxicity experiments, and high-performance liquid chromatography were [...] Read more.
A novel electrode consisting of a Ti/PbO2 shell and Fe3O4/Sb–SnO2 particles was developed for electrochemical oxidation treatment of wastewater. Scanning electron microscope (SEM), X-ray diffraction (XRD), the current limiting method, toxicity experiments, and high-performance liquid chromatography were adopted to characterize its morphology, crystal structure, electrochemical properties, the toxicity of the wastewater, and hydroxyl radicals. Acid Red G (ARG), a typical azo dye, was additionally used to test the oxidation ability of the electrode. Results indicated that the 2.5D electrode could significantly improve the mass transfer coefficient and •OH content of the 2D electrode, thereby enhancing the decolorization, degradation, and mineralization effect of ARG, and reducing the toxicity of the wastewater. The experiments revealed that, at higher current density, lower dye concentration and higher temperature, the electrochemical oxidation of ARG favored. Under the condition of 50 mA/cm2, 25 °C, and 100 ppm, the ARG, Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) removal efficiency reached 100%, 65.89%, and 52.52%, respectively, and the energy consumption and the current efficiency were 1.06 kWh/g COD, 8.29%, and energy consumption for TOC and mineralization current efficiency were 3.81 kWh/g COD, 9.01%. Besides, the Fe3O4/Sb–SnO2 particles after electrolysis for 50 h still had remarkable stability. These results indicated that the ARG solution could be adequately removed on the 2.5D electrode, providing an effective method for wastewater treatment. Full article
(This article belongs to the Special Issue Green Synthesis and Catalysis)
Show Figures

Graphical abstract

14 pages, 4452 KB  
Article
Preparation and Characterization of Porous Ti/SnO2–Sb2O3/PbO2 Electrodes for the Removal of Chloride Ions in Water
by Kangdong Xu, Jianghua Peng, Pan Chen, Wankai Gu, Yunbai Luo and Ping Yu
Processes 2019, 7(10), 762; https://doi.org/10.3390/pr7100762 - 18 Oct 2019
Cited by 16 | Viewed by 5105
Abstract
Porous Ti/SnO2–Sb2O3/PbO2 electrodes for electrocatalytic oxidation of chloride ions were studied by exploring the effects of different operating conditions, including pore size, initial concentration, current density, initial pH, electrode plate spacing, and the number of cycles. [...] Read more.
Porous Ti/SnO2–Sb2O3/PbO2 electrodes for electrocatalytic oxidation of chloride ions were studied by exploring the effects of different operating conditions, including pore size, initial concentration, current density, initial pH, electrode plate spacing, and the number of cycles. In addition, a physicochemical characterization and an electrochemical characterization of the porous Ti/SnO2–Sb2O3/PbO2 electrodes were performed. The results showed that Ti/SnO2–Sb2O3/PbO2 electrodes with 150 µm pore size had the best removal effect on chloride ions with removal ratios amounting up to 98.5% when the initial concentration was 10 g L−1, the current density 125 mA cm−2, the initial pH = 9, and the electrode plate spacing 0.5 cm. The results, moreover, showed that the oxygen evolution potential of 150 µm porous Ti/SnO2-Sb2O3/PbO2 electrodes was highest, which minimized side reactions involving oxygen formation and which increased the removal effect of chloride ions. Full article
(This article belongs to the Special Issue Electrolysis Processes)
Show Figures

Figure 1

Back to TopTop